The following information was collected from a simple random sample of a population. 9 13 15 15 21 24 The point estimate of the population standard deviation is Answer choices: A, 7.688 B. 59.1 C. 49.25 D. 7.018

Answers

Answer 1

Finally, to get the sample standard deviation, we take the square root of the sample variance: [tex]s \sqrt(49.27) \approx 7.02[/tex] (rounded to two decimal places)Thus, option D is correct.

What is the sample standard deviation?

To calculate the point estimate of the population standard deviation, we can use the sample standard deviation formula. The sample standard deviation (denoted as s) is given by:

[tex]s = \sqrt(Σ(x - xx_1)^2 / (n - 1))[/tex]

where:

x = individual data points in the sample

[tex]x_1 =[/tex]mean of the sample

n = number of data points in the sample

Given the data points in the simple random sample:  [tex]9, 13, 15, 15, 21, 24[/tex]

First, we need to calculate the sample mean (x):

 [tex]x = (9 + 13 + 15 + 15 + 21 + 24) / 6 = 97 / 6 \approx 16.17[/tex](rounded to two decimal places)

Next, we can plug the sample mean (x) into the formula and calculate the sum of squared differences:

[tex]Σ(x - xx_1)^2 = (9 - 16.17)^2 + (13 - 16.17)^2 + (15 - 16.17)^2 + (15 - 16.17)^2 + (21 - 16.17)^2 + (24 - 16.17)^2 \approx 246.33[/tex] (rounded to two decimal places)

Then, we divide the sum of squared differences by (n - 1) to get the sample variance:

[tex]s^2 = Σ(x - xx)^2 / (n - 1) = 246.33 / 5 \approx 49.27[/tex] (rounded to two decimal places)

Finally, to get the sample standard deviation, we take the square root of the sample variance:

[tex]s \approx \sqrt(49.27) ≈ 7.02[/tex]   (rounded to two decimal places)

Therefore, Finally, to get the sample standard deviation, we take the square root of the sample variance: [tex]s \sqrt(49.27) \approx 7.02[/tex] (rounded to two decimal places)

Learn more about deviation here:

https://brainly.com/question/23907081

#SPJ1

Answer 2

The answer of the given question based on the standard deviation is the point estimate of the population standard deviation is approximately 7.688. The answer choice is A.

What is Standard deviation?

Standard deviation is a measure of the variability or dispersion of a set of data points. It tells us how much the data deviates from the mean or average value. The standard deviation is calculated by taking the square root of the variance. The variance is calculated by taking the sum of the squared differences between each data point and the mean, and dividing by the total number of data points.

To estimate the population standard deviation from a sample, we can use the formula:

s = √[Σ(x i - ₓ⁻)² / (n - 1)]

where s is the sample standard deviation, Σ(x i - ₓ⁻)² is the sum of the squared differences between each sample value and the sample mean, n is the sample size, and ₓ⁻ is the sample mean.

Using the given data, we have:

ₓ⁻ = (9 + 13 + 15 + 15 + 21 + 24) / 6 = 15.5

Σ(x i - ₓ⁻)² = (9 - 15.5)² + (13 - 15.5)² + (15 - 15.5)² + (15 - 15.5)² + (21 - 15.5)² + (24 - 15.5)² = 611

n = 6

Substituting the values into formula, we will get:

s = √[Σ(x i - ₓ⁻)² / (n - 1)] = √[611 / 5] ≈ 7.688

Therefore, the point estimate of the population standard deviation is approximately 7.688. The answer choice is A.

To know more about Dispersion  visit:

https://brainly.com/question/30563701

#SPJ1


Related Questions

Suppose that a certain type of magnetic tape contains, on the average, 2 defects per 100 meters, according to a Poisson process. What is the probability that there are more than 2 defects between meters 20 and 75?

Answers

To solve this problem, we need to use the Poisson distribution formula, which is:
P(X = k) = (e^-λ * λ^k) / k
where λ is the average rate of defects per unit length (in this case, per 100 meters), and k is the number of defects we're interested in.

First, we need to find the rate of defects per meter, which is:
λ' = λ / 100 = 0.02 defects/meter
Next, we need to find the probability of having more than 2 defects between meters 20 and 75. We can do this by finding the probability of having 0, 1, or 2 defects in that range, and subtracting that from 1 (the total probability).
Let X be the number of defects in the range from meter 20 to meter 75. Then, X follows a Poisson distribution with mean:
μ = λ' * (75 - 20) = 1.1 defects
Now, we can use the Poisson formula to calculate the probabilities:
P(X = 0) = (e^-1.1 * 1.1^0) / 0! = 0.3329
P(X = 1) = (e^-1.1 * 1.1^1) / 1! = 0.3647
P(X = 2) = (e^-1.1 * 1.1^2) / 2! = 0.2006
Therefore, the probability of having more than 2 defects between meters 20 and 75 is:
P(X > 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))
P(X > 2) = 1 - (0.3329 + 0.3647 + 0.2006)
P(X > 2) = 0.102

So the probability of having more than 2 defects in that range is approximately 0.102, or 10.2%.

FOR MORE INFORMATION ON Poisson formula SEE:

https://brainly.com/question/30388228

#SPJ11

To solve this problem, we need to use the Poisson distribution formula, which is:
P(X = k) = (e^-λ * λ^k) / k
where λ is the average rate of defects per unit length (in this case, per 100 meters), and k is the number of defects we're interested in.

First, we need to find the rate of defects per meter, which is:
λ' = λ / 100 = 0.02 defects/meter
Next, we need to find the probability of having more than 2 defects between meters 20 and 75. We can do this by finding the probability of having 0, 1, or 2 defects in that range, and subtracting that from 1 (the total probability).
Let X be the number of defects in the range from meter 20 to meter 75. Then, X follows a Poisson distribution with mean:
μ = λ' * (75 - 20) = 1.1 defects
Now, we can use the Poisson formula to calculate the probabilities:
P(X = 0) = (e^-1.1 * 1.1^0) / 0! = 0.3329
P(X = 1) = (e^-1.1 * 1.1^1) / 1! = 0.3647
P(X = 2) = (e^-1.1 * 1.1^2) / 2! = 0.2006
Therefore, the probability of having more than 2 defects between meters 20 and 75 is:
P(X > 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))
P(X > 2) = 1 - (0.3329 + 0.3647 + 0.2006)
P(X > 2) = 0.102

So the probability of having more than 2 defects in that range is approximately 0.102, or 10.2%.

FOR MORE INFORMATION ON Poisson formula SEE:

https://brainly.com/question/30388228

#SPJ11

simplify (-8)÷(-1÷4)÷(16)​

Answers

Answer:

2

Step-by-step explanation:

(-8)÷(-1÷4) = 32

32/16 = 2

Answer:

(-8)÷(-0.25)÷(16)

Step-by-step explanation:

find the volume of the solid enclosed by the paraboloids z=16(x2 y2) and z=18−16(x2 y2).

Answers

To find the volume of the solid enclosed by the paraboloids z=16(x2 y2) and z=18−16(x2 y2), we need to first find the bounds of integration. Since the two paraboloids intersect at z=16, we can set z=16 and solve for x and y in terms of z:

16 = 16(x^2 y^2) -> x^2 y^2 = 1
1 = x^2 y^2 -> x = ±1 and y = ±1
So the bounds of integration are -1 ≤ x ≤ 1 and -1 ≤ y ≤ 1.
Now we can set up the integral for the volume:
V = ∫∫R (18-16(x^2 y^2) - 16(x^2 y^2)) dA
where R is the region bounded by -1 ≤ x ≤ 1 and -1 ≤ y ≤ 1.
Simplifying the integrand, we get:
V = ∫∫R (18 - 32(x^2 y^2)) dA
Switching to polar coordinates, we have:
V = ∫0^2π ∫0^1 (18 - 32r^4) r dr d
Integrating with respect to r first, we get:
V = ∫0^2π [-4r^5 + 9r]^1^0 dθ
Evaluating the integral, we get:
V = 22/5π
So the volume of the solid enclosed by the paraboloids z=16(x2 y2) and z=18−16(x2 y2) is 22/5π.

FOR MORE INFORMATION ON paraboloids SEE:

https://brainly.com/question/17018480

#SPJ11

Tony works as a Mexican Sign Language interpreter. When
someone speaks Spanish to a deaf person, he uses sign
language to communicate what that person is saying and he
also communicates the deaf person's response.
Tony works 4 hours each workday. He worked 12 hours last
week and 28 hours this week. Tony writes the expression 12 +
28 to represent the total hours he worked for both weeks.
Which equivalent expression could represent the total
number of hours worked in relation to the number of days
worked each week?
O 2(6+14)
O 4(3+7)
O 2(6+7)
O 4(3+28)

Answers

Answer:

4(3+7)

Step-by-step explanation:

The total number of hours Tony worked for both weeks is 12 + 28 = 40.

To find the equivalent expression that represents the total number of hours worked in relation to the number of days worked each week, we need to divide 40 by the total number of days worked, which is 10 (2 workdays per week).

So the expression we need is:

40/10 = 4(3+7)

Therefore, the answer is 4(3+7).

consider a binomial probability distribution with p = 0.35 and n = 8. determine the following probabilities: a. exactly three successes b. fewer than three successes c. six or more successes

Answers

The final expression of a binomial probability distribution is:

(a) P(X = 3) ≈ 0.2096

(b) P(X < 3) ≈ 0.4377

(c) P(X ≥ 6) ≈ 0.0739

How to finding probabilities in a binomial probability distribution?

We can use the binomial probability formula to find the probabilities:

P(X = k) = (n choose k) * [tex]p^k[/tex]* [tex](1-p)^{(n-k)}[/tex]

where n is the number of trials, p is the probability of success, X is the random variable representing the number of successes,

and k is the number of successes we are interested in.

(a) P(X = 3) = (8 choose 3) * 0.35³ * 0.65⁵ ≈ 0.2096

(b) P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)

= (8 choose 0) * 0.35⁰* 0.65⁸ + (8 choose 1) * 0.35¹ * 0.65⁷ + (8 choose 2) * 0.35² * 0.65⁶

≈ 0.4377

(c) P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8)

= (8 choose 6) * 0.35⁶ * 0.65² + (8 choose 7) * 0.35⁷ * 0.65¹ + (8 choose 8) * 0.35⁸ * 0.65⁰

≈ 0.0739

Learn more about  binomial probability

brainly.com/question/29350029

#SPJ11

what proportion of a normal distribution is located in the tail beyond z = -1.00?

Answers

Hi, the proportion of a normal distribution located in the tail beyond z = -1.00 is approximately 0.3413 or 34.13%.

To find the proportion of a normal distribution located in the tail beyond z = -1.00, we will use the standard normal distribution table or a calculator with a z-table function.
Step 1: Identify the z-score. In this case, the z-score is -1.00.
Step 2: Use a calculator to look up the proportion in the standard normal distribution table. Using a z-table, we find that the proportion of the normal distribution up to z = -1.00 is 0.1587.
Step 3: Calculate the proportion in the tail.
Since the tail beyond z = -1.00 is to the left of this point, we need to calculate the remaining proportion.

To do this, subtract the proportion found in Step 2 from 0.5 (as half of the normal distribution is to the left of the mean, and the other half is to the right).
0.5 - 0.1587 = 0.3413

Therefore the answer is 0.3413 or 34.13%.

To learn more about normal distribution:

brainly.com/question/27275125

#SPJ11

Breathing rates, in breaths per minute, were measured for a group of 10 subjects at rest, and then during moderate exercise. The results were as follows:
Subject Rest Exercise
1 15 27
2 16 37
3 21 39
4 17 37
5 18 40
6 15 39
7 19 34
8 21 40
9 18 38
10 14 34
Let μXμX represent the population mean during exercise and let μYμY represent the population mean at rest. Find a 95% confidence interval for the difference μD=μX−μYμD=μX−μY. Round the answers to three decimal places.
The 95% confidence interval is (, ).

Answers

The 95% confidence interval for the population mean difference in breathing rates between exercise and rest is (8.053, 20.147).

First, we need to find the sample mean and standard deviation for the difference in breathing rates between exercise and rest:

[tex]$\bar{d} = \frac{1}{n}\sum_{i=1}^{n}(d_i) = \frac{1}{10}\sum_{i=1}^{10}(x_i-y_i) = \frac{1}{10}(12+21+18+20+22+24+15+19+20+(-20)) = 14.1$[/tex]

Next, we need to find the t-value for a 95% confidence interval with 9 degrees of freedom. Using a t-distribution table, we find the t-value to be 2.306.

The margin of error for the 95% confidence interval is:

[tex]$ME = t_{0.025,9} \times \frac{s_d}{\sqrt{n}} = 2.306 \times \frac{9.081}{\sqrt{10}} = 6.047$[/tex]

Finally, we can construct the confidence interval for the population mean difference:

[tex]$(\bar{d} - ME, \bar{d} + ME) = (14.1 - 6.047, 14.1 + 6.047) = (8.053, 20.147)$[/tex]

Therefore, the 95% confidence interval for the population mean difference in breathing rates between exercise and rest is (8.053, 20.147).

To learn more about  confidence visit:

https://brainly.com/question/29048041

#SPJ11

Let B = {b, b2.b3} be a basis for vector space V. Let T:V+ V be a linear transformation with the following properties. T(61) = 7b, -3b2. T(62) = b; -5b2. T(63) = -2b2 Find [T). the matrix for T relative to B. ITIB

Answers

Answer: since [B]^-1[B] = I.

Step-by-step explanation:

To find the matrix for T relative to B, we need to find the coordinates of the vectors T(b), T(b^2), and T(b^3) with respect to the basis B.

We have:

T(b) = 6T(b^2) + 1T(b^3) = b, -5b^2

T(b^2) = 1T(b^2) + 0T(b^3) = 7b, -3b^2

T(b^3) = 0T(b^2) - 2T(b^3) = 0, 4b^2

To find the matrix [T], we write the coordinates of T(b), T(b^2), and T(b^3) as columns:

[T] = [b, 7b, 0; -5b^2, -3b^2, 4b^2]

To check this matrix, we can apply it to the basis vectors and see if we get the same coordinates as the vectors T(b), T(b^2), and T(b^3):

[T][b] = [b, 7b, 0][1; 0; 0] = [b; -5b^2]

[T][b^2] = [b, 7b, 0][0; 1; 0] = [7b; -3b^2]

[T][b^3] = [b, 7b, 0][0; 0; 1] = [0; 4b^2]

These are the same as the coordinates we found for T(b), T(b^2), and T(b^3), so our matrix [T] is correct.

To find ITIB, we first need to find the inverse of the matrix [B] whose columns are the basis vectors b, b^2, and b^3. We can do this by row reducing the augmented matrix [B | I]:

[1 0 0 | 1 0 0]

[0 1 0 | 0 1 0]

[0 0 1 | 0 0 1]

So [B] is already in reduced row echelon form, and its inverse is just I:

[B]^-1 = [1 0 0; 0 1 0; 0 0 1]

Therefore,

ITIB = [B]^-1[T][B] = [T]

since [B]^-1[B] = I.

Given the equation for the Total of Sum of Squares, solve for the Sum of Squares Due to Error.
SST=SSR+SSE
Select the correct answer below:
SSE=SST+SSR
SSE=SST−SSR
SSE=SSR−SST

Answers

For the equation of Total of Sum of Squares, the correct equation for Sum of Squares Due to Error is Option (b): SSE=SST−SSR.

What is an equation?

A mathematical definition of an equation is a claim that two expressions are equal when they are joined by the equals sign ("=").

In the equation SST = SSR + SSE, SST represents the total sum of squares, SSR represents the sum of squares due to regression, and SSE represents the sum of squares due to error.

To solve for SSE, we can rearrange the equation to get SSE = SST - SSR.

This means that the sum of squares due to error is equal to the total sum of squares minus the sum of squares due to regression.

In other words, SSE represents the variation in the data that cannot be explained by the regression model, while SSR represents the variation that can be explained by the regression model.

Therefore, the correct option is SSE = SST - SSR.

To learn more about equation from the given link

https://brainly.com/question/28871326

#SPJ1

help what does " represent y as a function of x mean"​

Answers

The table as well as the graph is the function for x.

We have two relation here.

First, from the table

Each input x have distinct output y then the table shows the function.

Second, from the graph

Using a vertical line you can see that it crosses one point of the function at a time.

Thus, this also represents the function.

Learn more about Function here:

https://brainly.com/question/4736315

#SPJ1

3
Find the area and circumference of each circle below. (Round answers to the nearest hundredth)

a.)

b.)

Answers

The area and circumference of each circle:

(a) A = 78.53 unit² and S = 31.4 units

(b) A = 1385.4 ft² and S = 131.95 ft

We know that the formula for the area of circle is A = πr²

and the formula for the circumference of circle is S = 2πr

Here, r represents the radius of the circle.

(a) The radius of the circle is r = 5 units

Using above formula,

Area of circle A = πr²

A = π × 5²

A = 25π

A = 78.53 unit²

and the circumference would be,

S = 2 × π × 5

S = 31.4 units

(b)

Here, the radius of the circle is: r = 21 ft

Using above formulas

A = π × 21²

A = 441 × π

A = 1385.4 ft²

and the circumference would be,

S = 2 × π × r

S = 2 × π × 21

S = 42π

S = 131.95 ft

Learn more about the area of circle here:

https://brainly.com/question/28642423

#SPJ1

The matrix A = [ ] has eigenvalues -3, -1, and 5. Find its eigenvectors. The eigenvalue -3 is associated with eigenvector ( 1, 1/14 ,-4/7 ). The eigenvalue -1 is associated with eigenvector ( , , ). The eigenvalue 5 is associated with eigenvector ( , ).

Answers

Eigenvectors associated with -3, -1, and 5 are (1, 1/14, -4/7), (-1, 1, 0), and (1, 1, 0), respectively.

How to find the eigenvectors associated with eigenvalues -1 and 5?

We need to solve the system of equations:

(A - λI)x = 0

λ is eigenvalue

I is identity matrix.

For λ = -1:

(A + I)x = 0

[2 2 2]

[2 2 2]

[2 2 2]

R2 <- R1

[2 2 2]

[0 0 0]

[2 2 2]

R3 <- R1 - R3

[2 2 2]

[0 0 0]

[0 0 0]

So we have the equation 2x + 2y + 2z = 0, which simplifies to x + y + z = 0. We can choose y = 1 and z = 0 to get x = -1, so the eigenvector associated with -1 is (-1, 1, 0).

For λ = 5:

(A - 5I)x = 0

[-2 2 2]

[2 -2 2]

[2 2 -8]

R1 <-> R2

[2 -2 2]

[-2 2 2]

[2 2 -8]

R3 <- R1 + R3

[2 -2 2]

[-2 2 2]

[4 0 -6]

R1 <- R1/2

[1 -1 1]

[-2 2 2]

[4 0 -6]

R2 <- R2 + 2R1

[1 -1 1]

[0 0 4]

[4 0 -6]

R3 <- R3 - 4R1

[1 -1 1]

[0 0 4]

[0 4 -10]

R3 <- R3/2

[1 -1 1]

[0 0 4]

[0 2 -5]

So we have the equation x - y + z = 0 and 4z = 0. We can choose y = 1 and z = 0 to get x = 1, so the eigenvector associated with 5 is (1, 1, 0).

Therefore, the eigenvectors associated with -3, -1, and 5 are (1, 1/14, -4/7), (-1, 1, 0), and (1, 1, 0), respectively.

Learn more about Eigenvectors.

brainly.com/question/31013028

#SPJ11

assume that the random variable x is normally distributed, with mean =80 and a standard deviation =12. compute the probability p(x>95).

Answers

The probability P(X > 95) for a normally distributed random variable X is approximately 0.211.

How to compute the probability?

To compute the probability P(X > 95) for a normally distributed random variable X with a mean of 80 and a standard deviation of 12, follow these steps:

1. Convert the raw score (95) to a z-score using the formula:
z = (x - mean) / standard deviation
z = (95 - 80) / 12
z ≈ 1.25

2. Use a standard normal distribution table or a calculator to find the area to the right of the z-score, which represents P(X > 95).
For z ≈ 1.25, the area to the right is ≈ 0.211

So, the probability P(X > 95) for a normally distributed random variable X with a mean of 80 and a standard deviation of 12 is approximately 0.211.

Learn more about probability

brainly.com/question/29381779

#SPJ11

find the value of x if 0.5% of is 45​

Answers

Answer:

9000

Step-by-step explanation:

x of 0.5 % = 45

0.5 %

= 0.5/100

= 5/1000

= 1/200

x of 0.5 % = 45

x * 0.5 % = 45

x * 1/200 = 45

x/200 = 45

x = 45 * 200

x = 9000

20. Pluem, Frank, and Nanon are brothers, each with some money to give to their siblings. Pluem gives
money to Frank and Nanon to double the money they both have. Frank then gives money to Pluem and
Nanon to double the money they both have. Finally, Nanon gives money to Pluem and Frank to double
their amounts. If Nanon had 20 dollars at the beginning and 20 dollars at the end, how much, in dollars,
did the siblings have in total?
SOLUTION.

Answers

Let's start by using variables to represent the amount of money each sibling has at the beginning:

Let P be the amount of money Pluem has at the beginning.

Let F be the amount of money Frank has at the beginning.

Let N be the amount of money Nanon has at the beginning.

After Pluem gives money to Frank and Nanon to double their amounts, Frank will have 2F + P and Nanon will have 2N + P.

After Frank gives money to Pluem and Nanon to double their amounts, Pluem will have 2P + 2F + N and Nanon will have 2N + 2F + P.

Finally, after Nanon gives money to Pluem and Frank to double their amounts, Pluem will have 4P + 2F + 2N, Frank will have 4F + 2P + 2N, and Nanon will have 20 dollars.

We know that Nanon gave money to Pluem and Frank to double their amounts, so we can set up the equation:

4P + 2F + 2N = 2(2P + 2F + N) + 2(2F + 2P + N)

Simplifying this equation gives us:

4P + 2F + 2N = 8P + 8F + 4N

2P - 6F + 1N = 0

We also know that Nanon had 20 dollars at the beginning and at the end, so we can set up another equation:

2N + 2F + P = 40

Now we have two equations with three variables, which means we can't solve for all three variables. However, we can use the second equation to eliminate one variable and solve for the other two:

2N + 2F + P = 40

2P - 6F + N = 0

Solving for P in the second equation gives us:

P = 3F - 0.5N

Substituting this expression for P into the first equation gives us:

2N + 2F + (3F - 0.5N) = 40

Simplifying this equation gives us:

5F + N = 40

We know that Nanon had 20 dollars at the beginning, so we can substitute N = 20 into this equation:

5F + 20 = 40

Solving for F gives us:

F = 4

Substituting F = 4 into the equation 5F + N = 40 gives us:

N = 20

And substituting both F = 4 and N = 20 into the expression for P gives us:

P = 3F - 0.5N = 10

Therefore, Pluem had 10 dollars at the beginning, Frank had 4 dollars at the beginning, and Nanon had 20 dollars at the beginning. After the money exchanges, Pluem had 28 dollars, Frank had 28 dollars, and Nanon had 20 dollars. So the siblings had a total of 76 dollars.

For more details regarding variables, visit:

https://brainly.com/question/17344045

#SPJ1

Two dice are thrown simultaneously. Find the probability of getting: (a) an even number as the sum; (b) a total of at least 10; (c) same number on both dice i.e. a doublet; (d) a multiple of 3 as the sum.​

Answers

The probabilities are given as follows:

(a) an even number as the sum: 1/2.

(b) a total of at least 10: 1/6.

(c) same number on both dice i.e. a doublet: 1/6.

(d) a multiple of 3 as the sum: 1/3.

How to calculate a probability?

A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.

The 36 total outcomes when a pair of dice are thrown are given as follows:

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

The sum follows the pattern even, odd, ..., even, so there are 18 even sums and 18 odd sums, hence the probability of an even sum is given as follows:

p = 18/36 = 1/2.

There are six outcomes with a sum of at least 10, hence the probability is of:

p = 6/36 = 1/6.

There are six doblets, (1,1), (2,2), ..., (6,6), ..., hence the probability is given as follows:

p = 6/36 = 1/6.

There are 12 outcomes in which the sum is a multiple of 3, hence the probability is given as follows:

p = 12/36

p = 1/3.

More can be learned about probability at https://brainly.com/question/24756209

#SPJ1

Consider the arithmetic sequence 3,5,7,9
If n is an integer which of these functions generate the sequence

Answers

Answer:

A

C

Step-by-step explanation:

the functions that generate the sequence are;

1. 3 + 2n for n ≥ 0

n ≥ 0 means n starts from 0 till infinity

If n is substitute into the formula, it will give

3 + 2(0)

3+0=3

3 + 2(1)

3+2=5

3 + 2(2)

3+4=7

3 + 2(3)

3 +6=9

 this formula is correct because it gives the arithmetic sequence

the second option is

-1 + 2n for n ≥ 0

n ≥ 2 means n starts from 2

if n is substituted into this formula, it gives

-1 + 2(2)

-1 +4=3

-1 +2(3)

-1+6=5

-1 + 2(4)

-1+8=7

-1 +2(5)

-1+10=9

this formula gives the arithmetic sequence which means the formula generated is correct

the other options are not right because it does not give the correct arithmetic sequence

Hope this helps!

What is the constant percent rate of change per year, rounded to the nearest tenth?

Answers

The constant percent rate of change per year 33.5 %. So the correct option is A.

Describe Growth factor?

Growth factor is a mathematical concept that represents the amount by which a quantity increases or decreases over a period of time. It is usually expressed as a decimal or a percentage. A growth factor greater than 1 indicates an increase in the quantity, while a growth factor less than 1 indicates a decrease. A growth factor of 1 indicates no change in the quantity.

For example, if the population of a city is growing by 2% per year, the growth factor would be 1.02, since the population is increasing by 2% (0.02) every year. If the population was decreasing by 3% per year, the growth factor would be 0.97, since the population is decreasing by 3% (0.03) every year.

To find the constant percent rate of change per year, we need to rewrite the function D(m) in terms of years, and then find the annual growth factor.

First, we can divide m by 12 to get the time in years:

m/12 = y

Substituting this into the function D(m) gives:

D(m) = 845,000([tex]1.013^{m}[/tex]) = 845,000([tex]1.013^{12y}[/tex])

Now we have D(y) in terms of the annual growth factor b:

D(y) = 845,000([tex]b^{y}[/tex]), where b = 1.013¹²

To find the constant percent rate of change per year, we need to find the value of b-1 as a percent:

(b-1)*100

= (1.013¹² - 1)*100

= 33.5% (rounded to the nearest tenth)

Therefore, the answer is (A) 33.5%.

To know more about function visit:

https://brainly.com/question/16142287

#SPJ1

Jaden has $6,000.00 to invest for 2 years. The table shows information about two investments Jaden can make. Investments Investment Rate Type of Interest X 4.5% Y 4% Simple Compound Jaden makes no additional deposits or withdrawals. Which investment earns the greater amount of interest over a period of 2 years? What amount of interest?​

Answers

For Investment X, the interest rate is 4.5%, which is a compound interest. For Investment Y, the interest rate is 4%, which is a simple interest.

To calculate the amount of interest Jaden will earn over two years, we will use the following formulas:

For Investment X: A = P(1 + r/n)^(nt), where A is the total amount, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the time in years.

For Investment Y: I = P*r*t, where I is the interest earned, P is the principal amount, r is the annual interest rate, and t is the time in years.

Using these formulas, we can calculate the amount of interest earned for each investment:

For Investment X: A = 6000(1 + 0.045/12)^(12*2) = $6,566.34 (rounded to the nearest cent)

Interest earned = $6,566.34 - $6,000 = $566.34

For Investment Y: I = 6000 * 0.04 * 2 = $480

Therefore, Investment X earns the greater amount of interest over a period of 2 years, which is $566.34.

HELP ASAP PLEASE
Please expain how to do it ​

Answers

The angle ∠TXY is 123°

Define angle

In geometry, an angle is the figure formed by two rays, called the sides of the angle, that have a common endpoint, called the vertex of the angle. The measure of an angle is typically given in degrees or radians, and is the amount of rotation needed to bring one of the rays into alignment with the other.

Angles are often classified according to their size: acute angles measure less than 90 degrees, right angles measure exactly 90 degrees, obtuse angles measure between 90 and 180 degrees, and straight angles measure exactly 180 degrees.

In the given figure

∠WXS=90°

∠TXW=57°

angle sum on a straight line is 180°

∠WXT+∠TXY=180°

∠TXY=180°-57°

∠TXY=123°

Hence, the angle ∠TXY is 123°

To know more about vertex, visit:

https://brainly.com/question/30940247

#SPJ1

The new set of tires you will need for your car costs $320. You have $80 saved. How much will you need to save each month to buy the tires in 3 months? _______ per month.

Answers

Answer:

you will need to save 80 each month to get the tires

Jonathan is looking to buy a car and the he qualified for a 7-year loan from a bank offering an annual interest rate of 3.9%, compounded monthly Using the formula below, determine the maximum amount Jonathan can borrow, to the nearest dollar, if the highest monthly payment he can afford is $300

Answers

a because i took the test and that's what i got for the correct anwser

Determine if the following describes a binomial experiment. If not, give a reason why not:Two cards are randomly selected without replacement from a standard deck of playing cards, and the number of kings (K) is recorded.

Answers

No, this does not describe a binomial experiment. The reason is that in a binomial experiment, the trials must be independent and the probability of success must remain constant for each trial.

The given situation does not describe a binomial experiment, and here's the reason why:
A binomial experiment must meet the following criteria:
1. There must be a fixed number of trials (n).
2. There are only two possible outcomes for each trial, success or failure.
3. The probability of success (p) is the same for each trial.
4. The trials are independent of each other.

In the given situation:
1. There are a fixed number of trials (n = 2).
2. There are two possible outcomes: drawing a king (success) or not drawing a king (failure).
3. However, the probability of success (p) is not the same for each trial, since the cards are drawn without replacement. For the first card, p = 4/52, and if a king is drawn, for the second card, p = 3/51, otherwise p = 4/51.
4. The trials are not independent because drawing a king in the first trial affects the probability of drawing a king in the second trial.
Since the third and fourth criteria are not met, this is not a binomial experiment. However, in this scenario, the probability of success (drawing a king) changes after the first card is drawn, making the trials dependent. Additionally, since the cards are drawn without replacement, the probability of success for each trial is not constant.

Learn more about probability here: brainly.com/question/30034780

#SPJ11

.if the r.v x is distributed as uniform distribution over [-a,a], where a > 0. determine the parameter a, so that each of the following equalities holds a.P(-1 2)

Answers

Both equalities hold true for any value of a > 0, as the probability of a continuous random variable taking any specific value is always 0.

Given that the random variable x is uniformly distributed over the interval [-a,a], the probability density function (PDF) of x is given by:

f(x) = 1/(2a), for -a ≤ x ≤ a
f(x) = 0, otherwise

To determine the parameter a, we need to use the given equalities:

a. P(-1 < x < 1) = 0.4

The probability of x lying between -1 and 1 is given by:

P(-1 < x < 1) = ∫(-1)^1 f(x) dx
             = ∫(-1)^1 1/(2a) dx
             = [x/(2a)]|(-1)^1
             = 1/(2a) + 1/(2a)
             = 1/a

Therefore, we have:

1/a = 0.4
a = 1/0.4
a = 2.5

So, for the equality P(-1 < x < 1) = 0.4 to hold, the parameter a should be 2.5.

b. P(|x| < 1) = 0.5

The probability of |x| lying between 0 and 1 is given by:

P(|x| < 1) = ∫(-1)^1 f(x) dx
          = ∫(-1)^0 f(x) dx + ∫0^1 f(x) dx
          = [x/(2a)]|(-1)^0 + [x/(2a)]|0^1
          = 1/(2a) + 1/(2a)
          = 1/a

Therefore, we have:

1/a = 0.5
a = 1/0.5
a = 2

So, for the equality P(|x| < 1) = 0.5 to hold, the parameter a should be 2.

c. P(x > 2) = 0

The probability of x being greater than 2 is given by:

P(x > 2) = ∫2^a f(x) dx
        = ∫2^a 1/(2a) dx
        = [x/(2a)]|2^a
        = (a-2)/(2a)

For the equality P(x > 2) = 0 to hold, we need:

(a-2)/(2a) = 0
a - 2 = 0
a = 2

So, for the equality P(x > 2) = 0 to hold, the parameter a should be 2.

Learn more about probability here: brainly.com/question/11234923

#SPJ11

For random samples of size n=16 selected from a normal distribution with a mean of μ = 75 and a standard deviation of σ = 20, find each of the following: The range of sample means that defines the middle 95% of the distribution of sample means

Answers

The range of sample mean is that it defines the middle 95% of the distribution of sample mean is from 68.2 to 81.8. This means that if we were to take multiple random samples of size 16 from the population, 95% of the sample means would fall within this range.

To find the range of sample means that defines the middle 95% of the distribution of sample means, we can use the formula:
range = (X - zα/2 * σ/√n, X + zα/2 * σ/√n)
where X is the sample mean, σ is the population standard deviation, n is the sample size, and zα/2 is the z-score that corresponds to the desired confidence level and is found using a standard normal distribution table.
For a 95% confidence level, zα/2 = 1.96. Substituting the given values into the formula, we get:
range = (75 - 1.96 * 20/√16, 75 + 1.96 * 20/√16)
range = (68.2, 81.8)
Therefore, the range of sample means that defines the middle 95% of the distribution of sample means is from 68.2 to 81.8. This means that if we were to take multiple random samples of size 16 from the population, 95% of the sample means would fall within this range.
To find the range of sample means that defines the middle 95% of the distribution of sample means, we need to use the Central Limit Theorem and calculate the standard error.
Given a normal distribution with mean (μ) = 75, standard deviation (σ) = 20, and sample size (n) = 16, we can calculate the standard error (SE) using the following formula:
SE = σ / √n
SE = 20 / √16
SE = 20 / 4
SE = 5
Now, we need to find the critical z-score for a 95% confidence interval. For a 95% confidence interval, the critical z-score (z*) is approximately ±1.96.
Next, we'll use the critical z-score to find the margin of error (ME):
ME = z* × SE
ME = 1.96 × 5
ME = 9.8
Finally, we'll calculate the range of sample means:
Lower limit = μ - ME = 75 - 9.8 = 65.2
Upper limit = μ + ME = 75 + 9.8 = 84.8
The range of sample means that defines the middle 95% of the distribution of sample means is approximately 65.2 to 84.8.

To learn more about mean, click here:

brainly.com/question/31101410

#SPJ11

A scale drawing of a rectangular park had a scale of 1 cm = 100 m. 6. 2 cm
11. 7 cm
What is the actual area of the park in meters squared?

Answers

The actual area of the park in meters squared is 725,400 [tex]m^2[/tex].

To find the actual area of the park in meters squared, we need to first calculate the dimensions of the park using the

scale drawing.

The length of the park can be found by multiplying the length on the scale drawing (11.7 cm) by the scale factor (100 m/cm):

11.7 cm x 100 m/cm = 1170 m

Similarly, the width of the park can be found by multiplying the width on the scale drawing (6.2 cm) by the scale factor:

6.2 cm x 100 m/cm = 620 m

Now that we know the actual dimensions of the park, we can find its area by multiplying the length and width:

1170 m x 620 m = 725,400 [tex]m^2[/tex]

Therefore, the actual area of the park in meters squared is 725,400 [tex]m^2[/tex].

for such more question on area

https://brainly.com/question/25292087

#SPJ11

Solids A​ and B​ are similar.

Answers

Check the picture below.

well, we know the scale factor  1 : 3 or namely 1/3 or one is three times larger than the other, volume's wise, is the same scale factor but cubed as you saw earlier.

[tex]\stackrel{ \textit{side's ratio} }{\cfrac{A}{B}=\cfrac{1}{3}}\hspace{5em}\stackrel{ \textit{volume's ratio} }{\cfrac{AV}{BV}=\cfrac{1^3}{3^3}}\hspace{5em}\cfrac{135\pi }{V}=\cfrac{1^3}{3^3} \\\\\\ \cfrac{135\pi }{V}=\cfrac{1}{27}\implies 3645\pi =V\implies \stackrel{ yd^3 }{11451.11}\approx V[/tex]

if you divide polynomial f(x) by (x-7) and get a remainder of 5 what is f(7)

Answers

if you divide polynomial f(x) by (x-7) and get a remainder of 5 what is f(7) is 5.

The remainder theorem states that the remainder of the polynomial f(x) divided by (x-a) is f(a). In this case, it is known that the remainder of the division of f(x) by (x-7) is 5. Thus, from the remainder theorem, we get:

f(x) = (x-7)q (x ) + 5,

where q(x) is the quotient. To find the value of

f(7, we substitute x = 7 in the above equation:

f(7) = (7-7)q(7) + 5

7-7 = 0, so the first term drops out, leaving:

f(7) = 5

So, we can conclude that the value of f(7) is 5.

Learn more about the remainder theorem :

https://brainly.com/question/13547729

#SPJ11

State if the triangle is acute obtuse or right

Answers

Answer: Right

Step-by-step explanation: You have 3 angles, two are less than 90 degrees while the other is exactly 90, that would make this a right triangle.

The relationship between the number of pound (lb) of beef and the total cost in dollars shown in the graph. What is the unit price of beef?
1 lb/$5
$5/1lb
$1/5lb
$10/2lb

Answers

Answer:

Answer Choice B

Step-by-step explanation:

It is 5$ for 1 lb so that means you get the fraction $5/1lb

Other Questions
The commercialization of some strains of recombinant microorganisms has proceeded slowly due to concerns in situations where they are used to produce ----- products or where they are released into the---- If JPhone, Inc., has an equity multiplier of 1.67, total asset turnover of 1.45, and a profit margin of 5.9 percent, what is its ROE? (Do not round intermediate calculations and enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.) Plot -2 1/6 and 11/6 on the number line below. (CO 4) In a situation where the sample size was decreased from 39 to 29, what would be the impact on the confidence interval? a. It would become narrower with fewer values b. It would become wider with fewer values c. It would become narrower due to using the z distribution d. It would remain the same as sample size does not impact confidence intervals A person standing barefoot on the ground 20 m from the point of a lightning strike experiences an instantaneous potential difference of 300 V between his feet.if we assume the sum of the skin resistance on both legs is 1.0 k , how much current goes up one leg and back down the other? Create ten sentences in all: 5 using fewer properly and 5 using less properly.Create ten sentences in all: 5 using good properly and 5 using well properly. Assess whether or not the 16 days of Activism Campaign has helped women and children who have been abused in community. Subt Select the reagent for the following reaction. ?/3-ethylpentanoyl bromide ?/pridine> 3-ethylpentanoic formic anhydrideAcid halideAnhydrideEsterAmideAlcoholAmineCarboxylic acid or carboxylate (the conjugate base of carboxylic acid) pollutants that destroy fungi that form mycorrhizal associations with plants would directly impact the plant's ability to do what, primarily?A. take in carbon dioxide from the atmosphereB. conduct photosynthesisC. transport sugars throughout the plantD. absorb mineralsE. produce fruit what are the three categories of the detect (de) function of the nist cybersecurity framework?a.restoration, corrections to procedures, communicationb.planning, mitigation, corrections to systemsc.manage, protect, maintaind.analysis, observation, detection Consider the following for both SN1 and SN2 reaction conditions: The nature of the leaving group (Cl vs. Br) in the 1-halobutanes The effect of the structure, i.e. compare: 1o, 2o, and 3o halides. Unhindered 1o vs. hindered 1o halides simple 3o vs. a comple 3o halide an allylic halide vs. a 3o halide The effect of solvent polarity on SN1 and SN2 reactions The effect of temperature on SN1 and SN2 reations A company that manufactures riding mowers wants to identify the best sales prospects for an intensive campaign. In particular, the manufacturer is interested in classifying households as prospective owners or nonowners on the basis of Income (in $1000s) and Lot Size (in 1000 ft2 ). The marketing expert looked at a random sample of 24 households, given in the file RidingMowers.csv. (below) Use all the data to fit a logistic regression of ownership on the two predictors. (The positive class is "owner".)Questions:A: Among nonowners, what is the percentage of households classified correctly? Use cutoff =0.6.B: To increase the percentage of correctly classified owners, should the cutoff value be increased or decreased?C: What are the odds that a household with a $62K income and a lot size of 18,000 ft2 is an owner? A URL, or Uniform Resource Locator is the full name of an internet resource (e.g., web file). Which of the statements below is false? Question 1 options: A) A URL is also referred to as the domain name. B) A URL includes the access protocol, fully-qualified name of the server hosting the resource, and file name of the resource. C) Every internet resource has a unique URL. D) A URL includes the domain name of the hosting server. What comparison can be made between the two paragraphs? A. They both look back on the outcome of the Civil War. B. They both offer an analysis of the Civil War. C. They both look at the causes of the Civil War. D. They both are critical of the South's role in the Civil War. assertions with high inherent risk are least likely to involve: a. significant judgment by management. b. difficult accounting issues. c. complex calculations. d. routine transactions. Find the common ratio of the geometric sequence 16 , 32 , 64 What is the torque by the fire extinguisher about the center of the seesaw, in N-m? Use g = 10 m/s^2. characteristic or quality of manufactured products (dimension of product quality) can be defined (or measured) in various ways. which one of the following is an example of reliability?a) how a cellphone looks and feels b) number of years a dish washer operates until replacement is preferred c) the time to answer a telephone call by the service representatives d) a car starts without any trouble at a low temperature (e.g., 20 below) acceleration achieved in 60 seconds by an automobile On January 1, Merry Walker established a catering service. The accounts to use for transactions (a) through (d), each identified by a number, are listed. Following this list are the transactions that occurred in Walkers first month of operations. For each transaction, indicate the accounts that should be debited and credited by selecting the account number(s) in the appropriate box. what are two ways that you could more accurately measure the distance to an object using parallax?