Solve for the impulse imparted on the golf ball.
t = 0.001 s
F = 2000 N

Answers

Answer 1

Answer:

2 N s

Explanation:

Impulse = force * time

             = 2000 N  * .001 s = 2 N s


Related Questions

describe how moral relativism was influenced by einstein theories of relativity and subsequently the trend toward the idea there are no absolutes?

Answers

The special and general theories of relativity and Albert Einstein's audacious theory that light is a particle are his most famous works as a physicist and Nobel winner. The most well-known scientist of the 20th century is perhaps him.

In March 1879, he was born in Ulm, Württemberg. He had a great interest in nature and the capacity to comprehend challenging mathematical ideas even as a young man in Munich. He had an unremarkable high school experience, doing exceptionally well in arithmetic but completely failing the classics, which were then thought to be crucial for anybody planning to attend college. He detested school's dreary regimentation and uncreative atmosphere.

The second study established a lot of information regarding the nature of molecules and explained Brownian motion, which is the random jostling of molecules floating in a fluid. 16 years later, this study helped him win the physics Nobel Prize.

However, his third work, "On the Electrodynamics of Moving Bodies," was left out of the award's wording. The third article was the one that would have the biggest impact on contemporary physics. It included Einstein's Special Theory of Relativity, which greatly simplified how we think about how radiation, like light, interacts with matter. Speaking about one body moving and another being motionless has no real significance, according to Einstein. Only in connection to one other can bodies be conceived of as moving;

This specifically implies that, regardless of the frame of reference, electromagnetic radiation's (such as light's) speed remains constant. Even well-known scientists struggled to comprehend this theory because of Einstein's insightful and audacious viewpoint. But over time, when the predictions made by his theory were repeatedly verified, the Special Theory of Relativity finally transformed how scientists thought about matter, space, time, and everything that interacts with them.

To know more about Albert Einstein refer to https://brainly.com/question/12962864

#SPJ9

Information givenknown: mass of Christine=60 kgmass of cart= 22 kg mass of hailey=69The two girls on the cart to the left pushing off of Conner take .3833 s to reach a distance of 0.3m. Conner reaches the same distance in 0.2333s. What is the mass of Conner?

Answers

We will have the following:

We use conservation of momentum to solve, that is:

[tex]\begin{gathered} (60kg+22kg+69kg)(0.3m/0.3833s)=(m+22kg)(0.3m/0.233s) \\ \\ \Rightarrow118.1841899kg\ast m/s=(m+22kg)(\frac{300}{233}m/s) \\ \\ \Rightarrow m+22kg=91.78968976kg\Rightarrow m=69.78968976... \\ \\ \Rightarrow m\approx69.8 \end{gathered}[/tex]

So, Conner's mass is approximately 69.8 kg.

A net force of 43.1 N causes a mass to accelerate at a rate of 0.2 m/s2. Determine the mass in kilograms.

Answers

The mass of the an object caused to accelerate at 0.2m/s² by a 43.1 Newton force is 215.5 kilograms.

What is the mass of the object?

A force is simply referred to as either a push or pull of an object resulting from the object's interaction with another object.

Force, according to  Newton's Second Law is expressed as;

F = m × a

Where a is acceleration and m is the mass.

Given the data in the question;

Force applied F = 43.1N = 43.1kgm/s²Acceleration a = 0.2m/s²Mass m = ?

Plug the given values into the formula above and solve for m.

F = m × a

43.1kgm/s² = m × 0.2m/s²

m = 43.1kgm/s² / 0.2m/s²

Mass m = 215.5kg

Therefore, the mass of the object is 215.5 kilograms.

Learn more about force here: brainly.com/question/27196358

#SPJ1

In a physics lab a student discovers that the magnitude of the magnetic field in a specific location near a long wire is 21.919 microTesla. If the wire carries a current of 35.483 A, what is the distance from the wire to that location ?

Answers

We will have the following:

First, we have that the permeability of free space is:

[tex]\mu_0=4\pi\ast10^{-7}Tm/A[/tex]

Then:

[tex]\begin{gathered} B=\frac{\mu_0I}{2r\pi}\Rightarrow r=\frac{\mu_0I}{2B\pi} \\ \\ \Rightarrow r=\frac{(4\pi\ast10^{-7}Tm/A)(35.483A)}{2\pi(2.1919\ast10^{-5}T)}\Rightarrow r=0.3237647703...m \\ \\ \Rightarrow r\approx0.32m \end{gathered}[/tex]

So, the distance is approximately 0.32 m.

Given two 2.00μC charges on the horizontal axis are positioned at x=0.8m, and the

other at x=-0.8m, and a test charge q = 1.28x10-18C at the origin.

(a) What is the net force exerted on q by the two 2.00μC charges? [5]

(b) What is the electric field at the origin due to 2.00μC charges? [5]

(c) What is the electric potential at the origin due to the two 2.00μC charges

Answers

Answer:Question 1

Given q1=2µC                                  

          q2=2µC

           q= 1.2×10^-18C at origin

Net force exerted by two charges on q

F_1= force on q due to q1

F_2= force on q due to q2

F_net=   F_(1-) F_2        

      = (Kqq_1)/r^2  - (kqq_2)/r^2                                  Then q_1=q_2=〖2×10〗^(-6)

F_net=0N

b) The electric field at charge q

E_net= E_1- E_2

      = (kq_1)/r^2  - (kq_2)/r^2

Then q_1=q_2

 E)_net= 0 N/C  

c) The electric potential at origin due to two charge

V_net= V_(1 )- V_2

      =  (kq_1)/r - (kq_2)/r  

Then q1= q2

V_net= 0 V

Explanation:

n Fig. P9.82, the cylinder Figure P9.82 and pulley turn without friction about stationary horizontal axles that pass through their centers. A light rope is Pulley wrapped around the cylinder, passes over the pulley, and has a 3.00 kg box Cylinder Box suspended from its free end. There is no slipping between the rope and the pulley surface. The uniform cylinder has mass 5.00 kg and radius 40.0 cm. The pulley is a uniform disk with mass 2.00 kg and radius 20.0 cm. The box is released from rest and descends as the rope unwraps from the cylinder. Find the speed of the box when it has fallen 2.50 m.

Answers

The speed of the box when it has fallen 2.50 m is 4.22 m/s.

What is the speed of the box?

The speed of the box when it has fallen through the given height is calculated as follows;

Apply the principle of conservation of energy to determine the speed of the box.

ΔK.E = ΔP.E

K.Ef - K.Ei = mg(hf - hi)

K.Ef - 0 = mg(hf - 0)

K.Ef = mghf

where;

K.E is the final kinetic energy = rotational + translational kinetic energyhf is the final height of the box

¹/₂mv² + ¹/₂I_pω² +  ¹/₂I_cω²= mghf

¹/₂mv² + ¹/₂(I_p + I_c)ω² = mghf

where;

I_p is moment of inertia of the pulleyI_c is the moment of inertia of the cylinderω is the angular speed of the boxm is mass of the box

I_p = ¹/₂MR²

where;

M is mass of the pulleyR is the radius of the pulley

I_p =  ¹/₂(2)(0.2)² = 0.04 kgm²

I_c = MR²

I_c = (5)(0.4)²

I_c = 0.8 kgm²

¹/₂mv² + ¹/₂(I_p + I_c)(v/r)² = mghf

¹/₂mv² + ¹/₂r²(I_p + I_c)v² = mghf

¹/₂v²[m + 1/r²(I_p + I_c)] = mghf

v²[m + 1/r²(I_p + I_c)] = 2mghf

v² [3 + 1/0.4²(0.04 + 0.8)] = 2(3)(9.8)(2.5)

v² [3 + 1/0.4²(0.04 + 0.8)] = 2(3)(9.8)(2.5)

8.25v² = 147

v² = 147/8.25

v² = 17.8

v = √17.8

v = 4.22 m/s

Learn more about speed of box around pulley here: https://brainly.com/question/13896956

#SPJ1

I just started a new lesson and have this study guide, but the material is unfamiliar to me and

Answers

Answer:

2.79 eV

Explanation:

Given

The wavelength, λ = 445 nm

The planck's constant, h = 6.626 x 10^-34 m² kg/s

The speed of light, c = 3 x 10^8 m/s

The energy of the photon is calculated as:

[tex]\begin{gathered} E=\frac{hc}{\lambda} \\ \\ E=\frac{6.626\times10^{-34}\times3\times10^8}{445\times10^{-9}} \\ \\ E=\frac{6.626\times3}{445}\times10^{-34+8+9} \\ \\ E=0.0447\times10^{-17} \\ \\ E=4.47\times10^{-2}\times10^{-17} \\ \\ E=4.47\times10^{-19}J \end{gathered}[/tex]

But, 1 eV = 1.6 x 10^-19J

[tex]\begin{gathered} E=\frac{4.47\times10^{-19}}{1.6\times10^{-19}} \\ \\ E=2.79eV \end{gathered}[/tex]

What is the relationship of the force on the spring and stretch of the spring.(This is the spring we are looking at weights can be attached to it)

Answers

We will have the following:

We know that for a simple spring the following is true:

[tex]\begin{cases}F=-kx \\ \\ F=ma\end{cases}[/tex]

So:

[tex]-kx=ma[/tex]

So, the stretch of the spring is directly proportional to the force.


A tensile load of 190 kN is applied to a round metal bar with a diameter of 16mm and a gage length Of 50mm. Under this load the bar elastically deforms so that the gage length increases to 50.1349 mm and the diameter decreases to 15.99 mm. Determine the modulus of elasticity and Poisson s ratio for this metal.

Answers

The elasticity and Poisson's ratio for this metal is 0.232.

What is ratio?

The realation between two numbers which shows how much bigger one quantity is than another.

Sol-

As per the given question

P=190KN

d=16 mm

Lo=50mm

X=50.1349-50=0.1349mm

Y=15.99-16=-0.01mm

The formula-

E=ó/€

Ó=P/A

A=r/4 d^2 =π/4(16)^2=201.062 mm

ó={190(1000)}201.062=944.982 Mpa

E=944.982/0.002698=350.253 GPa

€y=-0.000625

v=0.232(answer)

To know more about ratio click

https://brainly.com/question/2914376

#SPJ9

Set the cannon to have an initial speed of 20 m/s. For which situation do you think the cannon ball will go father: if it is set at a 60-degree angle, or if it is set at a 70-degree angle?

Question 2 options:

60 degrees


70 degrees

Answers

The cannon ball will go farther if the the angle of projection is set at 60 degrees

How to determine which angle will result in farther distance

Case 1:

Initial velocity (u) = 20 m/sAngle of projection (θ) = 60 ° Acceleration due to gravity (g) = 9.8 m/s²Horizontal distance (R) =?

R = u²Sine(2θ) / g

R = 20² × Sine (2×60) / 9.8

R = 346.41 / 9.8

R = 35.35 m

Case 2:

Initial velocity (u) = 20 m/sAngle of projection (θ) = 70 ° Acceleration due to gravity (g) = 9.8 m/s²Horizontal distance (R) =?

R = u²Sine(2θ) / g

R = 20² × Sine (2×70) / 9.8

R = 257.12 / 9.8

R = 26.24 m

From the above calculations, we can conclude that the ball will go farther, if the angle is 60 °

Learn more about projectile motion:

https://brainly.com/question/19128146

#SPJ1

The figure shows a standing wave oscillating at 100 Hz on a string. What is the wave speed ?

Answers

Answer:

The wavelength is 60 cm.

Explanation:

Speed = frequency x wavelength = 100 x 60 = 6000 cm/s

or if you wanted the answer in m/s

Speed = frequency x wavelength= 100 x 0.60 = 60 m/s

A dog running of constant speed of 3m/s increases it's speed to 7m/s upon seeing a lion. if the mass of the dog is 20kg, the work it does in achieving the new speed is.......​

Answers

A dog running of constant speed of 3m/s increases it's speed to 7m/s upon seeing a lion. if the mass of the dog is 20kg, the work it does in achieving the new speed is.......​ 400 J.

What is Speed?

Speed is the time rate at which an object is travelling along a path, whereas velocity is the pace and direction of an object's movement. In other words, velocity is a vector, whereas speed is a scalar valu

Work = Change in Kinetic energy

= ½m(v² - u²)

= ½ × 20 kg × [(7 m/s)² - (3 m/s)²]

= 10 kg × 40 m²/s²

= 400 J

To know more about Speed

brainly.com/question/13943409

#SPJ9

Number 1. Part b: what are the final kinetic energy of the system

Answers

Given that there is a cart of mass, m = 0.12 kg moving with initial speed of, u1 = 0.45 m/s and it collides with another cart of mass, m = 0.12 kg with initial speed, u2 = 0 m/s

We have to find the initial and final kinetic energy.

(a) Initial kinetic energy,

[tex]\begin{gathered} K\mathrm{}E.1=\frac{1}{2}mv^2 \\ =\frac{1}{2}\times0.12\times(0.45)^2 \\ =0.012\text{ J} \end{gathered}[/tex]

According to the conservation of linear momentum,

[tex]mu1+mu2=2mv[/tex]

Here, v is the final speed.

[tex]\begin{gathered} 0.12\times0.45=2\times0.12\times v \\ v=\frac{0.45}{2} \\ =0.225\text{ m/s} \end{gathered}[/tex]

Here, the final speed is 0.225 m/s.

(b) The formula to find kinetic energy is

[tex]K\mathrm{}E\mathrm{}=\frac{1}{2}(2m)v^2[/tex]

Substituting the values, we get

[tex]\begin{gathered} K\mathrm{}E\mathrm{}=0.12\times(0.225)^2 \\ =6.075\times10^{-3}\text{ J} \end{gathered}[/tex]

Hence the kinetic energy is 6.075 x 10^(-3) J.

Diffraction is:A.the difference in density of the compression and rarefaction parts of a sound wave.B.the change of frequency heard by an observer when sound waves come from a moving source.C.when waves suddenly appear in a medium without a source.D.the apparent bending of sound waves around obstacles.

Answers

Diffraction is a phenomenon that occurs when a wave hits an object or it passes through a small gap.

The propagation of the wave will have a circular pattern after the diffraction effect:

Therefore the correct option is D.

Calculate the depth in the ocean at which the pressure is three times the atmospheric pressure

Answers

ANSWER:

20.17 meters

STEP-BY-STEP EXPLANATION:

Given:

Pressure = Po = 1.013x10^5 Pa

Pressure at depth = P = 3Po

Density of sea water = 1025 kg/m^3

We can calculate the depth as follows:

[tex]\begin{gathered} P=P_o+d\cdot g\cdot h \\ \text{ we solve for h} \\ dgh=P-P_o \\ h=\frac{P-P_o}{d\cdot g} \end{gathered}[/tex]

We replacing and calculate the depth:

[tex]\begin{gathered} h=\frac{3\cdot P_o-P_o}{1025\cdot9.8}=\frac{2P_o}{10045}=\frac{2\cdot1.013\cdot10^5}{10045} \\ h=20.17\text{ m} \end{gathered}[/tex]

Therefore, the depth is equal to 20.17 meters

A football player kicks a football off a tee with a speed of 16 m/s at an angle of 63°. How far is the ball from the football player when it lands? How much farther would the ball go if he kicked it with the same speed, but at a 45° angle? Which ball will land first: the ball kicked at 16 m/s and at a 63° angle, or one kicked at 9 m/s and at a 45° angle?

Answers

A football player kicks a football off a tee with a speed of 16 m/s at an angle of 63°

The horizontal and vertical speed of the ball is given by

[tex]\begin{gathered} v_x=v\cos (\theta) \\ v_y=v\sin (\theta) \end{gathered}[/tex]

Where v = 16 m/s and θ = 63°

[tex]\begin{gathered} v_x=16\cos (63\degree)=7.26\; \frac{m}{s} \\ v_y=16\sin (63\degree)=14.26\; \frac{m}{s} \end{gathered}[/tex]

How far is the ball from the football player when it lands?

The range of the ball is given by

[tex]x=v_x\times t[/tex]

Where t is the time the ball remains in the air.

The time (t) can be found as

[tex]y=v_yt+\frac{1}{2}at^2[/tex]

y = 0 when the ball is in the air.

The acceleration is due to gravity (-9.8 m/s²)

[tex]\begin{gathered} 0=14.26t+\frac{1}{2}(-9.8)t^2 \\ 0=14.26t-4.9t^2 \\ 0=t(14.26-4.9t) \\ 0=14.26-4.9t \\ 4.9t=14.26 \\ t=\frac{14.26}{4.9} \\ t=2.91\; s \end{gathered}[/tex]

Finally, the range is

[tex]x=v_x\times t=7.26\times2.91=21.13\; m[/tex]

Therefore, the ball will land 21.13 meters far from the football player.

How much farther would the ball go if he kicked it with the same speed, but at a 45° angle?

We need to repeat the above calculations

The horizontal and vertical speed of the ball is given by

[tex]\begin{gathered} v_x=v\cos (\theta)=16\cos (45\degree)=11.31\; \frac{m}{s} \\ v_y=v\sin (\theta)=16\sin (45\degree)=11.31\; \frac{m}{s} \end{gathered}[/tex]

The time (t) is given by

[tex]\begin{gathered} y=v_yt+\frac{1}{2}at^2 \\ 0=11.31_{}t+\frac{1}{2}(-9.8)t^2 \\ 0=11.31_{}t-4.9t^2 \\ 0=11.31_{}-4.9t \\ 4.9t=11.31_{} \\ t=\frac{11.31_{}}{4.9} \\ t=2.31\; s \end{gathered}[/tex]

Finally, the range is

[tex]x=v_x\times t=11.31\times2.31=26.13\; m[/tex]

Therefore, the ball will land 26.13 meters far from the football player.

Which ball will land first: the ball kicked at 16 m/s and at a 63° angle, or one kicked at 9 m/s and at a 45° angle?

The ball kicked at 16 m/s and at a 63° angle takes 2.91 s to land.

The ball kicked at 9 m/s and at a 45° angle will take

[tex]v_y=9\sin (45\degree)=6.36\; \frac{m}{s}[/tex][tex]\begin{gathered} y=v_yt+\frac{1}{2}at^2 \\ 0=6.36t+\frac{1}{2}(-9.8)t^2 \\ 0=6.36t-4.9t^2 \\ 0=6.36-4.9t \\ 4.9t=6.36 \\ t=\frac{6.36}{4.9} \\ t=1.30\; s \end{gathered}[/tex]

So, the ball kicked at 9 m/s and at a 45° angle takes 1.30 s to land.

Therefore, the ball kicked at 9 m/s and at a 45° angle will land first.

It takes 225 kJ of work to accelerate a car from 20.1 m/s to 28.1 m/s. What is the car's mass?

Answers

Answer:

THE REMAINIG WILL BE 75

Explanation:

HOPE IT HELPS YOU

The tortoise and the hare A tortoise and a hare run to the East. The hare knows that it is faster, so it gives the tortoise a 30-meter head start. The tortoise is moving east at 1 m/s and the hare is moving east at 4 m/s.

Answers

The time taken for the hare to catch up with the tortoise is 10 seconds.

What is the time taken for the hare to catch the tortoise?

The time taken for the hare to catch up with the tortoise is calculated by applying the principle of relative velocity as shown below.

Distance travelled by hare + Distance travelled by tortoise = Total distance

V₁t + V₂t = d

where;

V₁ is the velocity of hareV₂ is the velocity of tortoiset is the time taken for them to meetd is the distance between them

Since they are moving in the same direction, the relative velocity becomes

V₁t - V₂t = d

(V₁ - V₂)t = d

(4 - 1)t = 30

3t = 30

t = 30/3

t = 10 seconds

Thus, the time taken for the hare to catch up with the tortoise is 10 seconds.

Learn more about relative velocity here: https://brainly.com/question/17228388

#SPJ1

The complete question is below:

A tortoise and a hare run to the East. The hare knows that it is faster, so it gives the tortoise a 30-meter head start. The tortoise is moving east at 1 m/s and the hare is moving east at 4 m/s. At what time does the hare catch up with the tortoise?

mick took his friend out to dinner the bill was $40 but he applied a coupon then the total price was $33 what was the % off?

Answers

ANSWER

17.5 %

EXPLANATION

We have to find the percent change, given that the initial price was $40 and the final price was $33.

[tex]\text{ \% }change=\frac{final.price-initial.price}{initial.price}\times100[/tex][tex]\text{\% }change=\frac{33-40}{40}\times100=\frac{-7}{40}\times100=-0.175\times100=-17.5\text{\%}[/tex]

The coupon was for 17.5% off

5. Was you hypothesis supported by the data collected for question 2? Why or why not ?

Answers

Answer:

Your hypothesis was not supported by the data collected

Explanation:

On question 2 you said that the point with the greatest kinetic energy would be point 5. However, when you analyze the data, the point with the greatest velocity was point 2 which means that this is the point with the greatest kinetic energy.

Therefore, your hypothesis was not supported by the data collected because based on the picture, it is hard to say where is the lowest point of the roller coaster.

Suppose you walk 16 m straight east and then 22 m straight south. At what angle, in degrees South of East, is a line connecting your starting point to your final position?

Answers

53.9 angle, in degrees South of East and 27.20 m is a line connecting your starting point to your final position.

What is initial position and final position?

The distance in decimeters between the starting point and the ending position is in a straight line. The distance between an object's original position and its ultimate position is known as displacement.

Briefing:

You walk 16 m straight east and then 22 m straight south. This forms a right angled triangle with a horizontal distance of 16 m, a vertical distance of 22 m and the hypotenuse is the distance between the ending and starting point. Let x represent the distance between the ending and starting point. Using Pythagoras theorem:

x² = 16² + 22²

x² = 256 + 484

x² = 740

Taking square root of both sides:

√x² = √740

x = √740

x = 27.20 m = distance between the ending and starting point.

Now use trigonometry:

sinθ=B/R

sinθ=22/27.20

sinθ= 0.808

θ = 53.9 degree. This is your angle.

To know more about Final position visit:

https://brainly.com/question/11942199

#SPJ13

Students were experimenting with objects in a collision. Ball A moves with a constant acceleration by sliding down a frictionless incline plane before colliding with Ball B. Students used motion detectors to measure the velocity of Ball A at various points. Ball A (mass of 1.00 kg) began from rest, at position 1, on a ramp at a height of 1.25 m. At position 2, ball A was moving at 5.00 m/s. Ball A continues to roll at a constant 5.00 m/s when it collides with Ball B (mass of 1.00 kg) at position 3. Ball A comes to a complete stop. Ball B moves at a constant velocity after the collision.FORMULAS: PE = m•g•h (g=9.8m/s²) KE = 1/2•m•v² momentum = m•v

Answers

Given data:

* The mass of ball A is m_1 = 1 kg.

* The mass of ball B is m_2 = 1 kg.

* The initial velocity of ball A is u_1 = 5 m/s.

* The final velocity of ball A is v_1 = 0 m/s.

* The initial velocity of the ball B is u_2 = 0 m/s.

Solution:

According to the law of conservation of momentum, the net momentum of the system before the collision is equal to the net momentum of the system after the collision.

Thus,

[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2[/tex]

Substituting the known values,

[tex]\begin{gathered} 1\times5+1\times0=1\times0+p_2 \\ 5+0=0+p_2 \\ p_2=5\text{ kgm/s} \end{gathered}[/tex]

where p_2 is the momentum of the ball B,

Thus, the momentum of ball B after the collision is 5 kgm/s.

Hence, the third option is the correct answer.

A resistor uses energy at a rate of 2.50W when there is a current of 4.00A passing through it. What must be the potential difference across the resistor?1.25V1.50V0.625V10.0V

Answers

As we know

[tex]P=\text{ V}\times I;[/tex]

Where,

P= electric power= 2.50 W

V= potential difference= ?

I= current = 4.00A

Using above formula we get,

[tex]\begin{gathered} P=V\times I; \\ \therefore2.50=\text{ V}\times4; \\ V=\text{ }\frac{2.50}{4}=\text{ 0.625V} \end{gathered}[/tex]

Final answer is :- 0.625 V

You throw an object up with an initial velocity of Voy = 11 m/s from a height of y = 25 m. How long, in seconds, does it take for the object to reach the ground? What is the objects final velocity, in meters per second, as it impacts the ground? Find the time, in seconds, if you instead threw the object DOWN with the same velocity Voy

Answers

Calculate the ball's greatest height using the vertical motion model, h = -16t2 + vt + s, where v is the beginning velocity in feet/second and s is the height in feet.

What does a ball being thrown upwards accelerate to?

A ball is thrown into the air, where it gradually loses speed until it abruptly comes to a rest at the peak of the motion. The body is travelling upward against gravity at the top, hence the acceleration there is 9.8 ms2. For example, g=9.8 ms2 is the formula for the acceleration caused by gravity.

Only at the greatest point of a body being hurled vertically upwards would velocity be zero because of the constant downward acceleration brought on by the gravitational force. As a result, velocity is zero throughout the rest of the motion.

A ball is originally moving upward when it is tossed into the air, for instance.

Learn more about vertical motion refer

https://brainly.com/question/27526920

#SPJ13

A rope pulls a 72.5 kg skier upa 21.7°slope with /k = 0.120.The rope is parallel to the slope,and exerts a force of 383 N. What isthe acceleration of the skier?(Unit = m/s?)Enter

Answers

A rope pulls a 72.5 kg skier upa 21.7°slope with /k = 0.120.The rope is parallel to the slope,and exerts a force of 383 N. The acceleration of the skier is approximately 2.97 m/s².

To find the acceleration of the skier, we need to use Newton's second law of motion and consider the forces acting on the skier.

Identify the forces acting on the skier:

The forces acting on the skier are the force of gravity (mg) and the force exerted by the rope (T), where m is the mass of the skier (72.5 kg) and g is the acceleration due to gravity (9.8 m/s²). The force exerted by the rope is parallel to the slope and can be calculated using the given value of 383 N.

Resolve the forces:

Since the rope is parallel to the slope, we need to resolve the force of gravity into components parallel and perpendicular to the slope. The component parallel to the slope is m * g * sin(21.7°).

Apply Newton's second law of motion:

Newton's second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration. Mathematically, Fnet = ma.

Determine the net force:

The net force acting on the skier is the difference between the force exerted by the rope and the component of the force of gravity parallel to the slope. Fnet = T - m * g * sin(21.7°).

Calculate the acceleration:

Using Newton's second law, we can rearrange the equation Fnet = ma to solve for the acceleration (a). a = Fnet / m.

Substitute the values and solve:

Substitute the known values into the equation to find the acceleration.

Therefore, the acceleration of the skier is approximately 2.97 m/s².

For more such questions on acceleration, click on:

https://brainly.com/question/30595126

#SPJ8

Answer:

  about 0.567 m/s²

Explanation:

You want the acceleration of a 72.5 kg skier up a 21.7° slope with µk = 0.120, towed by a rope exerting a force of 383 N.

Forces

The force up the slope is 383 N.

The forces down the slope will be the sum of the force due to gravity and the friction force.

Gravity

The force down the slope due to gravity is ...

  F = m·g·sin(θ) = (72.5 kg)(9.8 m/s²)(sin(21.7°) ≈ 262.7 N

Friction

The force due to friction will be the product of µk and the force normal to the slope:

  F = m·g·cos(θ)·µk = (72.5 kg)(9.8 m/s²)cos(21.7°)·0.120 ≈ 79.22 N

Net Force

The net force up the slope is ...

  383 N -262.7 N -79.22 N ≈ 41.08 N

This will accelerate a mass of 72.5 kg in the amount of ...

  A = F/m = 41.08 N/(72.5 kg) ≈ 0.567 m/s²

The acceleration of the skier is about 0.567 m/s² up the slope.

__

Additional comment

We don't have to figure the forces. Rather we can figure the gross acceleration due to the tow rope, then subtract the accelerations due to gravity and friction. This saves a few math operations as we don't have to multiply, then divide, by 72.5 kg.

<95141404393>

make G the subject of the formula
F = GMM²/1²
HENCE WRITE THE DIMENSION FOR G​

Answers

The value of G is  FR²/M₁M₂. and the dimension of G is  [M⁻¹L³T⁻²]..

The provided formula is of gravitational force F between two objects,

F = GM₁M₂/R²

Where M₁ is the mass of first object and M₂ is the mas of the other object while R is the distance between there centers and G is the universal gravitation constant.

To find the dimension of G, making G the subject of formula,

G = FR²/M₁M₂.

As we know, unit of mass is Kilogram (Kg), unit of force is Newton (N) and unit of distance is Meter (M).

Putting all the values, Units in the place of quantities,

G = N.R²/Kg.Kg

Now, using Dimensional analysis, and writing the dimensions of all the other units,

G = [MLT⁻²][L²]/[M][M]

G = [ML³T⁻²]/[M²]

G =  [M⁻¹L³T⁻²]

The dimensions of G are  [M⁻¹L³T⁻²].

To know more about Dimensional Analysis, visit,

https://brainly.com/question/28571069

#SPJ9

009 (part 1 of 2) 10.0 points When a water gun is fired while being held horizontally at a height of 1.19 m above ground level, the water travels a horizontal distance of 1.98 m. Find the initial velocity of the water. The acceleration of gravity is 9.81 m/s^2
Answer in units of m/s.

010 (part 2 of 2) 10.0 points A child, holding the same gun in a horizontal
position, slides down a 33.0◦incline at a constant speed of 1.40 m/s. The child fires the gun when it is 4.36 m above the ground and the water takes 0.868 s to reach the ground. How far will the water travel horizontally?
Answer in units of m.

Answers

Answer:

Speed =  4 m/s

Explanation:

Given:

009 (part 1 of 2)

H =1 .19 m

L = 1.98 m

g = 9.81 m/c²

____________

V₀ - ?

Equation of motion horizontally:

L = V₀*t           (1)

Equation of vertical motion:

H = g*t² / 2      (2)

From equation (2):

Time:

t = √ (2*H / g) = √ ( 2*1.19 / 9.81) ≈ 0,49 s

From equation (1):

Horizontal speed:

V₀ = L / t = 1.98 / 0.49 ≈ 4 m/s

3. A boulder rolls with speed of 3.5 m/s off a cliff. It hits the ground 2.25 m from the base ofthe ledge. A) How high is the ledge? B) How long did it take the boulder to fall to the bottomof the cliff?DrawingVerticalHorizontal

Answers

Given data

*The given distance from the base of the ledge is R = 2.25 m

*The given speed is v = 3.5 m/s

The diagram is given below

(a)

Let (h) be the height of the edge

The formula for the distance from the base of the ledge is given as

[tex]\begin{gathered} R=v\times t \\ R=v\times\sqrt[]{\frac{2h}{g}} \\ h=\frac{R^2\times g}{2v^2} \end{gathered}[/tex]

Substitute the known values in the above expression as

[tex]\begin{gathered} h=\frac{(2.25)^2\times9.8}{2\times(3.5)^2} \\ =2.025\text{ m} \end{gathered}[/tex]

Hence, the height of the ledge is h = 2.025 m

(b)

The formula for the time taken by the boulder to fall to the bottom of the cliff is given as

[tex]t=\sqrt[]{\frac{2h}{g}}[/tex]

Substitute the known values in the above expression as

[tex]\begin{gathered} t=\sqrt[]{\frac{2\times2.025}{9.8}} \\ =0.642\text{ s} \end{gathered}[/tex]

Hence, the time taken by the boulder to fall to the bottom of the cliff is t = 0.642 s

A 12 N force acts at a 25 degrees and an 8 N force acts at 65 degrees. Determine the magnitude and direction (include angle) of the resultant . Scale is 1cm = 1N
NEEDDD HELLPP ASAPPPPP

Answers

A 12 N force acts at a 25-degree angle, while an 8 N force acts at a 65-degree angle. The magnitude and direction (including angle) of the resultant force are 21.43.

Consider the formula for a force, F=M×Cos∝

As M is a Mass of an object and, ∝ Is the angle at which force is acting on an object.

[tex]F_{1}[/tex]=M × Cos ∝

M=12N, and Cos∝= Cos25 = 0.906

[tex]F_{1}[/tex] = 12× 0.906

∴ [tex]F_{1}[/tex]= 10.87N

For [tex]F_{2}[/tex] = 25×Cos65

= 10.56N

According to Superposition resulting force is the Sum of total forces.

[tex]F_{RESULTANT} = F_{1} + F_{2}[/tex]

= 10.87+ 10.56

=21.43N

∴The resultant force is 21.43.N

To know more about Resultant force, use the link.

https://brainly.com/question/22260425

#SPJ1

A superelastic collision is one in which1) kinetic energy before the collision equals kinetic energy after the collision.2) kinetic energy after the collision is zero.3) kinetic energy before the collision is less than kinetic energy after the collision.4) kinetic energy before the collision is greater than kinetic energy after the collision

Answers

A superelastic collision is the the collision in which the potential energy of the system is converted into the kinetic energy such the kinetic energy of the system after the collision is more than the kinetic energy of the system before the collision.

Hence, 3rd option is the correct answer.

Other Questions
What decision support strategy uses a technique based on searching based on logical proximity by identifying other data with characteristics that are common to a new item being analyzed?. Select the correct text in the passage.Which sentence from the passage is the most descriptive? Aboard the ship, I watched the city of Barcelona. It grew smaller as we moved further away. Within a few minutes, the people on the shore began to look as small as ants. I could not wait to see Italy. We would be taking a train into the city of Rome. My friend Toby told me that Rome is a neat city. My mom told me that we would be visiting the Vatican. This is where the Pope lives. While there, we will go into some church called the Sistine Chapel. It is hard to think that something built more than 500 years ago is still standing! In Europe, there are many old buildings still standing. The puffy, white clouds that dotted the sky glided in the opposite direction. I breathed in the fresh air of the sea as the ship sailed eastward toward the Italian coastline. scores on an iq test are normally distributed. the test is designed so that the mean is 100 and standard deviation is 15. (a) what percentage of the population has an iq above 120? Write the phrases in the plural.1. la escuela pequea2. el amigo sincero3. la muchacha alla4. la clase grande5. el curso interesante need help on this for science I need help with this problem it's a two-part thing this graph shows the height of a tree over a 5 year growing peroid calculate the rate of change of height per yearNeed explanation on how to solve ASAP How can you use different properties and changes to identify a chemical substance? Choose all that apply. Specific pure substances have their own unique properties.When separating mixtures, you can use their properties to determine what separation technique is needed.You can compare properties and changes of an unknown substance to a known one to see if they are the same or different.Different substances will have different properties and will change in different ways.You can create classifications of substances based on their properties and/or changes. a client in her second trimester of pregnancy arrives at the health care facility for a routine follow-up visit. the nurse is required to educate the client so that the client knows what to expect during her second trimester. which information should the nurse offer? 3. Cite Evidence How do the syntax and rhetorical features that Jefferson uses in thefirst sentence of the second paragraph (lines 8-10) when a hotel has a service delivery problem such as a broken air conditioning system on a very hot weekend, one critical element of service recovery is to blank . 5. Describe A ruler is on the table with thehigher numbers to the right. An antcrawls along the ruler from 6 cm to 2 cmin 2 seconds. Describe the ant's distance,speed, and velocity A pile of sand has a weight of 65 kg.Some of the sand is put into a small sack.The rest of the sand is put into a large sack.The sand in the large sack weighs 15 kg more than the sand in the small sack.What is the weight of the sand in the small sack? How do Africans respond to the challenges of modernity as reflected in their literary pieces? water vapor with a total mass of 10.29g occupies If three quarters of the elements are metals how are the remaining elements categorize? suppose that a cpi basket includes avocadoes, pineapples and oranges. avocadoes become very expensive, and consumers substitute away from avocadoes and buy hummus instead. if the cpi basket does not change to reflect the move away from avocados, the result is: Engineers must consider how removing or adding thermal energy changes the energy in materials on the molecular level. Describe how the differentweather conditions would affect the concrete in the roads and what the construction teams might need to consider when choosing materials for eachroad. what are the steps of simplifying the fraction 1244/2000 to its lowest term? Ben says this system of equations has one solution. Is he correct? Explain. Choose the correct answer below.Y= 1/4x-4Y= 1/4x-14 A. Ben is incorrect. Since the equations have the same slope, the system has infinitely many solutions. B. Ben is incorrect. Since the equations have the same slope and different y-intercepts, the system has no solution. C. Ben is correct. Since the equations have the same slope, the system has exactly one solution.D. Ben is correct. Since the equations have the same slope and different y-intercepts, the system has exactly one solution.