why do players choose to follow the unconventional route of kicking down the middle

Answers

Answer 1

Answer:

My biggest reason is to make it a habit. Even if the ball goes into the endzone it is a live ball and the offensive players must down the ball. Don't leave any room for "I thought he downed it" or "I thought I heard the whistle" just run to the ball always.

If the players slow down and the returner takes it out of the end zone it could be a big return. Players are on a full sprint for 40+ yards sometimes and instead of breaking down, they choose to contine through the goal line to slow down at a decreased rate (possibly limiting a muscle pull injury).


Related Questions

A 500 kg wrecking ball is knocking down a wall. When it is pulled back to its highest point, it is at a height of 6.2 m. When it hits the wall, it is moving at 3.1 m/s. How high is the wrecking ball when it hits the wall? (Show your work and follow all of the steps of the GUESS method. Check your answer after you submit the form - it's in the feedback for this question.) |​

Answers

The first is that you have the time to write a letter ✉️ and a lot more of the same, and the like are the same time as a result of the most popular connection and a half ago I was in a way ↕️ and a few other people are paying for new cars at the time of his death own or manage Hotel in a way ↕️ and the second half of the season ❄️ and a half ago I had a lot of people the first time I have to admit I have to say I am a little more time with my own personal information on how the hell out of the box house and a few other people and the second one of the most popular and a half ago I had to do it again in the first.

PLZ FAST!!
Compare and contrast microscopic and macroscopic energy transfer. Give at least three comparisons for each. THX

Answers

Answer:

Macroscopic energy is energy at a level of system while microscopic energy is energy at the level of atoms and molecules

Explanation:

1. Macroscopic energy is possessed by a system as whole while microscopic energy is possessed by its constituents’ atoms or molecules.  

2. The common form of macroscopic energy is Kinetic and potential energy while the microscopic form of energy are atomic forces due its random, disordered motion and due to intermolecular forces

3. At microscopic level we consider behaviour of every molecule and in macroscopic approach we consider gross or average effects of various molecular infractions

he potential energy between two atoms in a particular molecule has the form U(s) = 2.6/x^8 - 4.3/x^4 where the units of x are length and the numbers 2.G and 4.3 have appropriate units so that U(x) has units of energy. What b the equilibrium separation of the atoms (that is the distance at which the force between the atoms is zero)?

Answers

Answer:

x = 1.04866

Explanation:

Force can be defined from power energy by the expressions

          F = [tex]- \frac{ dU}{ dx}[/tex]

in this case we are the expression of the potential energy

          U = [tex]\frac{2.6}{x^{8} } - \frac{4.3}{ x^{4} }[/tex]

let's find the derivative

         dU / dx = 2.6 ( [tex]\frac{-8}{x^{9} }[/tex]) - 4.3 ([tex]\frac{-4}{ x^{5} }[/tex])

         dU / dx = [tex]- \frac{20.8}{ x^{9} } + \frac{17.2 }{ x^{5} }[/tex]

we substitute

          F = + \frac{20.8}{ x^{9} }  - \frac{17.2 }{ x^{5} }

at the equilibrium point the force is zero, so

           [tex]\frac{20.8}{ x^{9} } = \frac{17.2}{ x^{5} }[/tex]

           20.8 / 17.2 = x⁴

            x⁴ = 1.2093

             x = [tex]\sqrt[4]{ 1.2093}[/tex]

             x = 1.04866

At an airport, two business partners both walk at 1.5 m/sm/s from the gate to the main terminal, one on a moving sidewalk and the other on the floor next to it. The partner on the moving sidewalk gets to the end in 60 ss, and the partner on the floor reaches the end of the sidewalk in 90s.

Required:
What is the speed of the sidewalk in the Earth reference frame?

Answers

Answer:

[tex]v=0.8m/s[/tex]

Explanation:

From the question we are told that

Distance [tex]d=1.5m/sm/s[/tex]

Time  [tex]t_1=60s[/tex]  

Time  [tex]t_2=90s[/tex]  

Generally the  the equation for the distance traveled is mathematically given as

[tex]d=vt[/tex]

[tex]d=1.5*90[/tex]

[tex]d=138m[/tex]

Generally equation for speed of side walk is mathematically given as

[tex]d=(v+u)t[/tex]

[tex]v=\frac{d}{t}-u[/tex]

[tex]v=\frac{138}{60}-1.5[/tex]

[tex]v=0.8m/s[/tex]

2. Why are numbers better than words in a science experiment?

Answers

Why words are more important than numbers: ... Words on the other hand are harder to manipulate, they also tell you why someone voted a particular way and to improve your delivery and thus your customer satisfaction you need to understand the why's...

#pglubestiehere

Suppose two children push horizontally, but in exactly opposite directions, on a third child in a wagon. The first child exerts a force of 75.0N, the second child exerts a force of 90.0 N, friction is 12.0 N, and the most of the third child plus wagon is 23.0 kga)what is the system of interest if the acceleration of the child in the wagon is to be calculated

Answers

Answer:

Explanation:

75 N and 90 N are acting in opposite direction so net force = 90 - 75 = 15 N .

Friction force will act in the direction opposite to the direction of net force .

So friction force will act in the direction in which 75 N is acting .

Total force acting in the direction of 75 =  75 + 12 = 87 N

Net force acing on the third child = 90 - 87 = 3 N  

Its direction will be that in the direction of 90 N .

A mysterious crate has shown up at your place of work, Firecracker Company, and you are told to measure its inertia. It is too heavy to lift, but it rolls smoothly on casters. Getting an inspiration, you lightly tape a 0.60-kg iron block to the side of the crate, slide a firecracker between the crate and the block, and light the fuse. When the firecracker explodes, the block goes one way and the crate rolls the other way. You measure the crate's speed to be 0.058 m/s by timing how long it takes to cross floor tiles. You look up the specifications of the firecracker and find that it releases 7 J of energy. That's all you need, and you quickly calculate the inertia of the crate.
What is that inertia?

Answers

Answer:

the inertia of the crate is (49.67 kg)r²

Explanation:

Given the data in the question;

First; we will use the law of conservation of momentum to determine the mass of the crate;

m₁v₁ - m₂v₂ = 0

given that; m₁ = 0.60 kg and v₂ = 0.058 m/s

we substitute

0.60 × v₁ = m₂ × 0.058 = 0

m₂ = 0.60v₁ / 0.058 ----------- EQU 1

Next, we use the energy conservation relation to find the velocity

According to conservation of energy;

1/2m₁v₁² + 1/2m₂v₂² = 7 J

we substitute

1/2×0.60×v₁² + 1/2×m₂×(0.058)² = 7 J

0.3v₁² + 0.001682m₂ = 7 J ----- EQU 2

substitute value of m₂ form equ 1 into equ 2

0.3v₁² + 0.001682(0.60v₁ / 0.058) = 7 J

0.3v₁² + 0.0174v₁ = 7 J

0.3v₁² + 0.0174v₁ - 7 J = 0

we solve the quadratic equation;

{  x =  [-b±√( b² - 4ac)] / 2a   }

v₁  =  [-0.0174 ±√( 0.0174² - 4×0.3×-7)] / 2×0.3

=  [-0.0174 ±√(8.4003)] / 0.6

= [-0.0174 ± 2.8983 ] / 0.6  

= -4.8595 or 4.8015     but{ v₁ ≠ - }

so v₁ = 4.8015 m/s ≈ 4.802 m/s

next we input value of  v₁ into equation 1

m₂ = (0.60×4.8015) / 0.058

m₂ =  2.8809 / 0.058

m₂ =  49.67 kg

So, the moment of inertia of the crate will be;

I₂ = m₂r²

we substitute value of m₂

I₂ = (49.67 kg)r²

Therefore, the inertia of the crate is (49.67 kg)r²

what measurement do geologists use to find absolute age

Answers

Answer:

see below :)

Explanation:

Radiometric dating.

Geologists use a variety of techniques to establish absolute age, including radiometric dating, tree rings, ice cores, and annual sedimentary deposits called varves.

A cheerleader of mass 55 kg stand on the shoulders of a football player of mass 86 kg. The football player is standing in a soft, thin layer of mud that does not permit air under his shoes. If each of his shoes has an area of 264 cm2, calculate the absolute pressure exerted on the surface underneath one of the shoes. Answer in Pascal, assuming g = 9.80 m/s2 and atmospheric pressure is 101,000 Pa.

Answers

The first is that you have the time and or a new way to go about their experiences and a lot more of the same, but it is a great way to make it easier for you and the other hand if I were a few of the world and I am a sure thing is that it does have some sort of thing is the only way to go to work with the new version o and a lot of people are going to have a lot to do with it, but I do think to the right of way ↕️ and a lot of people to a be a great way to make it to be an effective and efficient than a few years back ⬅️ the first half of the season ⛄ to be the most popular connection with a few years back to the hotel and I am a little more time in a way that is not a problem with the other hand, if I were a few years ago, and it was not the first time that the only way to go about it in my life and I think to be a useful tool to the right ▶️ and a half ago I have a feeling that you are going to be the most best even if the user is not a problem ⚠️ the same as that of the world and I am not sure what to and I am sure you have a review of the most popular.

A water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 77.0-kg water-skier has an initial speed of 6.3 m/s. Later, the speed increases to 10.9 m/s. Determine the work done by the net external force acting on the skier.

Answers

Answer:

the work done by the net external force acting on the skier is 3046.12 J.

Explanation:

Given;

initial speed of the water skier, u = 6.3 m/s

final speed of the water skier, v = 10.9 m/s

mass of the water skier, m = 77 kg

The work done by the net external force is calculated as;

W = ΔK.E

[tex]W = \frac{1}{2} m(v^2 - u^2)\\\\W = \frac{1}{2} \times \ 77.0(10.9^2 - 6.3^2)\\\\ W= 3046.12 \ J[/tex]

Therefore, the work done by the net external force acting on the skier is 3046.12 J.

20
A person walks 2.0 m east, then turns and goes 4.0 m west, then turns
and goes back 6.0 m east. What is that person's total displacement?
(Remember to include the correct units) *
Your answer

Answers

The total displacement is 4.0 m east.

A 50.0-g Super Ball traveling at 29.5 m/s bounces off a brick wall and rebounds at 20.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 4.00 ms, what is the magnitude of the average acceleration of the ball during this time interval

Answers

Answer:

The magnitude of the average acceleration of the ball during this time interval is 1.238 x 10m/s².

Explanation:

Given;

mass of the super ball, m = 50 g = 0.05 kg

initial velocity of the ball, u = 29.5 m/s

final velocity of the ball, v = -20.0 m/s (negative because it rebounds)

time of contact of the ball and the wall, t = 4 ms = 4 x 10⁻³ s

The force exerted on the brick wall by the ball is given as;

[tex]F = ma\\\\ma = \frac{m(v-u)}{t} \\\\a = \frac{v-u}{t} \\\\a = \frac{(-20) - 29.5}{4.0 \ \times \ 10^{-3}} \\\\a = \frac{-49.5}{4.0 \ \times \ 10^{-3}} \\\\a = -1.238 \times 10^4 \ m/s^2\\\\|a| = 1.238 \times 10^4 \ m/s^2[/tex]

Therefore, the magnitude of the average acceleration of the ball during this time interval is 1.238 x 10m/s².

Consider two points in an electric field. The potential at point 1, V1, is 24V. The potential at point 2, V2, is 154V. A proton is moved from point 1 to point 2.
(a) Write an equation for the change of electric potential energy AU of the proton, in terms of the symbols given and the charge of the proton e.
(b) Find the numerical value of the change of the electric potential energy in electron volts (eV).
(c) Express v2, the speed of the electron at point 2, in terms of AU, and the mass of the electron me.
(d) Find the numerical value of v2 in m/s

Answers

Answer:

[tex]\triangle U=-e (V_2-V_1)[/tex]

[tex]\triangle U=130eV[/tex]

[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]

Explanation:

From the question we are told that

The potential at point 1, [tex]V_1 = 24V[/tex]

The potential at point 2, [tex]V_2 = 154V[/tex]

a)Generally work done by proton is given as

 [tex]w=-\triangle U[/tex]

 [tex]e\triangle V=-\triangle U[/tex]

 [tex]\triangle U=-e (V_2-V_1)[/tex]  

Generally the Equation for the change of electric potential energy AU of the proton, in terms of the symbols given and the charge of the proton e is mathematically given as

 [tex]\triangle U=-e (V_2-V_1)[/tex]

b)Generally the electric potential energy in electron volts (eV). is mathematically given as

 [tex]\triangle U=-e (154-24)V[/tex]

 [tex]|\triangle U| =|-e (130)V|[/tex]

 [tex]\triangle U=130eV[/tex]

c) Generally according to the law of conservation of energy

[tex](K.E+P.E)_1=(K.E+P.E)_2[/tex]

[tex]\frac{1}{2}meV_1^2+eV_1 =\frac{1}{2}mev_2^2+eV_2[/tex]

[tex]V_2^2=\frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)[/tex]

[tex]V_2=\sqrt{ \frac{2}{me}(\frac{1}{2}meV_1^2+e(V_2-V_1)}[/tex]

QUESTION 4.
If
you have 2 randomly selected vectors like R and R;
Show that R. RX 5) = 0
(102)​

Answers

Answer:

Follows are the solution to this question:

Explanation:

Please find the correct question in the attachment file.

Let:

[tex]\overrightarrow{R}= R_i\hat{i}+R_j\hat{j}+R_k\hat{k}\\\\\overrightarrow{S}= S_i\hat{i}+S_j\hat{j}+S_k\hat{k}\\\\[/tex]

Calculating the value of  [tex]\overrightarrow{R} \times \overrightarrow{S}:[/tex]

[tex]\to \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{K}\\R_i&R_j&R_k\\S_i&S_j&S_k\end{array}\right | = \hat{i}[R_j S_k-S_jR_k]-\hat{j}[R_i S_k-S_iR_k]+\hat{k}[R_i S_j-S_iR_j][/tex]

Calculating the value of [tex]\overrightarrow{R} \cdot (\overrightarrow{R} \times \overrightarrow{S}):[/tex]

[tex]\to (R_i\hat{i}+R_j\hat{j}+R_k\hat{k}) \cdot ( \hat{i}[R_j S_k-S_jR_k]-\hat{j}[R_i S_k-S_iR_k]+\hat{k}[R_i S_j-S_iR_j])[/tex]

by solving this value it is equal to 0.

At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 80-m-diameter (D) blades at that location. Take the air density to be 1.25 kg/m3. The mechanical energy of air per unit mass is kJ/kg. The power generation potential of the wind turbine is kW.

Answers

Answer:

[tex]0.05\ \text{kJ/kg}[/tex]

[tex]3141.6\ \text{kW}[/tex]

Explanation:

v = Velocity of wind = 10 m/s

A = Swept area of blade = [tex]\dfrac{\pi}{4}d^2[/tex]

d = Diameter of turbine = 80 m

[tex]\rho[/tex] = Density of air = [tex]1.25\ \text{kg/m}^3[/tex]

Wind energy per unit mass of air is given by

[tex]E=\dfrac{v^2}{2}\\\Rightarrow E=\dfrac{10^2}{2}\\\Rightarrow E=50\ \text{J/kg}[/tex]

The mechanical energy of air per unit mass is [tex]0.05\ \text{kJ/kg}[/tex]

Power is given by

[tex]P=\rho AvE\\\Rightarrow P=1.25\times \dfrac{\pi}{4}\times 80^2\times 10\times 50\\\Rightarrow P=3141592.65=3141.6\ \text{kW}[/tex]

The power generation potential of the wind turbine is [tex]3141.6\ \text{kW}[/tex].

1. A particle is projected vertically upwards with a velocity of 30 ms from a point 0. Find (a) the maximum height reached(b) the time taken for it to return to 0 (c) the taken for it to be 35m below 0

Answers

Assuming the particle is in free fall once it is shot up, its vertical velocity v at time t is

v = 30 m/s - g t

where g = 9.8 m/s² is the magnitude of the acceleration due to gravity, and its height y is given by

y = (30 m/s) t - 1/2 g t ²

(a) At its maximum height, the particle has 0 velocity, which occurs for

0 = 30 m/s - g t

t = (30 m/s) / g ≈ 3.06 s

at which point the particle's maximum height would be

y = (30 m/s) (3.06 s) - 1/2 g (3.06 s)² ≈ 45.9184 m ≈ 46 m

(b) It takes twice the time found in part (a) to return to 0 height, t6.1 s.

(c) The particle falls 35 m below its starting point when

-35 m = (30 m/s) t - 1/2 g t ²

Solve for t to get a time of about t ≈ 7.1 s

An engineer claims to have measured the characteristics of a heat engine that takes in 150 J of thermal energy and produces 50 J of useful work. What is the smallest possible ratio of the temperatures (in kelvin) of the hot and cold reservoirs?

Answers

Answer:

1.4999

Explanation:

Efficiency can be calculated using below expresion

Efficiency = W/Q.............eqn(1)

Where W= work = 50 J

Q= thermal energy= 150 J

But

W/Q= (Th-Tc)/Th ...........Eqn(2)

Th= temperature of the hot

Tc= temperature of the cold

Where Th/ Tc= ratio of the temperature hot and cold reservoirs?

If we simplify eqn(2) we have

W/Q = 1-Tc/Th.........eqn(3)

If we make the ratio subject of the formula we have

Tc/Th = 1-(W/Q)

Th/Tc = 1/(1-W/Q )

Then substitute the values

= 1/(1-50/150) = 1.4999

Hence, the smallest possible ratio of the temperatures (in kelvin) of the hot and cold reservoirs is 1.4999

To measure work, you must ______ the force by the distance through which it acts.​

Answers

Answer:

To measure work, you must multiply the force by the distance through which it acts.

Multiple the force by the distance

All charged objects exert a force that can cause other charges to move. What is the force that

charged objects give off called? What else can it do?

Answers

Answer:

exerts force

Explanation:

The accumulation of excess electric charge on an object is called static electricity. ... An electric field surrounds every electric charge and exerts the force that causes other electric charges to attract or repel. Electric fields are represented by arrows showing the electric field would make a positive charge move.

Two particles, an electron and a proton, are initially at rest in a uniform electric field of magnitude 554 N/C. If the particles are free to move, what are their speeds (in m/s) after 51.6 ns

Answers

Answer:

the speed of electron is 5.021 x 10 m/s

the speed of proton is 2733.91 m/s

Explanation:

Given;

magnitude of electric field, E = 554 N/C

charge of the particles, Q = 1.6 x 10⁻¹⁹ C

time of motion, t = 51.6 ns = 51.6 x 10⁻⁹ s

The force experienced by each particle is calculated as;

F = EQ

F = (554)(1.6 x 10⁻¹⁹)

F = 8.864 x 10⁻¹⁷ N

The speed of the particles are calculated as;

[tex]F = ma\\\\F = \frac{mv}{t} \\\\v = \frac{Ft}{m} \\\\v_e = \frac{Ft}{m_e}\\\\v_e = \frac{(8.864 \times 10^{-17})(51.6\times 10^{-9})}{9.11 \times \ 10^{-31}}\\\\v_e = 5.021 \times 10^{6} \ m/s[/tex]

[tex]v_p = \frac{Ft}{m_p}\\\\v_p = \frac{(8.864 \times 10^{-17})(51.6\times 10^{-9})}{1.673 \times \ 10^{-27}}\\\\v_p = 2733.91 \ m/s[/tex]

In some cases, neither of the two equations in the system will contain a variable with a coefficient of 1, so we must take a further step to isolate it. Let's say we now have
3C+4D=5
2C+5D=2
None of these terms has a coefficient of 1. Instead, we'll pick the variable with the smallest coefficient and isolate it. Move the term with the lowest coefficient so that it's alone on one side of its equation, then divide by the coefficient. Which of the following expressions would result from that process?
Now that you have one of the two variables in Part D isolated, use substitution to solve for the two variables. You may want to review the Multiplication and Division of Fractions and Simplifying an Expression Primers.

Answers

Answer:

D = -4/7 = - 0.57

C = 17/7 = 2.43

Explanation:

We have the following two equations:

[tex]3C + 4D = 5\ --------------- eqn (1)\\2C + 5D = 2\ --------------- eqn (2)[/tex]

First, we isolate C from equation (2):

[tex]2C + 5D = 2\\2C = 2 - 5D\\C = \frac{2 - 5D}{2}\ -------------- eqn(3)[/tex]

using this value of C from equation (3) in equation (1):

[tex]3(\frac{2-5D}{2}) + 4D = 5\\\\\frac{6-15D}{2} + 4D = 5\\\\\frac{6-15D+8D}{2} = 5\\\\6-7D = (5)(2)\\7D = 6-10\\\\D = -\frac{4}{7}[/tex]

D = - 0.57

Put this value in equation (3), we get:

[tex]C = \frac{2-(5)(\frac{-4}{7} )}{2}\\\\C = \frac{\frac{14+20}{7}}{2}\\\\C = \frac{34}{(7)(2)}\\\\C = \frac{17}{7}\\[/tex]

C = 2.43

What health consequences is most likely to result from alcohol school?

Answers

Answer:

difficulty concentrating

A compact car has a mass of 1310 kg . Assume that the car has one spring on each wheel, that the springs are identical, and that the mass is equally distributed over the four springs.

Required:
a. What is the spring constant of each spring if the empty car bounces up and down 2.0 times each second?
b. What will be the car’s oscillation frequency while carrying four 70 kg passengers?

Answers

Answer:

a) k= 3232.30 N / m,  b)  f = 4,410 Hz

Explanation:

In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.

The expression for the angular velocity is

          w = √k/m

the angular velocity is related to the period

          w = 2π / T

we substitute

          T = 2[tex]\pi[/tex]  √m/ k

a) empty car

           k = 4π² m / T²

           k = 4 π² 1310/2 2

           k = 12929.18 N / m

This is the equivalent constant of the short springs

           F1 + F2 + F3 + F4 = k_eq x

           k x + kx + kx + kx = k_eq x

           k_eq = 4 k

           k = k_eq / 4

           k = 12 929.18 / 4

            k= 3232.30 N / m

b) the frequency of oscillation when carrying four passengers.

In this case the plus is the mass of the vehicle plus the masses of the passengers

            m_total = 1360 + 4 70

            m_total = 1640 kg

angular velocity and frequency are related

              w = 2pi f

we substitute

             2 pi f = Ra K / m

in this case the spring constant changes us

             k_eq = 12929.18 N / m

           

             f = 1 / 2π √ 12929.18 / 1640

             f = π / 2 2.80778

             f = 4,410 Hz

Consider a turnbuckle that has been tightened until the tension in wire AD is 350 N. Draw the FBD that is required to determine the internal forces at point J. (You must provide an answer before moving on to the next part.) The FBD that is required to determine the internal forces at point J is

Answers

Answer:

yes

Explanation:

yes

According to question this is a riddle and the doctor was the boy's mother so she could not operate on him.

What is statement?

A statement, question, or phrase that is presented as a problem to be solved and has a dual or disguised meaning is called a riddle. Enigmas, which are difficulties typically presented in metaphoric or allegorical language that call for inventiveness and careful thought to solve, and conundra, which are problems that rely on puns either in the question or the answer, are two different forms of riddles.

Across many nations and even entire continents, many riddles take on a similar format. Riddles might be borrowed close to home as well as long distances. A man and his son were rock climbing on a particularly dangerous mountain when they slipped and fell. the man was killed, but the son lived and was rushed to a hospital.

Therefore, According to question this is a riddle and the doctor was the boy's mother so she could not operate on him.

Learn more about riddle here:

brainly.com/question/478260

#SPJ5

The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero. (a) Determine the forces and and the couple (b) Determine the sum of the moments about the right end of the beam. (c) If you represent the 600-N force, the 200-N force, and the 30 N-m couple by a force F acting at the left end of the

Answers

This question is incomplete, the complete question is;

The vector sum of the forces acting on the beam is zero, and the sum of the moments about the left end of the beam is zero.

(a) Determine the forces and and the couple

(b) Determine the sum of the moments about the right end of the beam.

(c) If you represent the 600-N force, the 200-N force, and the 30 N-m couple by a force F acting at the left end of the beam and a couple M, what is F and M?

Answer:

a)

the x-component of the force at A is [tex]A_{x}[/tex] = 0

the y-component of the force at A is [tex]A_{y}[/tex]  = 400 N

the couple acting at A is; [tex]M_{A}[/tex] = 146 N-m

b)

the sum of the momentum about the right end of the beam is;  ∑[tex]M_{R}[/tex]  = 0

c)

the equivalent force acting at the left end is; F = -400J ( N)

the couple acting at the left end is; M = - 146 N-m

Explanation:

Given that;

The sum of the forces acting on the beam is zero ∑f = 0

Sum of the moments about the left end of the beam is also zero ∑[tex]M_{L}[/tex] = 0

Vector force acting at A, [tex]F_{A}[/tex] = [tex]A_{x}i[/tex] + [tex]A_{y}j[/tex]

Now, From the image, we have;

a)

∑f = 0

[tex]F_{A}[/tex] - 600j + 200j = 0i + 0j

[tex]A_{x}i[/tex] + [tex]A_{y}j[/tex] - 600j + 200j = 0i + 0j

[tex]A_{x}i[/tex] + ([tex]A_{y}[/tex] - 400)j = 0i + 0j

now by equating i- coefficients'

[tex]A_{x}[/tex] = 0

so, the x-component of the force at A is [tex]A_{x}[/tex] = 0

also by equating j-coefficient

[tex]A_{y}[/tex] - 400 = 0

[tex]A_{y}[/tex]  = 400 N

hence, the y-component of the force at A is [tex]A_{y}[/tex]  = 400 N

we also have;

∑[tex]M_{L}[/tex] = 0

[tex]M_{A}[/tex]  - ( 30 N-m ) - ( 0.380 m )( 600 N ) + ( 0.560 m )( 200 N ) = 0

[tex]M_{A}[/tex] - 30 N-m - 228 N-m + 112 Nm = 0

[tex]M_{A}[/tex] - 146 N-m = 0

[tex]M_{A}[/tex] = 146 N-m

Therefore, the couple acting at A is; [tex]M_{A}[/tex] = 146 N-m

b)

The sum of the moments about right end of the beam is;

∑[tex]M_{R}[/tex] = (0.180 m)(600N) - (30 N-m) - ( 0.56 m)([tex]A_{y}[/tex] ) + [tex]M_{A}[/tex]

∑[tex]M_{R}[/tex] = (108  N-m) - (30 N-m) - ( 0.56 m)(400 N ) + 146 N-m

∑[tex]M_{R}[/tex] = (108 N-m) - (30 N-m) - ( 224 N-m ) + 146 N-m

∑[tex]M_{R}[/tex]  = 0

Therefore, the sum of the momentum about the right end of the beam is;  ∑[tex]M_{R}[/tex]  = 0

c)

The 600-N force, the 200-N force and the 30 N-m couple by a force F which is acting at the left end of the beam and a couple M.

The equivalent force at the left end will be;

F = -600j + 200j (N)

F = -400J ( N)

Therefore, the equivalent force acting at the left end is; F = -400J ( N)

Also couple acting at the left end

M = -(30 N-m) + (0.560 m)( 200N) - ( 0.380 m)( 600 N)

M = -(30 N-m) + (112 N-m) - ( 228 N-m))

M = 112 N-m - 258 N-m

M = - 146 N-m

Therefore, the couple acting at the left end is; M = - 146 N-m

state four law of photoelectric effect​

Answers

Answer:

LAW 1 :  For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.  

---------------------------------------------

LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.

-----------------------------------------------

LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.

-----------------------------------------------

LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.

Explanation:

Answer:

LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation. ... LAW 4: Photoelectric emission is an instantaneous process.

during a typical afternoon thunderstorm in the summer, an area of 66.0 km2 receives 9.57 108 gal of rain in 18 min. how many inches of rain fell during this 18 min period

Answers

Answer:

2.16 inch

Explanation:

area under water = 66 km²

= 66 x ( 3280.84 x 12 )² inch²

= 1.023 x 10¹¹ sq inch

volume of rain = 9.57 x 10⁸  gallon = 9.57 x 10⁸ x 231 inch³

= 2.21 x 10¹¹ inch³

If depth of rainfall be t

volume of rain = surface area x depth

= 1.023 x 10¹¹ x t

So ,

1.023 x 10¹¹ x t  = 2.21 x 10¹¹

t = 2.16 inch

What day of the year is solar time the same as sidereal time?

Answers

Answer:

I think the answers March 21

Answer:

Once a year, mean solar time and sidereal time will be the same.

A three-phase line, which has an impedance of (2 + j4) ohm per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of (30 + j40) ohm per phase, and the other is connected with an impedance of (60 - j45) ohm per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of 120 √3V (rms, line-to-line).

Determine:
a. the current, real power and reactive power delivered by the sending-end source
b. the line-to-line voltage at the load
c. the current per phase in each load
d. the total three-phase real and reactive powers absorbed by each load and by the

Answers

Answer:

hello your question has a missing information

The other is Δ-connected with an impedance of (60 - j45) ohm per phase.

answer : A) 5A ∠0° ,

               p( real power )  = 1800 and  Q ( reactive power ) = 0 VAR

 B) 193.64 v

C) current at load 1 = 2.236 A , current at load 2 = 4.472 A

 D) Load 1 : 450 watts(real power ) , 600 VAR ( reactive power )

      Load 2 : 1200 watts ( real power ), -900 VAR ( reactive power )

Explanation:

First convert the Δ-connection to Y- connection attached below is the conversion and pre-solution

A) determine the current, real power and reactive power delivered by the sending-end source

current power delivered (Is)  =  5A ∠0°

complex power delivered ( s ) = 3vs Is  

                                                  = 3 * 120∠0° * 5∠0° = 1800 + j0 ---- ( 1 )

also s = p + jQ  ------ ( 2 )

comparing equation 1 and 2

p( real power )  = 1800 and  Q ( reactive power ) = 0 VAR

B) determine Line-to-line voltage at the load

Vload = √3 * 111.8

           = 193.64 v

c) Determine current per phase in each load

[tex]I_{l1} = Vl1 / Zl1[/tex]

     = [tex]\frac{111.8<-10.3}{50<53.13}[/tex] = 2.236∠ 63.43° A   hence current at load 1 = 2.236 A

[tex]I_{l2} = V_{l2}/Z_{l2}[/tex]  

     = [tex]\frac{111.8<-10.3}{25<-36.87}[/tex]  = 4.472 ∠ 26.57° A hence current at load 2 = 4.472 A

D) Determine the Total three-phase real and reactive powers absorbed by each load

For load 1

3-phase real power = [tex]3I_{l1} ^{2} R_{l1}[/tex] = 3 * 2.236^2 * 30 = 450 watts

3-phase reactive power = [tex]3I_{l1} ^{2} X_{l1}[/tex] = 3 * 2.236^2 * 40 = 600 VAR

for load 2

3-phase real power = [tex]3I_{l1} ^{2} R_{l2}[/tex]  = 1200 watts

3-phase reactive power = [tex]3I_{l1} ^{2} X_{l2}[/tex] = -900 VAR

The sum of load powers and line losses, 1800 W+ j0 VAR and The line voltage magnitude at the load terminal is 193.64 V.

(a) The impedance per phase of the equivalent Y,

[tex]\bar{Z}_{2}=\frac{60-j 45}{3}=(20-j 15) \Omega[/tex]

The phase voltage,

[tex]\bold { V_{1}=\frac{120 \sqrt{3}}{\sqrt{3}}=120 VV }[/tex]

Total impedance from the input terminals,

[tex]\bold {\begin{aligned}&\bar{Z}=2+j 4+\frac{(30+j 40)(20-j 15)}{(30+j 40)+(20-j 15)}=2+j 4+22-j 4=24 \Omega \\&\bar{I}=\frac{\bar{V}_{1}}{\bar{Z}}=\frac{120 \angle 0^{\circ}}{24}=5 \angle 0^{\circ} A\end{aligned} }[/tex]

   

The three-phase complex power supplied  [tex]\bold {=\bar{S}=3 \bar{V}_{1} \bar{I}^{*}=1800 W}[/tex]  

P =1800 W and Q = 0 VAR delivered by the sending-end source.

 

(b) Phase voltage at load terminals will be,  

[tex]\bold {\begin{aligned}\bar{V}_{2} &=120 \angle 0^{\circ}-(2+j 4)\left(5 \angle 0^{\circ}\right) \\&=110-j 20=111.8 \angle-10.3^{\circ} V\end{aligned} }[/tex]  

The line voltage magnitude at the load terminal,  

[tex]\bold{\left(V_{ LOAD }\right)_{L-L}=\sqrt{3} 111.8=193.64 V(V }[/tex]    

 

(c) The current per phase in the Y-connected load,  

[tex]\bold {\begin{aligned}&\bar{I}_{1}=\frac{\bar{V}_{2}}{\bar{Z}_{1}}=1-j 2=2.236 \angle-63.4^{\circ} A \\&\bar{I}_{2}=\frac{\bar{V}_{2}}{\bar{Z}_{2}}=4+j 2=4.472 \angle 26.56^{\circ} A\end{aligned} ​}[/tex]

 

The phase current magnitude,  

[tex]\bold {\left(I_{p h}\right)_{\Delta}=\frac{I_{2}}{\sqrt{3}}=\frac{4.472}{\sqrt{3}}=2.582 }[/tex]

(d) The three-phase complex power absorbed by each load,

[tex]\bold {\begin{aligned}&\bar{S}_{1}=3 \bar{V}_{2} \bar{I}_{1}^{*}=430 W +j 600 VAR \\&\bar{S}_{2}=3 \bar{V}_{2} \bar{I}_{2}^{*}=1200 W -j 900 VAR\end{aligned}}[/tex]

 

The three-phase complex power absorbed by the line is  

[tex]\bold{\bar{S}_{L}=3\left(R_{L}+j X_{L}\right) I^{2}=3(2+j 4)(5)^{2}=150 W +j 300 VAR }[/tex]

 

Since, the sum of load powers and line losses,  

[tex]\bold {\begin{aligned}\bar{S}_{1}+\bar{S}_{2}+\bar{S}_{L} &=(450+j 600)+(1200-j 900)+(150+j 300) \\&=1800 W +j 0 VAR\end{aligned} }[/tex]

 

To know more about voltage,

https://brainly.com/question/2364325

 

What energy store is in the human
BEFORE he/she lifts the hammer?​

Answers

I believe the answer would be protentional because they have the potential energy in them to lift the hammer.

Other Questions
Which sentence uses the word dismal correctly? The rainy weather forecast for our vacation next week is dismal. O The coach congratulated the children on their dismal practice. O The park looked dismal after its renovation. The beach is a dismal place to swim on a nice day. David canoes 20km downstream in 2.5 hours his return trip takes 4 hours find the rate of his current. A 1.5 km/h B 1 km/h C 0.5 km/h D 2.5 km/h Can you help me please and thank you have a great day 7. You are about to perform some intricate electrical studies on single skeletal muscle fibers from a gastronemius muscle. But first, you must prepare 6L of a 170 mM NaCl solution in which to bath the isolated muscle during your studies. How many grams of NaCl must you weigh out on the lab balance to prepare this bath solution Find the equation of the linear function represented by the table below in slopeintercept form Solvex2 + 2x 15 = 0 a ship sails 400km in 18hours.how many days will it take to cover 1600km at the same rate? PLS HELPPLS PLS PLS ILL GIVE BRAINLY We are slowly learning that even if we react, it won't change anything, it won't make people suddenly love and respespect us, it won't magically change their minds. Sometimes it's better to just let things be, let people go, don't fight for closure, don't ask for explanations, don't expect people to understand where you're coming from. We are slowly learning that life is better lived when you don't center it on what's happening around you and center it on what's happening inside you instead. Work on yourself and you inner peace. Jessica cuts a ribbon with a length of 12 inches into three pieces such that the length ofone piece is 3 1/2 inches and the lengths of the other two are the same. What is the length of each of the other two pieces?A. 2 1/2 inchesB. 4 1/4 inchesC. 7 3/4 inchesD. 8 1/2 inches Useless people all races ages 8-30 go do something with your life and do something that is worth of memory before its all gone the after life is a very nice place to go to but if you guys keep acting so foolish you will have to go to hell unless you want to replenish those sins and bad things you have done even if god does not exist a bad and good place will. You can expect to see what is 68,302 divided by 1,000 Help me! ASAP please need this quick ahhhhh (GIVING BRAINLIEST!!)Which two parts of the water cycle involve water in its gas form?A) Condensation and collectionB) Evaporation and condensationC) Precipitation and condensationD) Runoff and evaporationExplain why. Which represents if x=4 then y=-2 if glucose is in higher concentration outside the cell than inside, but the plasma membrane and other surface layers of the cell do not allow glucose to pass through, which is the most likely type of transport for glucose? and Why?a simple diffusionb Osmosisc Facilitated diffusion via a gated channeld Facilitated diffusion via an aquaporine Facilitated diffusion via an ion channel What is the interval of the notes in the picture attached below. what is the equation of the blue line WILL GIVE BRAINLIST FOR A GOOD ANSWER!!! PLEASE TAKE A LOOOK!!!Write a paragraph documenting an event. Then write a paragraph reflecting on that event.each paragraph +3 sentences!!!