use the method of dividing by prime factors to find the greatest common factor of the following numbers 574 and 532

Answers

Answer 1

The greatest common factor is the greatest number that divides both numbers.

The given numbers are 574 and 532.

First, let's decompose each number into their prime factors.

574 | 2

287 | 7

41 | 41

1

574 = 2*7*41

532 | 2

266 | 2

133 | 7

19 | 19

1

532 = 2*2*7*19

As you can observe, the common factors are 2 and 7, so the greatest common factor is 14 since that's the product between 2 and 7.

Therefore, the greatest common factor between 574 and 532 is 14.

Related Questions

Find the area of the shaded region show or explain your reasoning

Answers

The area of the shaded region will be 28 cm². The shaded region is a combination of two rectangles.

What is the area of the shaded region?

The area of the shaded area is the difference between the total area of the polygon and the area of the portion of the polygon that is not shaded. In polygons, the area of the shaded component might appear in two different ways. A polygon's sides or its center are both potential locations for the shaded area.

From the triangle, it is obtained that the shaded region is the combination of a 4×6 rectangle and a 2×2 square.

Area of shaded region = Area of rectangle + Area of square

Area of shaded region = (6-2)×6 + 2×2

Area of shaded region  = 4×6 + 4

Area of shaded region = 24 + 4

Area of shaded region =  = 28 cm²

Thus, the area of the shaded region will be 28 cm². The shaded region is a combination of two rectangles.

Learn more about the area of the shaded region here,

https://brainly.com/question/20162990

#SPJ1

please helpjjjjjjjjjjjjjjjj

Answers

Answer:

Diverge i think.

Step-by-step explanation:

See the photo

Input x Output y3. -56. -49. -3What is a equation

Answers

We are to determine the equation of line by interpreting tabulated results between an independent variable ( x ) and a dependent variable ( y ).

A function is usually expressed as follows:

[tex]y\text{ = f ( x )}[/tex]

The above notation gives us the output ( y ) which is a function of input variable ( x ). This means that whatever relationship these two variables have the value of output ( y ) is related to the imput variable ( x ).

We are given a table/list of values of output ( y ) corresponding to each value of input variable ( x ) as follows:

Input ( x ) Output ( y )

3 -5

6 -4

9 -3

There are a series of steps that we must take to arrive at the equation that relates two variables.

Step 1: Determine the type of relationship between two variables by intuition

The first step in the process is the hardest of all. We have to critically analyze each input value ( x ) and its corresponding output value ( y ) with successive pair of values.

There are many types of relationships possible ( polynomial order, exponential, logarithmic, trigonometric, radical, etc .. ).

We can conjure up a way by comparing outputs of successive values to determine the type of relationship possible.

So looking at the first value:

[tex]y\text{ = f ( 3 ) = -5}[/tex]

The successive value:

[tex]y\text{ = f ( 6 ) = -4}[/tex]

The next successive value:

[tex]y\text{ = f ( 9 ) = -3}[/tex]

Here if scrutinize between each successive value of input variable ( x ) we see that there is a "3 unit step-up" in each pair of values i.e ( 3 -> 6 -> 9 ).

Next we compare each output values ( y ) for successive pairs. We see that with every step increase of 3 units in ( x ) value there is an increase of ( 1 ) unit in output value i.e ( -5 -> -4 -> -3 ).

Conclusion: Combing the result of above analysis we see that with each 3 step increase in input value ( x ) there is an increase in output value ( y ) by 1 unit.

This gives us the idea that the two variables are linearly related to one another.

Therefore, the type of relationship is:

[tex]\text{straight line }\text{ }[/tex]

Step 2: Recall the equation for the type of relationship between two vairbales x and y

Once we have determined the type of relationship between two variables. We will have to resort to our equation bank and pluck out the corresponding equation that expresses a LINEAR relationship i.e equation of a straight line.

The slope-intercept form of a straight line is:

[tex]y\text{ = m}\cdot x\text{ + c}[/tex]

Step 3: Determine the complete equation of function by defining the arbitrary constants.

The above equation is valid for all straight lines that express a linear relationship. However, we seek to find a unique straight line for the given set of points.

Every unique straight line equation would have either of the constants different. The constants defined in a striaght line equation are:

[tex]\begin{gathered} m\colon\text{ The slope( gradient ) of the line} \\ c\colon\text{ The y-intercept} \end{gathered}[/tex]

To determine these constants we will use the given pairs of coordinates of input and output variables, x and y respectively.

To determine the slope (m) of an equation:

[tex]m\text{ = }\frac{y_2-y_1}{x_2-x_1}[/tex]

The above expression relates the change in output value ( y ) with respect to change in input variable ( x ).

To determine the constant ( m ) we will use the conclusion from Step 1:

"3 step increase in input of ( x ) value there is an increase in output value ( y ) by 1 unit."

Therefore,

[tex]m\text{ = }\frac{+1}{+3}\text{ = }\frac{1}{3}[/tex]

To determine the value of y-intercept ( c ). We will plug in the value of ( m ) into the general equation of a straight line written in step 2:

[tex]y\text{ = }\frac{1}{3}x\text{ + c}[/tex]

Now, we will use any pair of input and output value.

[tex]x\text{ = 3 , y = -5}[/tex]

Substitute the pair of values into the derived equation expressed above and solve for constant ( c ):

[tex]\begin{gathered} -5\text{ = }\frac{1}{3}\cdot(3)\text{ + c} \\ -5\text{ = 1 + c} \\ c\text{ = -6} \end{gathered}[/tex]

Note: The above step implies that following equation must satisfy each and every data pair of point given to us ( table ). Or each and every value must lie on the line. For that each value must satisfy the equation of line.

Step 4: Write the complete equation of the relationship

Once we have evaluated the values of equation defining constants ( m and c ). We can simply plug in the values into the general equation relationship ( Linear - slope intercept form ) as follows:

[tex]m\text{ = }\frac{1}{3}\text{ , c = -6}[/tex]

Therefore, the equation for the set of values given to us is:

[tex]\begin{gathered} \textcolor{#FF7968}{y}\text{\textcolor{#FF7968}{ = }}\textcolor{#FF7968}{\frac{1}{3}\cdot x}\text{\textcolor{#FF7968}{ - 6}} \\ OR \\ y\text{ = }\frac{x\text{ - 18}}{3} \\ \textcolor{#FF7968}{3y}\text{\textcolor{#FF7968}{ = x - 18}} \end{gathered}[/tex]

28282838383833883+182827272727277227

Answers

Answer:

[tex]211,110,111,111,111,110[/tex]

Explanation:

We want to find the sum of the numbers;

[tex]28282838383833883+182827272727277227​[/tex]

solving;

Therefore;

[tex]28,282,838,383,833,883+182,827,272,727,277,227​=211,110,111,111,111,110[/tex]

Give three value to x such that |xl= -x.

Answers

We have the following equation:

[tex]\left|x\right|=-x[/tex]

And we want to identify values who satisfy the equation. And the possible answers for this case are:

x=0

Since :

[tex]\left|0\right|=-0=0[/tex]

Other two possible answers are:

[tex]\left|\frac{0}{10}\right|=-\frac{0}{10}=0[/tex]

Point m represents the opposite of negative 1/2 and point n represents the opposite of positive 5/2 which number line correctly shows points m and n great

Answers

If Point m represents the opposite of negative 1/2 and point n represents the opposite of positive 5/2. Then M is 1/2 and N is -5/2.

What is Number system?

A number system is defined as the representation of numbers by using digits or other symbols in a consistent manner.

A number line is a picture of a graduated straight line that serves as visual representation of the real numbers.

Given that point M represents the opposite of negative 1/2. Which means opposite of -1/2. The opposite of  -1/2 means positive of 1/2. The sign changes.

Point N represents the opposite of positive 5/2. Which means opposite of 5/2. The opposite of  5/2 means negative of 5/2. The sign changes.

opposite of positive 5/2 is -5/2.

Now let us plot this values on a number line. 1/2 is 0.5 and -5/2 means -2.5.

The graph is attached below.

Hence M is 1/2 and N is -5/2

To learn more on Number system click:

https://brainly.com/question/22046046

#SPJ1

The graph shows the mass of the bucket containing liquid depends on the volume of liquid in the bucket. Use the graph to find the range of the function.

Answers

The graph shows that the range of the function is 0.9 ≤ M ≤ ∞.

Linear Function

A linear function can be represented by a line. The standard form for this equation is: y=mx+b , for example, y=5x+8.

All functions present their domain and range. The domain of a function is the set of input values for which the function is real and defined. In the other words, when you define the domain, you are indicating for which values x the function is real and defined. While the domain is related to the values ​​of x, the range is related to the possible values ​​of y that the function can have.

From the graph it is possible to see that: the function is a linear function, the values of the coordinate x are represented by the volume (liters) while the values of the coordinate y are represented by the mass (kg).

The question asks for the range of the function. Therefore, you should indicate the possible values ​​of y that the function can have.

For this, you should analyze the axis-y. See that for x=0, the graph shows y =0.9. Therefore, the function starts for values of y >= 0.9 kg. It is possible to verify that when the volume increases, the mass also increases. With this information, you can find that the range is 0.9 ≤ M ≤ ∞.

Learn more about  the range here:

brainly.com/question/1045262#

#SPJ1

Graph the linear function f(x)=4x+1 by plotting points.

To plot points, click on a point on the graph and drag it to the desired location.

Answers

A graph of the linear function (f(x) = 4x + 1) is shown in the image attached below.

What is a graph?

A graph is a type of chart that's commonly used for the graphical representation of data on both the horizontal and vertical lines of a cartesian coordinate, which are the x-axis and y-axis.

Generally speaking, the graph of any proportional relationship such as a linear function is characterized by a straight line with the points passing through the origin (0, 0) because as the values on the x-axis increases or decreases, the values on the y-axis increases or decreases simultaneously as shown in the image attached below.

In conclusion, a graph which represents the given linear function shows a proportional relationship between the value of x and y.

Read more on graphs here: brainly.com/question/4546414

#SPJ1

Give a negation of each inequality.
p < 9

Answers

Answer: P can be anything from 8 to below

Example: 8, 7, 6, 5, 4, 3, 2, 1, 0, -1 .....

URGENT!! ILL GIVE
BRAINLIEST!!!!! AND 100
POINTS!!!!!

Answers

Angles are given below.

Define angles.

When two straight lines or rays intersect at a single endpoint, an angle is created. The vertex of an angle is the location where two points come together. The Latin word "angulus ," which means "corner," is where the term "angle" originates. When a transversal connects two coplanar lines, alternate interior angles are created. They are located on the transverse sides of the parallel lines, but on the inner side of the parallel lines. At two different locations, the transversal passes through the two lines that are coplanar.

Given,

∠6 and ∠7 = Vertical angles

∠2 and ∠8 = Same side exterior angles

∠1 and ∠5 = Corresponding angles

∠3 and ∠6 = Adjacent angles

∠2 and ∠7 = Alternate exterior angles

∠4 and ∠6 = Same side interior angles

∠1 and ∠2 = Linear pair

To learn more about angles, visit:

https://brainly.com/question/28451077

#SPJ13

Bonus: Write the equation of a line in slope intercept form that is parallelto y=4/3x-7 and contains the point (5,-8)

Answers

The given equation is

[tex]y=\frac{4}{3}x-7[/tex]

The slope of the given line is 4/3 because it's the coefficient of x.

Now, the new line has a slope of 4/3 too because parallel lines have equal slopes.

We know that the new line passes through the point (5, -8). Let's use the point-slope formula to find the equation.

[tex]y-y_1=m(x-x_1)[/tex]

Replacing the points and the slope, we have.

[tex]\begin{gathered} y-(-8)=\frac{4}{3}(x-5) \\ y+8=\frac{4}{3}x-\frac{20}{3} \\ y=\frac{4}{3}x-\frac{20}{3}-8 \\ y=\frac{4}{3}x+\frac{-20-24}{3} \\ y=\frac{4}{3}x-\frac{44}{3} \end{gathered}[/tex]Therefore, the equation of the new line is y = (4/3)x - (44/3).

Elena is making an open top box by cutting squares out of the corners of a piece of paper that is 11 inches wide and 17 in long and then folding up the sides if the side length of a square cut outs RX in in the volume of the box is given by [tex]v(x) = x(11 - 2x)(17 - 2x)[/tex]what is a reasonable domain for V of x?approximately which value of x will give her a box with the greatest volume round to the nearest whole numberfor approximately which values of X is the volume of the Box increasing round to the nearest whole number

Answers

The expression for the volume of the box is:

[tex]v(x)=x(11-2x)(17-2x)[/tex]

Mathematically, there is no restriction for the values of x, but phisically we know that x is a length and has a positive value, so x>0.

Also, we know that x can not be largest than half of the width, that is the smallest dimension of the piece of paper.

As the width is 11, we then know that x is smaller than 11/2=5.5.

In conclusion, the domain for x is:

[tex]0To calculate the maximum volume for the box we have to derive the volume function and equal to zero:[tex]\begin{gathered} v(x)=x(11-2x)(17-2x) \\ v(x)=x(11\cdot17-11\cdot2x-2x\cdot17+4x^2) \\ v(x)=x(4x^2-56x+187) \\ v(x)=4x^3-56x^2+187x \end{gathered}[/tex][tex]\begin{gathered} \frac{dv}{dx}=4(3x^2)-56(2x)+187(1)=0 \\ 12x^2-112x+187=0 \\ x=\frac{-(-112)\pm\sqrt[]{(-112)^2-4\cdot12\cdot187}}{2\cdot12} \\ x=\frac{112\pm\sqrt[]{12544-8976}}{24} \\ x=\frac{112\pm\sqrt[]{3568}}{24} \\ x=\frac{112}{24}\pm\frac{59.73}{24} \\ x=4.67\pm2.49 \\ x_1=4.67-2.49=2.18\approx2 \\ x_2=4.67+2.49=7.16\approx7 \end{gathered}[/tex]

The solutions are x=2 and x=7 approximately.

Because of our domain definition, we know that x=7 is not a valid solution, so the value of x that maximizes the volume is x=2.

The volume for x=0 is 0. Then, it will increase its value until x=2, where it reaches the maximum volume. From x=2 to x=5.5, the volume decrease until reaching v=0 at x=6.5.

Answer:

Domain: 0

Value of x that maximizes the volume: x=2.

From x=0 to x=2 the volume of the box increases.

The mathematics section of a standardized college entrance exam had a mean of and an SD of for a recent year. Assume these are well modeled by a Normal distribution.

Answers

Normal distributions are crucial to statistics because they are widely used in the natural and social sciences to represent real-valued random variables whose distributions are unknown.

Normal distribution is a type of continuous probability distribution for a random variable with a real value.

They are important in part because of the central limit theorem. This claim asserts that, in some cases, the mean of many samples (observations) of a random variable with finite mean and variance is itself a random variable, whose distribution tends to converge to a normal distribution as the number of samples increases. Because of this, the distributions of physical quantities, such as measurement errors, which are assumed to represent the sum of multiple distinct processes, are usually close to normal. It may also be referred to as a Laplace-Gauss, Gaussian, or Gaussian distribution.[tex]{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^{2}}}[/tex]Another name for a normal distribution is a bell curve.The Cauchy, Student's t, and logistic distributions, among many others, have a bell-shaped structure.The univariate probability distribution is generalized for vectors in the multivariate normal distribution and for matrices in the matrix normal distribution.

Hence we can use the normal distribution to find the mean and standard deviation of a data set.

To learn more about normal distribution visit:

https://brainly.com/question/15103234

#SPJ1

I need the answers as soon as you can! I’m on the clock

Answers

[tex]D[/tex]

1) The first thing to do is to find the vertex. So let's do it, considering that we already have the vertex and then we can find the coefficients. Note that all functions have a=1:

[tex]\begin{gathered} h=-\frac{b}{2a} \\ 9=\frac{-b}{2(-1)} \\ 9\cdot-2=-b \\ -b=-18 \\ b=18 \\ ----- \\ \end{gathered}[/tex]

2) Now, let's find the other coefficient "c", since we've got a,b.

[tex]\begin{gathered} k=\frac{-\Delta}{4a} \\ 7=\frac{-(18^2-4(-1)(c))}{4(1)} \\ 28=-(324+4c) \\ 28=-324-4c \\ 28+324=-4c \\ 352=-4c \\ c=\frac{352}{-4} \\ c=-88 \end{gathered}[/tex]

3) Thus the answer is:

[tex]D[/tex]

Find the area of ABC with vertices A(3,-6), B(5,-6), and C(7,–9).

Answers

Area of a triangle ABC with the given vertices is 3 square units.

Given that, the vertices of a triangle ABC, A(3,-6), B(5,-6), and C(7,–9).

What is the area of triangle formula in coordinate geometry?

In Geometry, a triangle is a three-sided polygon that has three edges and three vertices. The area of the triangle is the space covered by the triangle in a two-dimensional plane.

Area of a triangle = [tex]\frac{1}{2} ( |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|)[/tex]

Here, (x1, y1) = A(3,-6), (x2, y2) = B(5,-6), and (x3, y3) = C(7,–9)

Now, the area of a triangle = 1/2 (|3(-6+9)+5(-9+6)+7(-6+6)|)

= 1/2 (|3(3)+5(-3)+7(0)|)

= 1/2 (|(9-15)|)

= 1/2 × 6

= 3 square units

Therefore, area of a triangle ABC with the given vertices is 3 square units.

To learn more about the area of a area of triangle with vertices visit:

https://brainly.com/question/26633662.

#SPJ1

Lesson 2: Exit Ticket
Flipping Ferraris
Find the inverse of each function:
b. g(x)= √x

Answers

The inverse of the functions given as y = 5(x-2) and f^-1(x) = x²

Inverse of a function

A function's inverse function reverses the action of a function, or f.

a) From the given table, we can use the coordinate points (-5, 1) and (0, 2)

The standard linear equation is y = mx + b

m = 2-1/0-(-5)

m = 1/5

Since the y-intercept is (0, 2), hence the required function is y = 1/5 x + 2.

y = 1/5x + 2

x = 1/5 y + 2

1/5 y = x - 2

y = 5(x-2)

b) For the function g(x) = √x

y = √x

x = √y

y = x²

f^-1(x) = x²

This gives the inverse of the function.

Learn more on inverse of a function here:https://brainly.com/question/3831584

#SPJ4

what is the answer to 389+_=2,897

Answers

Answer:

the answer is 2508

the answer is 2508……..

Consider that AABC is similar to AXYZ and the measure of ZB is 68º. What is the measure of ZY? A) 70° B) 68° C) 41° D) 22°

Answers

Answer

Option B is correct.

Angle Y = 68º

Explanation

Similar triangles have the same set of angles in them.

All the corresponding angles are equal to each other.

So, if triangle ABC is similar to triangle XYZ

Angle A = Angle X

Angle B = Angle Y

Angle C = Angle Z

The order in which they are named determines the angles that are corresponding to each other.

So, if Angle B = 68º

Angle Y = Angle B = 68º

Hope this Helps!!!

Ricky grows plants for a science project at the start of his project the plants average a height of 3 inches after three weeks the average player height was 7 inches what was the percent of the change in the average height of the plants?

Answers

To answer this question, we will use the following formula for the percent of change:

[tex]P=\frac{F-I}{I}\times100,[/tex]

where F is the final height and I is the initial height.

Substituting F=7, and I=3 we get:

[tex]P=\frac{7-3}{3}\times100.[/tex]

Simplifying the above result we get:

[tex]F=\frac{400}{3}\text{.}[/tex]

Answer: 400/3 %.

Evaluate the expression for the given variable.9 - k ÷ 3/4 k=2/3

Answers

We are given the following expression:

[tex]9-k\div\frac{3}{4}[/tex]

We are also given that k is equal to 2/3. So, we can substitute that into the expression:

[tex]9-\frac{2}{3}\div\frac{3}{4}[/tex]

Due to order of operations, we have to do the division first, and then do the subtraction. To do division with fractions, we keep the first fraction the same and take the reciprocal of the second fraction. Then, we can multiply the two fractions. Let's do that:

[tex]9-(\frac{2}{3}\div\frac{3}{4})=9-(\frac{2}{3}*\frac{4}{3})=9-\frac{8}{9}[/tex]

Now, we can do the subtraction:

[tex]9-\frac{8}{9}=\frac{81}{9}-\frac{8}{9}=\frac{73}{9}[/tex]

Therefore, our answer is 73/9

a) Rotation, then reflectionb) Reflection, then rotation c) Reflection, then translationd) Rotation, then translation

Answers

The first transformation applied to the pre image is a reflection.

The second transformation applied is a 270° rotation.

It means the right answer is Reflection, then rotation.

Question 4 2 pts A fireman leaned a 36-foot ladder against a building. If he placed the ladder 12 feet from the base of the building, what angle is formed between the ladder and the ground? 0 78.8 Degrees 70.5 Degrees O 77.2 Degrees O 80.4 Degrees O 75.5 Degrees « Previous

Answers

x is the ladder ,x =36

y is the distance between ladder and wall y=12

z is the wall

we have in this triangle , only the hypotenuse(x) and the adjacent side

so,'

[tex]\cos \theta=\frac{y}{x}=\frac{12}{36}=0.33[/tex][tex]\theta=\cos ^{-1}(0.33)[/tex][tex]\theta=70\circ(approximately)[/tex]

f(x)=[tex]\sqrt{x}[/tex], g(x)=x+9
A: (fg)(x)= ??, Domaine of fg=?

B(gf)(x)=??, Domaine of gf=?

Answers

The values are as:

a) f(g(x)) = √(x+ 9)

b) (gf)(x)= √x +9

What is function?

The core concept of mathematics' calculus is functions. The unique varieties of relations are the functions. In mathematics, a function is represented as a rule that produces a distinct result for each input x. In mathematics, a function is indicated by a mapping or transformation. Typically, these functions are identified by letters like f, g, and h. The collection of all the values that the function may input while it is defined is known as the domain. The whole set of values that the function's output can produce is referred to as the range. The set of values that might be a function's outputs is known as the co-domain.

Given:

f(x)=√x, g(x)=x+9

a) (fg)(x)=

f(g(x)) = f( x+9)

         = √(x+ 9)

Now, domain is all the input values

i.e., x=2, 4, 7

f(g(2)) = √(2+ 9)

          = √11

and, f(g(4)) = √(4+ 9)

          = √13

and, f(g(7)) = √(7 + 9)

          = √16

          = 4

b) (gf)(x)= g(f(x))

            = g(√x)

            = √x +9

Now, domain is all the input values

i.e., x=2, 4, 7

f(g(2)) = √2+ 9

       

and, f(g(4)) = √(4+ 9)

          = 2+9

          = 11

and, f(g(7)) = √7 + 9

     

Learn more about function here:

https://brainly.com/question/12431044

#SPJ1

If f (x) = x

2 − 2 x , g (x) = x − 2

1) prove that : f(2) = g(2)
2) If g (K) = 7 , find : the value of k

Answers

The value of k is 9 for the function g.

To solve this problem we should have a brief concept of algebraic functions.

To solve this problem we have to follow a few steps.

Here f is a function of x and the relation with the function denotes as x²-2x. Also, g is a function of x and the relation with the function denotes as x− 2.

If we put, x = 2 on  f(x) = x²-2x. We can write, f(2) = 2²-2.2 = 4 - 4 = 0.

If we put, x = 2 on g (x) = x − 2. We can write, g(2) = x− 2= 2- 2 = 0.

Hence, we can conclude that f(2) = g(2) = 0.      ( proved)

Here, g(k) = 7. So, x = k in this relation.

We have to put x= k on g(x) = x− 2 ; now we can write, g (k) = k− 2.

g (k) = k− 2 = 7 as per the question. Therefore k = 7 + 2 = 9

The value of k is 9.

To know more about algebraic functions visit,

https://brainly.com/question/15531431?referrer=searchResults

#SPJ9

The correct question is,

If f (x) = x²-2x

g (x) = x − 2

1) prove that : f(2) = g(2)

2) If g (K) = 7, find the value of k

Find in the exact simplified form of an exact expression for the sum of the first n terms of the following series 1+11+111+1111+11111+.... Binary notation is used to represent numbers on a computer. For example, the number 1111 in base two represents 1(2)^3 + 1(2)^2 +1(2)^1+1, or 15 in base ten. (i) Why is the sum above an example of a geometric series? (ii) Which number in base ten is represented by 11 111 111 111 111 111 111 in base two? Explain your reasoning.

Answers

Step-by-step explanation:

so, I understand, the given series is written in binary form.

a1 = 1 = 1×2⁰ = 1

a2 = 11 = 1×2¹ + 1× 2⁰ = 3

a3 = 111 = 1×2² + 1×2¹ + 1×2⁰ = 7

a4 = 1111 = 1×2³ + 1×2² + 1×2¹ + 1×2⁰ = 15

a5 = 11111 = 1×2⁴ + 1×2³ + 1×2² + 1×2¹ + 1×2⁰ = 31

...

we see, that

an = 2×(an-1) + 1

a1 = 1

a2 = 2×a1 + 1

a3 = 2×a2 + 1 = 2×(2×a1 + 1) + 1 = 4×a1 + 2 + 1

a4 = 2×a3 + 1 = 2×(2×a2 + 1) = 2×(2×(2×a1 + 1) + 1) + 1 =

= 8×a1 + 2×2 + 2 + 1 = 8×a1 + 7

...

an = (2^(n-1))×a1 + an-1

because

an = 2×(an-1) + 1,

an-1 = (2^(n-1))×a1 - 1

therefore,

an = 2×(2^(n-1))×a1 - 1 = (2^n)×a1 - 1

the sequence of the sums of the first n elements

s1 = a1 = 1

s2 = a1 + a2 = 1 + 3 = 4

s3 = a1 + a2 + a3 = 7 + 3 + 1 = 11

s4 = a1 + a2 + a3 + a4 = 15 + 7 + 3 + 1 = 26

...

(i)

it is NOT a geometric sequence.

for a geometric sequence

an/an-1 = r, and r must be a constant ratio for any n.

but

7/3 = 2.333333...

15/7 = 2.142857143...

these are different, so, the sequence itself is not geometric.

neither is the sequence of the sums of the series. because

11/4 = 2.75

26/11 = 2.363636363...

are different.

1, 2, 4, 8, 16, 32, ... is a geometric sequence (constant r = 2).

but not

1, 3, 7, 15, 31, ...

(ii)

11 111 111 111 111 111 111 in base 2.

the utmost right position is the 2⁰ position. every position further to the left multiples the position value by 2. it is the same process as for numbers in base 10 (just there every position value is multiplied by 10).

we have 6×3 + 2×1 positions = 20 positions.

so, the position values go from 2⁰ to 2¹⁹.

as per the formula for "an" up there, we get

a20 = (2²⁰)×a1 - 1 = 1,048,576 - 1 = 1,048,575

For each expression, combine like terms and write an equivalent expression with fewer terms.a. 4x+3xb. 3x+5x-1c. 5+2x+7+4xd. 4-2x+5xe. 10x-5+3x-2

Answers

To simplify the expressions you have to combine the like terms.

This means that you'll solve the operations between the terms that have the same variables, for example x + 2x=3x

Or the terms that have no variables and are only numbers, for example 4+5=9

a. The expression is

[tex]4x+3x[/tex]

Both terms have the same variable "x", so you can add them together. To do so, add the coefficients, i.e. the numbers that are being multiplied by x

[tex]4x+3x=(4+3)x=7x[/tex]

And you get that the simplified expression is 7x

b. The expression is

[tex]3x+5x-1[/tex]

In this expression you have two types of terms, the x-related terms and one constant. In this case you have to solve the operation for the x-related terms together and leave the constant as it is

[tex](3x+5x)-1=(3+5)x-1=8x-1[/tex]

The simplified expression is 8x-1

Rick Takei has a 4-wheel drive vehicle whose average retail value is $15,857. A used vehicle guide adds $60 for heated outside mirrors, $250 for rear and side air bags. $175 for cruise control, and $100 for remote keyless entry. It suggests deducting $750 for excessive mileage. What is the average retail price?

Answers

We are asked to find the final average retail price of the vehicle after the given additions and deductions.

The average retail value is $15,857

Add $60 for heated outside mirrors.

[tex]$\$15,857+\$60=\$15,917$[/tex]

Add $250 for rear and side airbags.

[tex]\$15,917+\$250=\$16,167[/tex]

Add $175 for cruise control.

[tex]\$16,167+\$175=\$16,342[/tex]

Add $100 for remote keyless entry.

[tex]\$16,342+\$100=\$16,442[/tex]

Deduct $750 for excessive mileage.

[tex]\$16,442-\$750=\$15,692[/tex]

Therefore, the average retail price is $15,692

Given f(x) = 2x² + 2x + k, and the remainder when f(x) is divided by x - 1 is
13, then what is the value of k?

Answers

Answer:

Step-by-step explanation:

Set up either long division or synthetic div.  I'd do the latter.

Your divisor for synth. div. should be -7.

                          __________  

Then              -7 /  2      9      k

                                   -14   +35

                         --------------------

                            2      -5      k+35                 Rem is 32;

                                                                    Let 32 = k + 5 and solve for k:

                                                                          k = -3.

Let's check that.  Is k correct?

Then              -7 /  2      9      -3

                                   -14   +35

                         --------------------

                            2      -5      -3+35  = 32

Since the rem is 32, we are correct; k = -3.  

Jackson puts 600.00 into an account to use for school expenses the account earns 2% interest compounded quarterly monthly how much will be in the account after 10 years round your answer to the nearest cent

Answers

By the compound interest formula, you know that

[tex]undefined[/tex]

Line a is parallel to line b and line c is parallel to line d, using the diagram what can be said about angle 7 and 12

Answers

Answer:

C

Step-by-step explanation:

Angle 7 is congruent to angle 5 by the corresponding angles theorem, and angles 5 and 12 are supplementary because they are consecutive interior angles.

Thus, angles 7 and 12 are supplementary.

Other Questions
What do you think is the same characteristic/attitude of a person and your chosen pets?Chosen pet: Bird How much money does Marina spend on coffee each week? Whats the correct answer answer asap i need help can somebody answer this question?il give you brainlist Gabriella enlarged the size of a painting to a width of 78 cm. What is the new height if it was originally 6 cm wide and 19 cmtall? your company has hired a third-party auditing firm to conduct a penetration test against your network. the firm wasnt given any information related to the companys network. what type of test is the company performing? Simplify the following expressions by using the properties of exponents. Assume none of the denominators is zero. a^3 (2a^2 + 4bc^4)^ 0 Mason and Daisy are building towers. Each one of Masons blocks is 6cm tall. Each one of Daisys blocks is 8cm tall. They both build towers that are exactly the same height. What is the smallest height that their towers could be?Give your answer in cm What is the product of -2 1/2 and -3 1/3? Need help with this pls I need help with this please Write 8.94 in fractional notation. don't simplify Which of the following events would complete the timeline of events of theelection of 1804? ChymePalateLarge intestineWhat are the correct definition for these Write an equation of the line that passes through the points. (2,8), (-2,10) what is a molecule that plays a role in a feedback loop? Directions: Find the slope of the line that passes through the given point.15.) (-8,-11) and (17,4)16.) (10,-15) and (13,-17)17.) (-6,-7) and (5,-7) How do you solve this? An electic bulb is rated 60W, 220V. Calculate the resistance of its filament when it is operating normally. to find 24 times 17 i multiply 20 times 17 and add it to 4 times 17 Find g(x), where g(x) is the translation 2 units right of f(x)=x.Write your answer in the form mx+b, where m and b are integers.