Use the region in the first quadrant bounded by √x, y=2 and the y-axis to determine the volume when the region is revolved around the y-axis. Evaluate the integral.
A. 8.378
B. 20.106
C. 5.924
D. 17.886
E. 2.667
F. 14.227
G. 9.744
H. 3.157

Answers

Answer 1
To determine the volume when the region is revolved around the y-axis, we use the formula:

`V = ∫[a,b] π[f(y)]^2 dy`

Where `a` and `b` are the limits of integration and `f(y)` is the function that represents the region when it is revolved around the y-axis.

In this case, we have `f(y) = √y`, `a = 0` (since the region is bounded by the y-axis) and `b = 2`. So the integral becomes:

`V = ∫[0,2] π[√y]^2 dy`

`V = ∫[0,2] πy dy`

`V = π [y^2/2]_0^2`

`V = π[(2)^2/2 - (0)^2/2]`

`V = π(2)`

`V = 6.283`

Round to three decimal places, the answer is H. 3.157.

Related Questions

Around the beginning of the 1800’s, the population of the U.S. was growing at a rate of about 1.33^t million people per decade, with "t" being measured in decades from 1810.
If the population P(t) was 7.4 million people in 1810, estimate the population in 1820 (one decade later) by considering the work in example 2.

Answers

We can determine the population in 1820 was 8.5753 using a linear equation.

What does a linear equation mean in mathematics?

A linear equation is one that has just a constant and a first order (linear) component, like y=mx+b, where m is the slope and b is the y-intercept.

When x and y are the variables, the aforementioned is sometimes referred to as a "linear equation of two variables."

dp/dt = [tex]1.37^{t}[/tex]

Integrate both sides.

p[h] = ( [tex]1.37^{t}[/tex])/In (1.37)   + c

1810 ⇒ t = 0

7.4 = 1/In (1.37) + C

C = 4.2235

p(H) = ( [tex]1.37^{t}[/tex])/In (1.37) + 4.2235

P (1) =  [tex]1.37^{t}[/tex]In (1.37) + 4.2235

= 8.5753

To know more about linear equations, visit:

brainly.com/question/11897796

#SPJ1

Please help if you can, i don't understand

Answers

Answer: I believe -2 is the answer

Step-by-step explanation: To solve for the function over an interval, you need to know the equation of the function. If you have the equation, you can plug in the values of the interval into the equation to find the corresponding y-values. For example, if the function is y = 2x + 1 and the interval is [0,3], you can plug in x = 0 and x = 3 to find the corresponding y-values and get the ordered pairs (0,1) and (3,7).

Please solve this geometry problem.

Answers

hope this helps you .

I think I understand how to do this but the answer I think it is goes past the graph?

Answers

The other root of the quadratic equation include the following (-4, 0).

What is the vertex form of a quadratic equation?

In Mathematics and Geometry, the vertex form of a quadratic equation is given by this formula:

y = a(x - h)² + k

Where:

h and k represents the vertex of the graph.a represents the leading coefficient.

For the given quadratic function, we have;

y = a(x - h)² + k

0 = a(8 - 2)² - 5

0 = 36a - 5

5 = 36a

a = 5/36

Therefore, the required quadratic function in vertex form is given by;

y = 5/36(x - 2)² - 5

0 = 5/36(x - 2)² - 5

5 = 5/36(x - 2)²

36 = (x - 2)²

±6 = x - 2

x = -6 + 2

x = -4.

Other root = (-4, 0).

Read more on vertex here: https://brainly.com/question/30945046

#SPJ1

For two programs at a university, the type
of student for two majors is as follows.

Find the probability a student is a science major,
given they are a graduate student.

Answers

Answer:

Step-by-step explanation:

To find the probability that a student is a science major given that they are a graduate student, we need to use Bayes' theorem:

P(Science | Graduate) = P(Graduate | Science) * P(Science) / P(Graduate)

We know that P(Science) = 0.45 and P(Liberal Arts) = 0.55, and that P(Graduate | Science) = 0.35 and P(Graduate | Liberal Arts) = 0.25. We also know that the total probability of being a graduate student is:

P(Graduate) = P(Graduate | Science) * P(Science) + P(Graduate | Liberal Arts) * P(Liberal Arts)

Plugging in the values, we get:

P(Graduate) = 0.35 * 0.45 + 0.25 * 0.55 = 0.305

Now we can calculate the probability of being a science major given that the student is a graduate student:

P(Science | Graduate) = 0.35 * 0.45 / 0.305 = 0.515

Therefore, the probability that a student is a science major, given they are a graduate student, is approximately 0.515.

Answer:

0.72

Step-by-step explanation:

trust me

s it possible that ca = i4 for some 4 ×2 matrix c? why or why not?

Answers

No, it is not possible that CA = I4 for some 4 × 2 matrix C, where A is a 4 × 2 matrix and I4 is the 4 × 4 identity matrix.



1. Recall that the identity matrix I4 is a 4 × 4 matrix with ones on the diagonal and zeros elsewhere.

2. In matrix multiplication, the number of columns in the first matrix must equal the number of rows in the second matrix.

3. If C is a 4 × 2 matrix and A is a 4 × 2 matrix, then matrix multiplication CA results in a 4 × 2 matrix, as the number of rows in C (4) and the number of columns in A (2) determine the dimensions of the resulting matrix.

4. Since CA produces a 4 × 2 matrix, it cannot be equal to the 4 × 4 identity matrix I4, as the dimensions are not the same.

Therefore, it is not possible for CA = I4 for some 4 × 2 matrix C.

learn more on the 4*2 matrix: https://brainly.com/question/31489259

#SPJ11

Given: A_n = 30/3^n Determine: (a) whether sigma _n = 1^infinity (A_n) is convergent. _____
(b) whether {An} is convergent. _____
If convergent, enter the limit of convergence. If not, enter DIV.

Answers

As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0. (a) Σ(A_n) is convergent and (b) {A_n} is convergent with the limit of convergence equal to 0.

(a) To determine whether sigma _n = 1^infinity (A_n) is convergent, we need to take the sum of the sequence A_n from n=1 to infinity:
sigma _n = 1^infinity (A_n) = A_1 + A_2 + A_3 + ...
Substituting A_n = 30/3^n, we get:
sigma _n = 1^infinity (A_n) = 30/3^1 + 30/3^2 + 30/3^3 + ...
To simplify this, we can factor out a common factor of 30/3 from each term:
sigma _n = 1^infinity (A_n) = 30/3 * (1/3^0 + 1/3^1 + 1/3^2 + ...)
Now, we recognize that the expression in parentheses is a geometric series with first term a=1 and common ratio r=1/3. The sum of an infinite geometric series with first term a and common ratio r is:
sum = a / (1 - r)
Applying this formula to our series, we get:
sigma _n = 1^infinity (A_n) = 30/3 * (1/ (1 - 1/3)) = 30/2 = 15
Therefore, sigma _n = 1^infinity (A_n) is convergent, with a limit of 15.
(b) To determine whether {An} is convergent, we need to take the limit of the sequence A_n as n approaches infinity:
lim n->infinity (A_n) = lim n->infinity (30/3^n) = 0
Therefore, {An} is convergent, with a limit of 0.
(a) To determine if the series Σ(A_n) from n=1 to infinity is convergent, we can use the ratio test. The ratio test states that if the limit as n approaches infinity of the absolute value of the ratio A_(n+1)/A_n is less than 1, the series converges.
For A_n = 30/3^n, we have:
A_(n+1) = 30/3^(n+1)
Now let's find the limit as n approaches infinity of |A_(n+1)/A_n|:
lim(n→∞) |(30/3^(n+1))/(30/3^n)| = lim(n→∞) |(3^n)/(3^(n+1))| = lim(n→∞) |1/3|
Since the limit is 1/3, which is less than 1, the series Σ(A_n) converges.
(b) To determine if the sequence {A_n} is convergent, we need to find the limit as n approaches infinity:
lim(n→∞) (30/3^n)
As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0.


To learn more about limit of convergence, click here:

brainly.com/question/31402403

#SPJ11

using homework 10 data: using α = .05, p = 0.038 , your conclusion is _________.

Answers

Hi! Based on the information provided, using homework 10 data with a significance level (α) of 0.05 and a p-value of 0.038, your conclusion is that you would reject the null hypothesis.

This is because the p-value (0.038) is less than the significance level (0.05), indicating that there is significant evidence to suggest that the alternative hypothesis is true. Therefore, the conclusion is made based on the evidence to suggest that there is a statistically significant difference between the groups being compared in the study analyzed in homework 10.

To learn more about the topic:

https://brainly.com/question/4436370

#SPJ11

prove that x2 2: x for all x e z.

Answers

We have demonstrated that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

What is inequality?

An inequality is a relation that compares two numbers or other mathematical expressions in an unequal way. The majority of the time, size comparisons between two numbers on the number line are made.

To prove that x² ≥ x for all x ∈ Z, we need to show that the inequality holds true for any arbitrary integer value of x.

We can prove this by considering two cases:

Case 1: x ≥ 0

If x ≥ 0, then x² ≥ 0 and x ≥ 0. Therefore, x² ≥ x.

Case 2: x < 0

If x < 0, then x² ≥ 0 and x < 0. Therefore, x² > x.

In either case, we have shown that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

Learn more about inequality on:

https://brainly.com/question/17448505

#SPJ11

evaluate the integral taking ω:0≤x≤1,0≤y≤4 ∫∫2xy^2dxdy

Answers

The value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To evaluate the integral ∫∫R 2xy^2 dA over the region R given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4, we integrate with respect to x first, and then with respect to y:

∫∫R 2xy^2 dA = ∫[0,4] ∫[0,1] 2xy^2 dx dy

Integrating with respect to x, we get:

∫[0,4] ∫[0,1] 2xy^2 dx dy = ∫[0,4] (y^2) [x^2]0^1 dy

Simplifying the expression inside the integral, we get:

∫[0,4] (y^2) [x^2]0^1 dy = ∫[0,4] y^2 dy

Integrating with respect to y, we get:

∫[0,4] y^2 dy = [y^3/3]0^4

Substituting the limits of integration and simplifying, we get:

[y^3/3]0^4 = (4^3/3) - (0^3/3) = 64/3

Therefore, the value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To learn more about Simplifying visit:

https://brainly.com/question/28770219

#SPJ11

Solve the equation x² + 4x - 11 = 0 by completing the square.
Fill in the values of a and b to complete the solutions.

x = a - (squared)b
x = a + (squared) b

Answers

The required values are -2+√15, -2-√15.

What is a quadratic equation?

Any equation in algebra that can be written in the standard form where x stands for an unknown value, where a, b, and c stand for known values, and where a 0 is true is known as a quadratic equation.

Here, we have

Given:  x² + 4x - 11 = 0

we have to find the values of a and b to complete the solutions.

The given equation is x² + 4x - 11 = 0

The general form of a quadratic equation is ax² + bx + c = 0

Comparing with the given equation we have

a = 1

b = 4

c = -11

Rearranging the equation:

x² + 4x = 11

Finding (b/2)²

(4/2)² = 4

Adding to both sides of the equation

x² + 4x + 4 = 11 + 4

(x+2)² = 15

x + 2 = ±√15

x = -2  ±√15

Hence, the required values are -2+√15, -2-√15.

To learn more about the quadratic equation from the given link

https://brainly.com/question/28038123

#SPJ9

Write a formula for a two-dimensional vector field which has all vectors of length 1 and perpendicular to the position vector at that point.

Answers

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

find the limit of the following sequence or determine that the sequence diverges. {tan^−1( 4n/ 4n +5)}

Answers

The limit of the given sequence is π/4, and the sequence converges to this value.

The given sequence is {tan^−1(4n/(4n+5))}. To determine if the sequence converges or diverges, we can analyze the limit of the function as n approaches infinity.

As n goes to infinity, the function behaves like tan^−1(4n/4n), which simplifies to tan^−1(1). Since the arctangent function has a range of (-π/2, π/2), tan^−1(1) falls within this range, and it is equal to π/4 (or 45° in degrees).

Now, let's consider the difference between the given function and the simplified one: (4n+5) - 4n = 5. As n becomes larger, the effect of the constant term 5 becomes negligible. Consequently, the function approaches tan^−1(1) as n approaches infinity.

To learn more about arctangent function : brainly.com/question/29342276

#SPJ11

Help please!
5/8 ÷ 1/8​

Answers

Answer: 5

5/8/1/8, you can do 5x8 and also do 8x1 because you can not divide fractions after that you get 40/8 then you divide 40/8 is 5 so the answer is 5

The answer to 5/8 divided by 1/8 equal 5 1
- divided - = 5/8
8. 8

Write the equation in standard form for the circle passing through (–8,4) centered at the origin.

Answers

Answer:

x² + y² = 80

Step-by-step explanation:

Pre-Solving

We are given that a circle has the center at the origin (the point (0,0)) and passes through the point (-8,4).

We want to write the equation of this circle in the standard equation. The standard equation is (x-h)² + (y-k)² = r² where (h,k) is the center and r is the radius.

Solving

As we are given the center, we can plug its values into the equation.

Substitute 0 as h and 0 as k.

(x-0)² + (y-0)² = r²

This becomes:

x² + y² = r²

Now, we need to find r².

As the circle passes through (-8,4), we can use its values to help solve for r².

Substitute -8 as x and 4 as y.

(-8)² + (4)² = r²

64 + 16 = r²

80 = r²

Substitute 80 as r².

x² + y² = 80

find the partial derivatives of the function f(x,y)=xye−9y

Answers

The partial derivatives of the function f(x,y) = xy*e^(-9y) with respect to x and y are: ∂f/∂x = ye^(-9y), and ∂f/∂y = x(-9y*e^(-9y)) + e^(-9y).

The first partial derivative concerning x is obtained by treating y as a constant and differentiating concerning x. The result is ye^(-9y), which means that the rate of change of f concerning x is equal to ye^(-9y).

The second partial derivative concerning y is obtained by treating x as a constant and differentiating concerning y. The result is x(-9ye^(-9y)) + e^(-9y), which means that the rate of change of f concerning y is equal to x times -9ye^(-9y) plus e^(-9y).

To better understand these partial derivatives, we can analyze the behavior of the function f(x,y) = xy*e^(-9y). As we can see, the function is the product of three terms: x, y, and e^(-9y). The term e^(-9y) represents a decreasing exponential function that approaches zero as y increases. Therefore, the value of f(x,y) decreases as y increases. The terms x and y represent a linear function that increases as x and y increase. Therefore, the value of f(x,y) increases as x and y increase.

To learn more about Derivatives, visit:

https://brainly.com/question/23819325

#SPJ11

Help AGAIN!
Which one cheaper and by how much?
View attachment below

Answers

Answer: Website A is cheaper, by an amount of, £0.29.

Step-by-step explanation: Here, the problem is simply about, initially adding, and then finding difference between the added results.

That is,

For Website A,

Net Cost = £49.95 + £4.39

= £54.34

Similarly,

For Website B,

Net Cost = £47.68 + £6.95

= £54.63

Therefore, we can clearly see,

Website A is cheaper by,

£(54.63 - 54.34) = £0.29

Read more about addition and subtraction:

https://brainly.com/question/778086

The point p(4,-2) Is dialated by a scale factor of 1.5 about the point (0,-2) The resluting point is point q. what are the points of q ,A(5.5, -2), B(5.5, -3.5), C(6,-2), D(6,-3)

Answers

The point Q after dilation with a scale factor of 1.5 about the point (0, -2) is (6, -2). So, correct option is C.

To find the new coordinates of point P after dilation with a scale factor of 1.5 about the point (0, -2), we can use the following formula:

Q(x, y) = S(x, y) = (1.5(x - 0) + 0, 1.5(y + 2) - 2)

Substituting the coordinates of point P (4, -2), we get:

Q(x, y) = S(4, -2) = (1.5(4 - 0) + 0, 1.5(-2 + 2) - 2)

Q(x, y) = S(4, -2) = (6, -2)

Therefore, the new point after dilation is Q(6, -2).

To check which of the given points A, B, C, and D match the new point Q, we can compare their coordinates. Only point C(6, -2) matches the new point Q, so that must be the answer. Points A, B, and D do not match the new point.

So, correct option is C.

To learn more about dilation click on,

https://brainly.com/question/31009831

#SPJ1

Simplify the radical expression. Show all your steps.

√363 − 3√27

Answers

Answer: simplified expression is 2√3.

Step-by-step explanation:

√363 = √(121 × 3) = √121 × √3 = 11√3

√27 = √(9 × 3) = √9 × √3 = 3√3

√363 − 3√27 = 11√3 − 3(3√3) = 11√3 − 9√3 = 2√3

The simplified form of the given radical expression is 2√3.

What is radical form?

Radical form is the expression that involves radical signs such as square root, cube root, etc instead of using exponents to describe the same entity.

The given expression is √363 − 3√27.

Here, √121×3 − 3√9×3

= 11√3-9√3

= 2√3

Therefore, the simplified form of the given radical expression is 2√3.

Learn more about the radical form here:

brainly.com/question/27272065.

#SPJ2

The following table gives the mean and standard deviation of reaction times in seconds) for each of two different stimuli, Stimulus 1 Stimulus 2 Mean 6.0 3.2 Standard Deviation 1.4 0.6 If your reaction time is 4.2 seconds for the first stimulus and 1.8 seconds for the second stimulus, to which stimulus are you reacting (compared to other individuals) relatively more quickly?

Answers

z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

How to determine to which stimulus you are reacting relatively more quickly?

We need to calculate the z-scores for your reaction times for each stimulus.

For Stimulus 1:

z-score = (your reaction time - mean reaction time for Stimulus 1) / standard deviation for Stimulus 1

z-score = (4.2 - 6.0) / 1.4

z-score = -1.29

For Stimulus 2:

z-score = (your reaction time - mean reaction time for Stimulus 2) / standard deviation for Stimulus 2

z-score = (1.8 - 3.2) / 0.6

z-score = -2.33

The more negative the z-score, the farther away your reaction time is from the mean.

Therefore, since the z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

Learn more about z-score.

brainly.com/question/15016913

#SPJ11

What is the factored form of the polynomial?

x2 − 12x + 27?

(x + 4)(x + 3)
(x − 4)(x + 3)
(x + 9)(x + 3)
(x − 9)(x − 3)

Answers

Answer:

-9?

Step-by-step explanation:

Jamal measures the round temperature dial on a thermostat and calculates that it has a circumference of 87.92 millimeters. What is the dial's radius?

Answers




To find the radius of the round temperature dial on a thermostat, we need to use the formula for the circumference of a circle:

C = 2πr

where C is the circumference and r is the radius.

Given that the circumference of the dial is 87.92 millimeters, we can plug in this value for C and solve for r:

87.92 = 2πr

Divide both sides by 2π:

r = 87.92 / 2π

Using a calculator, we can evaluate this expression to find that:

r ≈ 13.997 millimeters

Therefore, the radius of the dial is approximately 13.997 millimeters.

To explain the reasoning behind this calculation, we can think about what the circumference of a circle represents. The circumference is the distance around the outside of the circle, or the total length of the circle's boundary. In this case, the temperature dial has a circular shape, so we can use the formula for the circumference of a circle to find its radius. By solving for the radius, wecircumferencewecircumferencewewecircumferencewwe can determine how far away from the center of the circle the outer edge of the dial is located. This information might be useful for understanding the physical design of the thermostat or for making measurements or calculations involving the dial's size or position.

To learn more about circumference click:
https://brainly.com/question/20489969

#SPJ1

The dial's radius is approximately 13.99 millimeters.

What is formula of  circumference?

The circumference of a circle is given by the formula:

C = 2πr

where C is the circumference, π is the constant pi (approximately equal to 3.14159), and r is the radius of the circle.

The circumference C in this instance is 87.92 millimeters. We can adjust the equation to address for the sweep:

r = C / 2π

Substituting the given value for C, we get:

r = 87.92 mm / (2π)

r ≈ 13.99 mm

As a result, the dial has a radius of about 13.99 millimeters.

know more about circle visit :

https://brainly.com/question/29142813

#SPJ1

x is an erlang (n,λ) random variable with parameter λ = 1/3 and expected value e[x] = 15. (a) what is the value of the parameter n? (b) what is the pdf of x? (c) what is var[x]?

Answers

The pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

the variance of x is var[x] = 45.

(a) Since x is an Erlang (n, λ) random variable with expected value e[x] = 15 and λ = 1/3, we have:

e[x] = n/λ = n/(1/3) = 3n

Therefore, we have:

3n = 15

n = 5

So the value of the parameter n is 5.

(b) The probability density function (pdf) of an Erlang (n, λ) random variable is given by:

f(x) = (λ^n * x^(n-1) * e^(-λx)) / (n-1)!

Substituting λ = 1/3 and n = 5, we have:

f(x) = (1/3)^5 * x^4 * e^(-x/3) / 4!

        = (x^4 * e^(-x/3)) / 1620

Therefore, the pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

(c) The variance of an Erlang (n, λ) random variable is given by:

var[x] = n/λ^2 = n/(1/λ)^2

Substituting λ = 1/3 and n = 5, we have:

var[x] = 5/(1/(1/3))^2

        = 45

Therefore, the variance of x is var[x] = 45.

Visit to know more about PDF:-

brainly.com/question/15714810

#SPJ11

Solve for triangle Above

Answers

Answer:

X = 24.4

Step-by-step explanation:

for the triangle we use sin b/c it contain both hyp and opposite so

sin(35°) = 14/x

sin(35) × X = 14

X = 14 / (sin(35)

X = 24.4 ... it is the answer of hypotenus of the

triangle

Answer:

Step-by-step explanation:

Find an equation of the tangent line to the curve y=8x at the point (2,64)

Answers

Equation of the tangent line to the curve y=8x is y = 8x + 48.

How do we need to find the slope of the tangent at that point?

Derivative of the curve, we get:

dy/dx = 8

This means that the slope of the tangent line to the curve at any point is 8.

So, at the point (2,64), the slope of the tangent line is 8.

By point-slope form of a line, we will find the equation of the tangent line:

y - y1 = m(x - x1)

where m is the slope and (x1,y1) is the given point.

Plugging in the values, we get:

y - 64 = 8(x - 2)

Simplifying, we get:

y = 8x + 48

Equation of the tangent line to the curve y=8x at the point (2,64) is y = 8x + 48.

Learn more about tangent line.

brainly.com/question/31326507

#SPJ11

[infinity]consider the series ∑ 1/n(n+2)n=1 determine whether the series converges, and if it converges, determine its value.Converges (y/n) = ___Value if convergent (blank otherwise = ____

Answers

The value of the series is: ∑ 1/n(n+2) = lim N→∞ S(N) = 1/2.

The series ∑ 1/n(n+2)n=1 converges. To determine its value, we can use the partial fraction decomposition:

1/n(n+2) = 1/2 * (1/n - 1/(n+2))

Using this decomposition, we can rewrite the series as:

∑ 1/n(n+2) = 1/2 * (∑ 1/n - ∑ 1/(n+2))

The first series ∑ 1/n is the harmonic series, which diverges. However, the second series ∑ 1/(n+2) is a shifted version of the harmonic series, and it also diverges. But since we are subtracting a divergent series from another divergent series, we can use the limit comparison test to determine whether the original series converges or diverges. Specifically, we can compare it to the series ∑ 1/n, which we know diverges. This gives:

lim n→∞ 1/n(n+2) / 1/n = lim n→∞ (n+2)/n^2 = 0

Since the limit is less than 1, we can conclude that the series ∑ 1/n(n+2) converges. To find its value, we can evaluate the partial sums:

S(N) = 1/2 * (∑_{n=1}^N 1/n - ∑_{n=1}^N 1/(n+2))
    = 1/2 * (1/1 - 1/3 + 1/2 - 1/4 + ... + 1/(N-1) - 1/(N+1))

As N approaches infinity, the terms in the parentheses cancel out except for the first and last terms:

S(N) → 1/2 * (1 - 1/(N+1))

Learn more about parentheses here: brainly.com/question/28146414

#SPJ11

(b) region r is the basRegion R is the base of a soli., each cross section perpendicular to the x axis is a semi circle. Write, but do not evaluate, an integral expression that would compute the volume of the solid
of a

Answers

An integral expression that would compute the volume of the solid is [tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

What is integral expression?

An integral expression is a mathematical statement that represents the area under a curve or the volume of a solid in three-dimensional space. It is written using integral notation, which involves an integral sign, a function to be integrated, and limits of integration.

According to given information:

If each cross section perpendicular to the x-axis is a semicircle, then the radius of each cross section depends on the x-coordinate of the center of the cross section. Let R(x) be the radius of the cross section at x.

To find the volume of the solid, we can integrate the area of the cross section over the interval of x that defines the base R. The area of each cross section is given by the formula for the area of a semicircle:

[tex]A(x) = (1/2)[/tex][tex]\pi[R(x)]^2[/tex]

The volume of the solid can be found by integrating A(x) over the base R:

[tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

where a and b are the limits of integration for x that define the base R.

Note that we are integrating with respect to x, so we need to express the radius R(x) in terms of x.

To know more about integral expression visit:

https://brainly.com/question/1859113

#SPJ1

Evaluate the expression 7 + 2 x 8 − 5. (1 point)

18

20

48

63

Answers

The answer is 18 because you multiply 8 and 2 and then subtract 5 and then add 7

2. find the angle in the figure in both radion measure and
angle measure.
ест
6
5cm

Answers

The measure of the central angle is 86 degrees.

How to find the central angle?

The length of the arc is 9 cm and the radius is 6 centimetres. Therefore, let's find the central angle as follows:

Hence,

length of an arc = ∅ / 360 × 2πr

where

r = radius∅ = central angle

Therefore,

length of arc = 9 cm

radius = 6 cm

Therefore,

9 = ∅ / 360 × 2 × 3.14 × 6

9 = 37.68∅ / 360

cross multiply

3240 = 37.68∅

divide both sides by 37.68

∅ = 3240 / 37.68

∅ = 85.9872611465

∅ = 86 degrees.

learn more on central angle here: https://brainly.com/question/12896852

#SPJ1

3.48 Referring to Exercise 3.39, find
(a) f(y|2) for all values of y;
(b) P(Y = 0 | X = 2).
this is 3.39
3.39 From a sack of fruit containing 3 oranges, 2 apples, and 3 bananas, a random sample of 4 pieces of fruit is selected. If X is the number of oranges and Y is the number of apples in the sample, find (a) the joint probability distribution of X and Y ; (b) P[(X, Y ) ∈ A], where A is the region that is given by {(x, y) | x + y ≤ 2}.

Answers

Referring to Exercise 3.39,

(a) f(y|2) for all values of y is f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3

(b) P(Y = 0 | X = 2) = 1

To find f(y|2), we need to first calculate the conditional probability of Y=y given that X=2, which we can do using the joint probability distribution we found in part (a) of Exercise 3.39:
P(Y=y|X=2) = P(X=2, Y=y) / P(X=2)
We know that P(X=2) is equal to the probability of selecting 2 oranges out of 4 fruits, which can be calculated using the hypergeometric distribution:
P(X=2) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
To find P(X=2, Y=y), we need to consider all the possible combinations of selecting 2 oranges and y apples out of 4 fruits:
P(X=2, Y=0) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
P(X=2, Y=1) = (3 choose 2) * (2 choose 1) / (8 choose 4) = 3/14
P(X=2, Y=2) = (3 choose 2) * (2 choose 2) / (8 choose 4) = 1/14
Therefore, f(y|2) is:
f(0|2) = P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = (3/14) / (3/14) = 1
f(1|2) = P(Y=1|X=2) = P(X=2, Y=1) / P(X=2) = (3/14) / (3/14) = 1
f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3
To find P(Y=0|X=2), we can use the conditional probability formula again:
P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = 3/14 / 3/14 = 1
Therefore, P(Y=0|X=2) = 1.

To learn more about conditional probability, refer:-

https://brainly.com/question/30144287

#SPJ11

Other Questions
Determine the kinds of intermolecular forces that are present in each of the following elements or compounds, Part A HBr only dipole-dipole forces only dispersion forces dispersion forces and dipole-dipole forces hydrogen bonding Water has many unique properties and is the most abundant ____________ in living organisms.O compoundO hydrogenO vaporizationO polymers what is the autual electron configuration of Au3+ What is the only part of the comet that exists when it is further than 5 A.U from the sun? identify at least two factors that limit the usefulness of ratio analysis Plsss help this is hard giving 20 pnts!!! what is the probability that from 3 randomly selected individuals, at least one suffers from myopia Write a letter pretending you are an American soldier in Vietnam to your mother. Use the words: Truman doctrine, Geneva Accords, SEATO , NATO , NGO Dinh Diem , Advisors Interphase chromatin is best categorized as __________?A. ConcentratedB. EuchromatinC. Histone tailsD. Heterochromatin Convert f(x)= 2/3(x+3)^2 to standard from .which of the following is most likely to occur when the central bank buysgovernment bonds (expansionary monetary policy) on the open market?Unemployment increasesUnemployment decreasesConsumer spending decreasesbusinesses stop investing in new warehouses, technology, workers, etc. HELP ASAP PLEASE I PUT THE FILE WITH THE PROBLEM HERE The following information was collected from a simple random sample of a population. 9 13 15 15 21 24 The point estimate of the population standard deviation is Answer choices: A, 7.688 B. 59.1 C. 49.25 D. 7.018 two balls of clay, with masses m1 = 0.39 kg and m2 = 0.33 kg, are thrown at each other and stick when they collide. mass 1 has a velocity v1 = 3.75i m/s and mass 2 has a velocity of v2 = 1.5j m/s. a) Write an expression for the initial momentum of the system, P , in terms of the masses M 1 and M 2 , the magnitudes of the velocities v 1 and v 2 , and the unit. vectors i and j . b) Find the horizontal component of the final velocity v x , in meters per second, after the collision. c) Find the vertical component of the final velocity V y , in meters per second, after the collision. Joel paid $138 for 2 pairs of pants and 3 shirts. Doug paid $204 for 3 pairs of pants and 6 shirts. Set up andsolve a system of equations to find the price of one pair of pants. A rectangle has sides measuring (2x + 7) units and (5x + 9) units.Part A: What is the expression that represents the area of the rectangle? Show your work. (4 points)Part B: What are the degree and classification of the expression obtained in Part A? (3 points)Part C: How does Part A demonstrate the closure property for polynomials? (3 points) A famous Supreme Court case involving this issue occurred in 1988 in Hazelwood v. Kuhlmeier. The principal of Hazelwood East High School prohibited two topics from being printed in the school newspaper. Hazelwood East students brought the case to court, arguing that their First Amendment right to free speech had been violated. In this case, the court ruled that the principal did not violate the students free speech right. The court pointed out that the school newspaper was not a "public forum," and that, therefore, students did not have the same First Amendment rights as other journalists. How do you know this excerpt contains objective language? 1It cites specific details about an historic event which can be researched and proven. 2The author's point of view is valid and strongly expressed. 3Most people believe that First Amendment rights are very important, making this excerpt objective. 4The information is presented in a logical fashion and therefore should be trusted. Consider the joint distribution (x+y) fx,y (x, y) = 39, 0 < x < 1 and 0 Sy Select all of the complex sentence(s).I'm dreading my driving lessonas I'm always stalling.My favourite subject isn'tmaths.I'm not happy about it, but Ican't stop you from goingtravelling.get paid at the end of the week,but I won't have enough moneyto pay for a holiday.I like reading, and I try to read atleast a book a month. lessee computations and entries; finance lease with guaranteed residual value delaney company leases an automobile with a fair value of $10,000 from simon motors Inc., on the following terms.1. Non-cancelable term of 50 months.2. Rental of $200 per month (at the beginning of each month). (The present value at 0.5% per month is $8,873.)3. Delaney guarantees a residual value of $1,180 (the present value at 0.5% per month is $920). Delaney expects the probableresidual value to be $1,180 at the end of the lease term.4. Estimated economic life of the automobile is 60 months.5. Delaney's incremental borrowing rate is 6% a year (0.5% a month). Simon's implicit rate is unknown.instructions(a) What is the nature of this lease to Delaney?(b) What is the present value of the lease payments to determine the lease liability?(c) Based on the original fact pattern, record the lease on Delaney's books at the date of commencement.(d) Record the first month's lease payment (at commencement of the lease).(e) Record the second month's lease payment.(f) Record the first month's amortization on Delaney's books (assume straight-line).(g) Suppose that instead of $1,180, Delaney expects the residual value to be only $500 (the guaranteed amount is still$1,180). How does the calculation of the present value of the lease payments change from part (b)?