A(n) ________ is a sample statistic that equals a population parameter on average.
biased estimator
degrees of freedom
unbiased estimator
sum of squares

Answers

Answer 1

An unbiased estimator is a sample statistic that equals a population parameter on average.

An unbiased estimator is a sample statistic that equals a population parameter on average. In statistics, the bias (or bias) of an estimator is the difference between the expected value of the estimator and the true value of the predicted parameter. An approximate rule or decision with zero bias is called neutral. In statistics, "bias" is the goal of the estimator. Bias is a different concept from consistency: the consistency estimate may equal the actual measurement, but be biased or unbiased; see Deviation and Consistency for more information. Unbiased estimates are preferred over unbiased estimates, but in practice, sampling estimates are often used (usually unbiased) because estimates without further consideration of the population are unfair.

Learn more about unbiased estimators:

brainly.com/question/30982574

#SPJ11


Related Questions

Celina is making squares with toothpicks. She notices that in making one square, she uses 4 toothpicks.
She continues the pattern and notices that it takes 7 toothpicks to build two squares side by side. To build three squares in a line, she will need 10 toothpicks. If she continues this pattern, how many toothpicks will she need to make 90 squares in a straight line?
How many squares can she build in this pattern if the box she has contains 1,000 toothpicks?
Explain how you figured out one of these answers.

Answers

Answer:

270

Step-by-step explanation:

A certain radioactive material is known to decay at a rate proportional to the amount present. A block of this material originally having a mass of 100 grams is observed after 20 years to have a mass of only 80 grams. Find the half-life of this radioactive material. Recall that the half-life is the length of time required for the material to be reduced by a half.) O 54.343 years O 56.442 years O 59.030 years O 61.045 years O 62.126 years

Answers

The half-life of this radioactive material is , 62.126 years

The half-life of the radioactive material, we can use the formula:

N(t) = N⁰ [tex]e^{-kt}[/tex]

where N(t) is the amount of material remaining after time t, N0 is the initial amount of material, k is the decay constant, and e is the mathematical constant approximately equal to 2.71828.

We know that the initial mass of the material was 100 grams and the mass after 20 years was 80 grams.

This means that the amount of material remaining after 20 years is:

N(20) = 80/100 = 0.8

We also know that the time required for the material to be reduced by half is the half-life, so we can set N(t) = 0.5N0 and solve for t:

0.5N0 = N⁰ [tex]e^{-kt}[/tex]

0.5 = [tex]e^{-kt}[/tex]

ln(0.5) = -kt

t = ln(0.5)/(-k)

To find k, we can use the fact that the material decay rate is proportional to the amount present:

k = ln(2)/t_half

where t_half is the half-life.

Substituting this into the equation for t, we get:

t = ln(0.5)/(-ln(2)/t_half)

Simplifying this expression, we get:

t = t_half * ln(2)

Using the given answer choices, we can try plugging in values for t_half and see which one gives us a value close to 20 years:

If t_half = 54.343 years, then t = 37.38 years, which is too low.

If t_half = 56.442 years, then t = 38.93 years, which is also too low.

If t_half = 59.030 years, then t = 40.68 years, which is too high.

If t_half = 61.045 years, then t = 42.33 years, which is too high.

If t_half = 62.126 years, then t = 43.13 years, which is close to 20 years.

Therefore, the half-life of this radioactive material is, 62.126 years.

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ12

By completing the activities in questions 2 and 3 of this Lesson Activity, you have found that different events have different probabilities. For the charitable casino night you are planning, would it be better to assign more points to the events with high probabilities of payout? Why or why not?

Answers

Answer:

Is there any attachment i can see? it would help alot with your question..

Step-by-step explanation:

Final answer:

In conducting a charitable casino night, it may not be prudent to assign more points to high probability events, to ensure a varied and engaging experience for participants. Allocating higher points to high-probability events may result in a less interesting event as participants may only focus on such games, thereby limiting the event’s excitement and diversity.

Explanation:

In a charitable casino night, the aim is usually to encourage guests to participate and have fun, rather than to accrue massive points or wins. If you do not balance the point allocation, you might disempower some games and foster focus on others, leading to possible monotony. Moreover, high probability games tend to have lower payouts in actual casino practice to maintain house advantage. Thus, diversifying point allocations can ensure a mix of high and low probability events, creating a more exciting experience for your guests.

Why Not Higher Points For High Probability Events?

High probability events often have lower payouts. This is because in a real casino, this is the method used to maintain the house advantage. The more likely an event is to occur, the less it pays out when it does occur. This keeps a balance between the payout and probability, ensuring the casino doesn't lose money.

Learn more about Probability and Payout here:

https://brainly.com/question/31753821

#SPJ2

the standard form of a parabola is given by y = 9 (x - 7)^2+5. find the coefficient b of its polynomial form y = ax^2 +bx + c. write the result using 2 exact decimals.

Answers

The value of coefficient b of the polynomial y = ax^2 +bx + c is -126.

To find the coefficient b of the polynomial form y = ax^2 + bx + c, we need to first expand the given standard form of the parabola y = 9(x - 7)^2 + 5.

Step 1: Expand the square term
(y - 5) = 9(x - 7)^2

Step 2: Expand the equation
y - 5 = 9(x^2 - 14x + 49)

Step 3: Distribute the 9 to each term inside the parenthesis
y - 5 = 9x^2 - 126x + 441

Step 4: Add 5 to both sides to get the polynomial form
y = 9x^2 - 126x + 446

Now compare y = 9x^2 - 126x + 446 with y = ax^2 + bx + c, so that value of the constant a, b, c is a = 9, b = -126, and c = 446. So, the coefficient b of the polynomial form is -126.

Explanation: - Given a equation of parabola y = 9 (x - 7)^2+5, first we expand the expression and make it as a quadratic equation and compare with equation ax^2 +bx + c.

Know more about the" coefficient of the polynomial" click here;

https://brainly.com/question/31407099

#SPJ11

Suppose it is known that the response time of subjects to a certain stimulus follows a Gamma distribution with a mean of 12 seconds and a standard deviation of 6 seconds. What is the probability that the response time of a subject is more than 9 seconds?

Answers

I may or may not be lying >:^P

The probability that the response time of a subject is more than 9 seconds can be expressed as:

P(X > 9) = 1 - P(X ≤ 9)

We can find P(X ≤ 9) by standardizing X and using the cumulative distribution function (CDF) of the standard Gamma distribution. Specifically, we can compute:

Z = (X - μ) / σ = (9 - 12) / 6 = -0.5

Using a standard Gamma distribution table or software, we can find the CDF for Z = -0.5 to be approximately 0.3085.

Therefore:

P(X > 9) = 1 - P(X ≤ 9) ≈ 1 - 0.3085 ≈ 0.6915

So the probability that the response time of a subject is more than 9 seconds is approximately 0.6915 or 69.15%.

*IG:whis.sama_ent*

I may or may not be lying >:^P

The probability that the response time of a subject is more than 9 seconds can be expressed as:

P(X > 9) = 1 - P(X ≤ 9)

We can find P(X ≤ 9) by standardizing X and using the cumulative distribution function (CDF) of the standard Gamma distribution. Specifically, we can compute:

Z = (X - μ) / σ = (9 - 12) / 6 = -0.5

Using a standard Gamma distribution table or software, we can find the CDF for Z = -0.5 to be approximately 0.3085.

Therefore:

P(X > 9) = 1 - P(X ≤ 9) ≈ 1 - 0.3085 ≈ 0.6915

So the probability that the response time of a subject is more than 9 seconds is approximately 0.6915 or 69.15%.

*IG:whis.sama_ent*

a plumber cuts three sections of pipe from a 12’ length of abs pipe, the lengths of the sections are 33 3/8", 56 5/8" and 39 7/8". what is left over from the full length, if the saw cut is 1/8" wide?

Answers

There are 14 7/8" left over from the full 13-foot length of ABS pipe after cutting the three sections and accounting for the saw cuts.

To find out what is left over from the full length of the ABS pipe, we need to add up the lengths of the three sections that were cut:

33 3/8" + 56 5/8" + 39 7/8" = 129 6/8" or 129 3/4"

Next, we need to subtract the total length of the cut sections from the original length of the pipe, but we need to take into account the width of the saw cut, which is 1/8". So, we need to add 1/8" to the total length of the cut sections before subtracting it from the original length:

12 feet = 144 inches
144 inches - (129 3/4" + 1/8") = 14 7/8"

Therefore, there is 14 7/8" of ABS pipe left over from the full length after the three sections were cut, accounting for the width of the saw cut.
To determine the leftover length of the ABS pipe, we first need to calculate the total length of the cut sections, including the width of the saw cuts.

1. Convert the 12' length to inches: 12' × 12" = 144"
2. Add the lengths of the three cut sections: 33 3/8" + 56 5/8" + 39 7/8" = 129 7/8"
3. Account for the saw cuts: Since there are 3 cuts, there are 2 saw cuts between them, so 2 × 1/8" = 1/4"
4. Calculate the total length used: 129 7/8" + 1/4" = 130 1/8"
5. Subtract the total length used from the full length: 144" - 130 1/8" = 13 7/8"

Learn more about arithmetic here: brainly.com/question/11559160

#SPJ11

Given the function defined in the table below, find the average rate of change, in
simplest form, of the function over the interval 2 ≤ x ≤ 6.
x
0
2
4
6
8
10
f(x)
10
18
26
34
42
50

Answers

The average rate of change of the function over the interval 2 ≤ x ≤ 6 is 4.

Calculating the average rate of change

The average rate of change of a function over an interval is given by the formula:

average rate of change = (change in y) / (change in x)

where (change in y) = f(b) - f(a) and (change in x) = b - a.

Using the values given in the problem, we have:

(change in y) = f(6) - f(2) = 34 - 18 = 16

(change in x) = 6 - 2 = 4

So the average rate of change over the interval 2 ≤ x ≤ 6 is:

average rate of change = (change in y) / (change in x) = 16 / 4 = 4

Therefore, the average rate of change of the function over the interval 2 ≤ x ≤ 6 is 4.

Read more about rate of change at

https://brainly.com/question/17131025

#SPJ1

Determine the value of c that makesthe function f(x,y) = ce^(-2x-3y) a joint probability densityfunction over the range 0 < x and 0 < y < x
Determine the following :
a) P(X < 1,Y < 2)
b) P(1 < X < 2)
c) P(Y > 3)
d) P(X < 2, Y < 2)
e) E(X)
f) E(Y)
g) MARGINAL PROBABILITY DISTRIBUTION OF X
h) Conditional probability distribution of Y given that X=1
i) E(Y given X = 1)
j) Conditional probability distribution of X given Y = 2

Answers

So  the values of c are:

a) P(X < 1,Y < 2) = 0.0244

b) P(1 < X < 2) = 0.102c

c) P(Y > 3) = 0.0014c

d)  P(X < 2, Y < 2) = 0.073c

e) E(X) = c/12

f) E(Y) = c/18

g) f(x) =∫[0,x] [tex]ce^{(-2x-3y)}[/tex]

= c/3 (1 -[tex]e^{(-3x)}[/tex])

h) f(X=1) = c

i) E(Y|X=1) = 1/2

j)[tex]f(x|y=2) = c/2 * e^{(-4-2y)} * (e^{(4)}-1) / [c/4 * (e^5))[/tex]

How to find P(X < 1,Y < 2)?

a) To find P(X < 1, Y < 2), we need to integrate the joint probability density function over the region where 0 < x < 1 and 0 < y < 2.

∫∫f(x,y) dA = ∫[0,1]∫[0,y] [tex]ce^{(-2x-3y)}[/tex]dxdy

= ∫[0,2]∫[x/2,1] [tex]ce^{(-2x-3y)}[/tex] dydx (since 0 < x < 1 and 0 < y < x)

= [tex]c/6 [1 - e^{(-4)} - 2e^{(-3)} + e^{(-7)}][/tex] ≈ 0.0244

How to find P(1 < X < 2)?

b) To find P(1 < X < 2), we need to integrate the joint probability density function over the region where 1 < x < 2 and 0 < y < x.

∫∫f(x,y) dA = ∫[1,2]∫[0,x] [tex]ce^{(-2x-3y)}[/tex] dydx

= [tex]c/3 [e^{(-2)} - e^{(-5)}][/tex] ≈ 0.102c

How to find P(Y > 3)?

c) To find P(Y > 3), we need to integrate the joint probability density function over the region where 0 < x < ∞ and 3 < y < x.

∫∫f(x,y) dA = ∫[3,∞]∫[y,x] [tex]ce^{(-2x-3y)}[/tex] dxdy

= c/6 [tex]e^{(-9)}[/tex] ≈ 0.0014c

How to find P(X < 2, Y < 2)?

d) To find P(X < 2, Y < 2), we need to integrate the joint probability density function over the region where 0 < x < 2 and 0 < y < 2.

∫∫f(x,y) dA = ∫[0,2]∫[0,y] [tex]ce^{(-2x-3y)}[/tex] dxdy

= [tex]c/6 [1 - e^{(-4)} - 3e^{(-6)}][/tex] ≈ 0.073c

How to find E(X)?

e) To find E(X), we need to integrate the product of X and the joint probability density function over the range of X and Y.

E(X) = ∫∫xf(x,y) dA = ∫[0,∞]∫[0,x] cx [tex]e^{(-2x-3y)}[/tex]dydx

= c/12

How to find E(Y)?

f) To find E(Y), we need to integrate the product of Y and the joint probability density function over the range of X and Y.

E(Y) = ∫∫yf(x,y) dA = ∫[0,∞]∫[0,x] cy [tex]e^{(-2x-3y)}[/tex] dydx

= c/18

How to find Marginal propability?

g) To find the marginal probability distribution of X, we need to integrate the joint probability density function over all possible values of Y.

f(x) = ∫f(x,y) dy = ∫[0,x]  dy[tex]ce^{(-2x-3y)}[/tex]

= c/3 (1 -[tex]e^{(-3x)}[/tex])

How to find Conditional probability distribution of Y given that X=1?

h) To find the conditional probability distribution of Y given that X = 1, we need to use the conditional probability formula:

f(Y|X=1) = f(X,Y) / f(X=1)

where f(X=1) is the marginal probability distribution of X evaluated at X=1.

f(X=1) = c

How to find E(Y given X = 1)?

i) To find E(Y|X=1), we need to first find the conditional density function f(y|x=1). Using Bayes' theorem, we have:

f(y|x=1) = f(x=1,y) / f(x=1)

To find f(x=1,y), we can integrate f(x,y) over the range of y such that 0<y<1:

f(x=1,y) = ∫[y=0 to y=1] f(x=1,y)dy

= ∫[y=0 to y=1] [tex]ce^{(-2(1)-3y)}[/tex]dy

= [tex]ce^{(-5)}/3 * (1-e^{(-3)})[/tex]

To find f(x=1), we can integrate f(x,y) over the range of y such that 0<y<1 and x such that x=y to x=1:

f(x=1) = ∫[y=0 to y=1] ∫[x=y to x=1] [tex]ce^{(-2x-3y)}[/tex]dxdy

= ∫[y=0 to y=1] [tex]ce^{(-5y)/2}[/tex] dy

= [tex]c*(1-e^{(-5)})/10[/tex]

Thus, we have:

[tex]f(y|x=1) = ce^{(-5)/3} * (1-e^{(-3)}) / [c(1-e^{(-5)})/10][/tex]

[tex]= 2/3 * e^{(2y/3)} * (1-e^{(-3)}) / (1-e^{(-5)})[/tex]

Using this conditional density function, we can find E(Y|X=1) as follows:

E(Y|X=1) = ∫[y=0 to y=1] y*f(y|x=1)dy

= ∫[y=0 to y=1] y * 2/3 * [tex]e^{(2y/3)} * (1-e^{(-3)}) / (1-e^[(-5)}) dy[/tex]

= 1/2

Therefore, E(Y|X=1) = 1/2.

How to find conditional probability distribution of X given Y = 2?

j) To find the conditional probability distribution of X given Y=2, we need to find f(x|y=2). Using Bayes' theorem, we have:

f(x|y=2) = f(x,y=2) / f(y=2)

To find f(x,y=2), we can integrate f(x,y) over the range of x such that y<x<2:

f(x,y=2) = ∫[x=y to x=2] f(x,y=2)dx

= ∫[x=y to x=2] [tex]c*e^{(-2x-6)}[/tex]dx

= c/2 * [tex]e^{(-4-2y) }* (e^{(4)}-1)[/tex]

To find f(y=2), we can integrate f(x,y) over the range of x such that y<x<2 and y such that 0<y<2:

f(y=2) = ∫[y=0 to y=2] ∫[x=y to x=2] [tex]c*e^{(-2x-3y)}[/tex]dxdy

= ∫[y=0 to y=2] c/2 *[tex]e^{(-3y)} * (e^{(4)}-e^{(-4)}) dy[/tex]

[tex]= c/4 * (e^5-e^{(-5)})[/tex]

Thus, we have:

[tex]f(x|y=2) = c/2 * e^{(-4-2y)} * (e^{(4)}-1) / [c/4 * (e^5))[/tex]

Learn more about probability density function

brainly.com/question/29062095

#SPJ11

i) (r + 1)(r + 9) = 16 r​

Answers

Answer:

r = 3

Step-by-step explanation:

(r + 1)(r + 9) = 16r ← expand left side using FOIL

r² + 9r + r + 9 = 16r

r² + 10r + 9 = 16r ( subtract 16r from both sides )

r² - 6r + 9 = 0

(r - 3)² = 0 , then

r - 3 = 0 ( add 3 to both sides )

r = 3

at the city museum, child admission is $6.20 and adult admission is $9.60. on Thursday, 145 tickets were sold for a total sales of $1109.80 how many child tickets were sold that day?​

Answers

Answer:

Let's assume that the number of child tickets sold is "c" and the number of adult tickets sold is "a".

We can set up a system of two equations to represent the given information:

c + a = 145 (equation 1, the total number of tickets sold is 145)

6.2c + 9.6a = 1109.8 (equation 2, the total sales is $1109.80)

We can use equation 1 to solve for "a" in terms of "c":

a = 145 - c

Substitute this expression for "a" into equation 2 and solve for "c":

6.2c + 9.6(145 - c) = 1109.8

Simplifying the equation:

6.2c + 1392 - 9.6c = 1109.8

-3.4c = -282.2

c = 83

Therefore, 83 child tickets were sold on Thursday. We can find the number of adult tickets sold by substituting the value of "c" into the equation for "a":

a = 145 - c

a = 145 - 83

a = 62

Therefore, 62 adult tickets were sold on Thursday.

How many 3 digit numbers are there which leave a reminder 2 and division 7 ​

Answers

Answer: there are 129 numbers between 100 and 999 which are exactly divisible by 7 and leaves the remainder 2.

Step-by-step explanation:

This implies that H=[7t 0 -5] show that H is a subspace of R³Any vector in H can be written in the form tv = [7t 0 -5] where v =Let H be the set of all vectors of the form Why does this show that His a subspace of R3? A. It shows that H contains the zero vector, which is all that is required for a subset to be a vector space. B. It shows that H is closed under scalar multiplication, which is all that is required for a subset to be a vector space. C. For any set of vectors in R3, the span of those vectors is a subspace of R. D. The vector v spans both H and R3, making H a subspace of R3. E. The span of any subset of R3 is equal to R3, which makes it a vector space. F. The set H is the span of only one vector. If H was the span of two vectors, then it would not be a subspace of R3

Answers

H is closed under scalar multiplication and vector addition, and hence it is a subspace of R³.

The correct answer is B.

To show that H is a subspace of R³, we need to show that it satisfies two conditions: (1) it contains the zero vector, and (2) it is closed under scalar multiplication and vector addition.

Condition (1) is satisfied since we can set t=0 in the expression tv=[7t 0 -5] to get the zero vector [0 0 0],

which is in H.

For condition (2), let u=[7t₁ 0 -5] and v=[7t₂ 0 -5] be two vectors in H, and let c be a scalar.

Then,

cu = c[7t₁ 0 -5] = [7ct₁ 0 -5c]

which is also in H since it has the same form as the vectors in H.

Also,

u + v = [7t₁ 0 -5] + [7t₂ 0 -5] = [7(t₁+t₂) 0 -10]

which is also in H since it has the same form as the vectors in H.

Therefore, H is closed under scalar multiplication and vector addition, and hence it is a subspace of R³.

learn more about subspace

https://brainly.com/question/30318872

#SPJ11

H is closed under scalar multiplication and vector addition, and hence it is a subspace of R³.

The correct answer is B.

To show that H is a subspace of R³, we need to show that it satisfies two conditions: (1) it contains the zero vector, and (2) it is closed under scalar multiplication and vector addition.

Condition (1) is satisfied since we can set t=0 in the expression tv=[7t 0 -5] to get the zero vector [0 0 0],

which is in H.

For condition (2), let u=[7t₁ 0 -5] and v=[7t₂ 0 -5] be two vectors in H, and let c be a scalar.

Then,

cu = c[7t₁ 0 -5] = [7ct₁ 0 -5c]

which is also in H since it has the same form as the vectors in H.

Also,

u + v = [7t₁ 0 -5] + [7t₂ 0 -5] = [7(t₁+t₂) 0 -10]

which is also in H since it has the same form as the vectors in H.

Therefore, H is closed under scalar multiplication and vector addition, and hence it is a subspace of R³.

learn more about subspace

https://brainly.com/question/30318872

#SPJ11

Determine the value of c that makes thefunction f(x, y) = ce^−2x−3y a jointprobability density function over the range 0

Answers

the value of c that makes the function f(x, y) = ce^−2x−3y a joint probability density function over the given range is:
[tex]c = -6 / (e^−5-1)[/tex]

To determine the value of c that makes the function f(x, y) = [tex]ce^−2x−3y[/tex] a joint probability density function over the range 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we need to make sure that the function integrates to 1 over this range. This is because the total probability over the entire range should equal 1.

Step 1: Set up the double integral
To ensure that the function integrates to 1, we can set up a double integral over the given range:

∫∫ f(x, y) dx dy = 1

Step 2: Plug in the function and limits
Now we can plug in the function and the limits for x and y:

∫₀¹ ∫₀¹ ce^−2x−3y dx dy = 1

Step 3: Integrate with respect to x
Integrate the function with respect to x:

∫₀¹ [(-c/2)e^−2x−3y]₀¹ dy = 1

Evaluate the integral at the limits:

∫₀¹ [-c/2(e^−2−3y - e^−3y)] dy = 1

Step 4: Integrate with respect to y
Now integrate with respect to y:

[-c/6(e^−5 - 1)]₀¹ = 1

Evaluate the integral at the limits:

- c/6(e^−5 - 1) = 1

Step 5: Solve for c
Finally, solve for c:

c = -6 / (e^−5 - 1)

So, the value of c that makes the function f(x, y) = ce^−2x−3y a joint probability density function over the given range is:

c = -6 / (e^−5 - 1)

To know more about joint probability density function refer here:

https://brainly.com/question/14283399

#SPJ11

the estimate a population mean. the sample size needed to proveide a margin of error of 2 or less with a .95 probability when the populatioon standard deviation equals 13 is

Answers

The sample size needed to provide a margin of error of 2 or less with a 0.95 probability when the population standard deviation equals 13 is approximately 163.

To estimate a population mean with a margin of error of 2 or less, a 0.95 probability, and a population standard deviation of 13, we need to calculate the required sample size. Here are the steps to do so:

1. Identify the given values:

the margin of error (E) = 2,

confidence level (CL) = 0.95, and

population standard deviation (σ) = 13.

2. Determine the Z-score corresponding to the confidence level.

For a 0.95 probability, the Z-score (Z) is 1.96, which represents the critical value for a 95% confidence interval.

3. Use the margin of error formula to calculate the sample size (n):
  E = Z * (σ / √n)

4. Rearrange the formula to solve for n:
  n = (Z * σ / E)²

5. Plug in the values:
  n = (1.96 * 13 / 2)²

6. Calculate the result:
  n ≈ 162.3076

7. Round up to the nearest whole number, as you cannot have a fraction of a sample:
  n ≈ 163

Learn more about the mean:

https://brainly.com/question/1136789

#SPJ11

Given the following information for two independent samples, calculate the pooled standard deviation, sp.s1 = 10; n1 = 15; s2 = 13; n2 = 25a. 11.20b. 10.99c. 11.50d. 11.98

Answers

The pooled standard deviation is approximately 11.98.

What is standard deviation?

Standard deviation is a statistical measure that describes the amount of variation or dispersion of a set of data points from their mean or average. It indicates how spread out the data is from the average value.

A low standard deviation indicates that the data is clustered closely around the mean, while a high standard deviation indicates that the data is more spread out. It is typically represented by the symbol σ (sigma) for a population or s for a sample.

The formula for the pooled standard deviation is:

[tex]sp = \sqrt{[((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2)][/tex]

where s1 and s2 are the sample standard deviations, and n1 and n2 are the sample sizes.

Substituting the given values, we get:

[tex]sp = \sqrt{[((15 - 1) * 10^2 + (25 - 1) * 13^2) / (15 + 25 - 2)][/tex]

[tex]= \sqrt{[(14 * 100 + 24 * 169) / 38][/tex]

[tex]= \sqrt{[5456 / 38][/tex]

[tex]= \sqrt{(143.57)[/tex]

≈ 11.98

Therefore, the pooled standard deviation is approximately 11.98.

To learn more about standard deviation visit:

https://brainly.com/question/475676

#SPJ1

1. Consider a beam of length L=5 feet with a fulcrum x feet from one end as shown in the figure. In order to move a 550-pound object, a person weighing 214 pounds wants to balance it on the beam. Find x (the distance between the person and the fulcrum) such that the system is equilibrium. Round your answer to two decimal places.2. Find the volume of the solid generated by rotating the circle x^2+(y-10)^2=64 about the x-axis.

Answers

1. The person should be positioned 3.59 feet from the fulcrum to balance the system.

2. The volume of the solid generated by rotating the circle is V ≈ 33510.32 cubic units.

How to find distance between the person and the fulcrum?

To find the distance between the person and the fulcrum, we need to use the principle of moments, which states that the sum of the moments acting on a body in equilibrium is zero. In this case, the moments are the weights of the object and the person acting on opposite sides of the fulcrum.

Let x be the distance between the person and the fulcrum, and let L-x be the distance between the object and the fulcrum. Then we can write:

214(x) = 550(L-x)

Simplifying this equation, we get:

214x = 550L - 550x764x = 550Lx = (550/764)L

Plugging in L=5 feet, we get:

x = (550/764)*5 = 3.59 feet

Therefore, the person should be positioned 3.59 feet from the fulcrum to balance the system.

How to find volume of the solid generated by rotating the circle?

The equation x² + (y-10)² = 64 represents a circle with center (0,10) and radius 8.

To find the volume of the solid generated by rotating this circle about the x-axis, we can use the formula for the volume of a solid of revolution:

V = π∫[a,b] y² dx

where y is the distance from the x-axis to the circle at a given value of x, and [a,b] is the interval of x-values that the circle passes through.

Since the circle is centered at (0,10), we have y = 10 ± [tex]\sqrt^(64-x^2)[/tex]. However, we only want the upper half of the circle (i.e., the part above the x-axis), so we take y = 10 + [tex]\sqrt^(64-x^2)[/tex]. The interval of x-values that the circle passes through is [-8,8].

Thus, the volume of the solid of revolution is:

V = π∫[-8,8] (10 + [tex]\sqrt^(64-x^2))^2[/tex] dx= π∫[-8,8] (100 + 20[tex]\sqrt^(64-x^2)[/tex]+ (64-x²)) dx= π(∫[-8,8] 100 dx + 20∫[-8,8] [tex]\sqrt^(64-x^2)[/tex]) dx + ∫[-8,8] (64-x²) dx)

Using the substitution x = 8sin(t), dx = 8cos(t) dt, we can evaluate the second integral as:

∫[-8,8] [tex]\sqrt^(64-x^2)[/tex] dx = 8∫[-π/2,π/2] cos²(t) dt = 8∫[-π/2,π/2] (1+cos(2t))/2 dt = 8π

Using the substitution x = 8u, dx = 8 du, we can evaluate the third integral as:

∫[-8,8] (64-x²) dx = 2∫[0,1] (64-64u²) du = 2(64)

Therefore, the volume of the solid of revolution is:

V = π(100(16) + 20(8π) + 2(64))

= 3200π/3

Rounding to two decimal places, we get:

V ≈ 33510.32 cubic units.

Learn more about distance and volume

brainly.com/question/21287703

#SPJ11

calculate the sum of the series [infinity] an n = 1 whose partial sums are given. sn = 4 − 9(0.8)n

Answers

The sum of the given series[inifinity] is 4 when partial sums are given.

The sum of the series [infinity] an n = 1, whose partial sums are given by sn = 4 − 9(0.8)n, can be calculated as follows:

As n approaches infinity, the term 9(0.8)n approaches zero, since 0.8 is less than 1 and raised to a large power will become negligible.

Thus, the sum of the series is simply the limit of the partial sums as n approaches infinity. Taking the limit of sn as n approaches infinity, we get:

limn→∞ sn = limn→∞ (4 − 9(0.8)n) = 4

The series is given by an = sn − sn−1, where sn is the nth partial sum. In other words, each term of the series is the difference between successive partial sums. To find the sum of the series, we need to take the limit of the nth partial sum as n approaches infinity.

In this case, we are given the nth partial sum explicitly, so we can take the limit directly. As n becomes very large, the term 9(0.8)n becomes very small compared to 4 and can be ignored. This means that the sum of the series is simply the constant term 4.

This technique of finding the sum of a series by taking the limit of its partial sums is a common approach in calculus and real analysis and is often used to evaluate infinite series that do not have a closed-form expression.

To learn more about the Infinite series, visit:

https://brainly.com/question/29062598

#SPJ11

create Python function f(x,y) which, for any (x,Y) gives the value xl sin' y+27 as an output (of type float Thon; in the samo notobook cell; writo Python function gradfnun(x,y,h) which for givon input point (x, Y) gives tho output Vf(x;y) = (xlx,y) f (x,Y)) as Python tuple object; computed numerically; using the step size ~0. To c0 that; tor step size hz0 use the centered-ditterence approximations MWtnsrat Kor-fu-Rdi Roh Se*0 f(d,h) ~ Te.+n-Kelm f,(0,b) So; the output of gradfnum(_ should be the tuple with those two aproximated values; In [ ]: # your code here raise Not ImplementedError

Answers

Python functions: f(x, y)

gradfnun(x, y, h), where f(x, y) computes the value xl sin' y+27 as a float and gradfnun(x, y, h) numerically computes the partial derivatives of f(x, y) and returns the tuple (fx, fy)

How create  Python functions: f(x, y)?

Here's the implementation of the required Python functions:

def f(x, y):

   return x * math.sin(y) + 27.0

def gradfnun(x, y, h=0.01):

   fx = (f(x + h, y) - f(x - h, y)) / (2.0 * h)

   fy = (f(x, y + h) - f(x, y - h)) / (2.0 * h)

   return (fx, fy)

The function f(x, y) takes in two parameters x and y and returns the value of x * sin(y) + 27 as a float.

The function gradfnun(x, y, h) takes in two parameters x and y, and an optional parameter h which is the step size for the approximation. The function uses the centered-difference approximation to numerically compute the partial derivatives of f(x, y) with respect to x and y, and returns the tuple (fx, fy) where fx is the approximation of df/dx and fy is the approximation of df/dy at the point (x, y).

How  create  Python functions gradfnun(x, y, h) ?

Here's an example usage of the functions:

x = 1.0

y = 2.0

print(f(x, y))   # Output: 27.909297426825682

print (gradfnun (x, y))   # Output: (-0.1173190120075148, 0.5403023058681398)

In the above example, we first compute the value of f(x, y) for x = 1.0 and y = 2.0. We then compute the partial derivatives of f(x, y) with respect to x and y using gradfnun (x, y), and print the results. The output shows that f(x, y) is approximately equal to 27.909297426825682, and the partial derivatives of f(x, y) with respect to x and y at the point (1.0, 2.0) are approximately -0.1173190120075148 and 0.5403023058681398, respectively.

Lear more about Python function

brainly.com/question/19052150

#SPJ11

if the mu/p ratio for pizza is less than the mu/p ratio for soda, this means that ___A. an individual is receiving more utility per dollar from soda than pizzaB. the price of pizza is lower than the price of sodaC. the price of pizza is lower than the price of cokeD. the MU of pizza is lower than the MU of soda

Answers

If the mu/p ratio for pizza is less than the mu/p ratio for soda, this means that an individual is receiving more utility per dollar from soda than pizza (Option A).

In other words, the marginal utility of spending one more dollar on soda is greater than spending one more dollar on pizza. This doesn't necessarily mean that the price of pizza is lower than the price of soda (Option B) or that the price of pizza is lower than the price of coke (Option C), as the prices of the two goods could be equal or have different relative prices. It also doesn't mean that the MU of pizza is lower than the MU of soda (Option D), as the MU of each good could be different regardless of their price ratios.

The final answer is: Option A

Learn more about : Marginal Consumer Surplus - https://brainly.com/question/31497638

#SPJ11

(a) Let A∈Cm×m be tridiagonal and hermitian, with all its sub-and superdiagonal entries nonzero. Prove that the eigenvalues of A are distinct. (Hint: Show that for any λ∈C,A−λI has rank at least m−1.)
(b) On the other hand, let A be upper-Hessenberg, with all its subdiagonal entries nonzero. Give an example that shows that the eigenvalues of A are not necessarily distinct.

Answers

Answer:

Step-by-step explanation:

(a)

Let λ be an eigenvalue of A, and let x be the corresponding eigenvector. Then we have Ax = λx. Consider the matrix B = A - λI, where I is the identity matrix. We want to show that B has rank at least m-1.

Since A is tridiagonal, it follows that B is also tridiagonal. Moreover, since A is Hermitian, it follows that B is also Hermitian. Thus, B has the following form:

B = [b1 c1 ]

[a2 b2 c2 ]

[ a3 b3 c3 ]

[ . . ]

[ . cm-1 bm-1 cm]

where bi = ai - λ, for i = 1, 2, ..., m.

Now, let y be the vector obtained by setting the first entry of x to zero, i.e., y = [0 x2 x3 ... xm]T. Then we have By = Ax - λx = 0, since x is an eigenvector of A. It follows that y is in the nullspace of B.

Let z be a vector obtained by setting the second entry of x to zero, i.e., z = [x1 0 x3 ... xm]T. Then we have Bz = [b1 a2 0 ... 0]T, which is nonzero since bi is nonzero for all i. It follows that z is not in the nullspace of B.

Thus, we have found two linearly independent vectors in the nullspace and orthogonal complement of B, respectively, which implies that B has rank at most m-2. Since B is a square matrix of size m, it follows that B has rank at least m-1. Therefore, A - λI has rank at least m-1, which implies that λ is a simple eigenvalue of A.

(b)

Consider the matrix

A = [1 1 0]

[1 1 1]

[0 1 1]

which is upper-Hessenberg with all subdiagonal entries nonzero. The characteristic polynomial of A is given by

p(λ) = det(A - λI) = (1 - λ)(1 - λ)(1 - λ) - 1 = (λ - 2)λ(λ - 2).

Thus, the eigenvalues of A are λ = 0, 2, 2. Since two of the eigenvalues are repeated, it follows that the eigenvalues of A are not necessarily distinct, in contrast to the tridiagonal Hermitian case.

(a) Prove that R(T+U) SR(T) +R(U).
(b) Prove that if W is finite-dimensional, then rank(T+U) < rank(T)+ rank(U).
(c) Deduce from (b) that rank(A + B) < rank(A) + rank(B) for any m X n matrices A and B.

Answers

It is all proved that,

(a) R(T+U) SR(T) +R(U).

(b) If W is finite-dimensional, then rank(T+U) < rank(T)+ rank(U).

(c) rank(A + B) < rank(A) + rank(B) for any m X n matrices A and B.

(a) To prove that R(T+U)⊆R(T)+R(U), let y be any vector in R(T+U). Then, there exists a vector x such that (T+U)x = y. We can rewrite this as Tx + Ux = y. Since Tx is in R(T) and Ux is in R(U), we have y = Tx + Ux ∈ R(T) + R(U). Therefore, we have shown that R(T+U)⊆R(T)+R(U).

To prove that R(T)+R(U)⊆R(T+U), let y be any vector in R(T)+R(U). Then, there exist vectors x and z such that Tx = y and Uz = y. We can rewrite this as (T+U)x - Ux + Uz = y. Since (T+U)x is in R(T+U) and Ux-Uz is in R(U), we have y = (T+U)x + (Ux-Uz) ∈ R(T+U). Therefore, we have shown that R(T)+R(U)⊆R(T+U).

Hence, we have proved that R(T+U) = R(T) + R(U).

(b) Let A be the matrix representation of T with respect to some basis of W, and let B be the matrix representation of U with respect to the same basis. Then, the matrix representation of T+U is A+B. By the rank-nullity theorem, we have rank(T) = dim(R(T)) = dim(W) - nullity(T), where nullity(T) is the dimension of the null space of T. Similarly, we have rank(U) = dim(W) - nullity(U).

Now, since W is finite-dimensional, the nullity of T+U is at least the nullity of T and the nullity of U, i.e., nullity(T+U) ≥ nullity(T) and nullity(T+U) ≥ nullity(U). Therefore, we have:

rank(T+U) = dim(W) - nullity(T+U)

≤ dim(W) - min(nullity(T), nullity(U))

= rank(T) + rank(U) - dim(W)

< rank(T) + rank(U)

Therefore, we have shown that rank(T+U) < rank(T) + rank(U) if W is finite-dimensional.

(c) Let A and B be m x n matrices. We can view A and B as linear transformations from [tex]R^n[/tex] to [tex]R^m[/tex]. Let T and U be the linear transformations represented by A and B, respectively. Then, we have:

rank(A+B) = rank(T+U) < rank(T) + rank(U)

= dim(R(T)) + dim(R(U))

= rank(A) + rank(B)

Therefore, we have shown that rank(A+B) < rank(A) + rank(B) for any m x n matrices A and B.

To know more about matrices, refer to the link below:

https://brainly.com/question/31424542#

#SPJ11

There are 100 balls in a hat. 23 of them are RED, and 77 are BLACK. 3 balls are drawn at random with replacement.
The following is the discrete probability distribution where R is the number of red balls drawn from the hat described above.
R P(R)
0 0.4565
1 0.4091
2 0.1222
3 0.0122
What is the standard deviation for this probability distribution? (Be sure to use many (floating) decimals in your calculations, but round your answer to 3 decimal places.)

Answers

The standard deviation for this probability distribution is approximately 0.796.

We can use the formula for the standard deviation of a discrete probability distribution:

σ = √[∑(x - μ)² P(x)]

where x is the number of red balls drawn, P(x) is the probability of drawing x red balls, and μ is the expected value of x.

The expected value of x is:

μ = ∑ x P(x) = 0(0.4565) + 1(0.4091) + 2(0.1222) + 3(0.0122) = 0.9797

So, we have:

σ = √[∑(x - μ)² P(x)]

= √[(0 - 0.9797)²(0.4565) + (1 - 0.9797)²(0.4091) + (2 - 0.9797)²(0.1222) + (3 - 0.9797)²(0.0122)]

≈ 0.796

Rounding to 3 decimal places, we get:

σ ≈ 0.796

Therefore, the standard deviation for this probability distribution is approximately 0.796.

To learn more about Rounding visit:

https://brainly.com/question/29022222

#SPJ11

HELP ASAP 100 POINTS!! WILL PICK BRAINLIEST
A rectangular prism and a square pyramid were joined to form a composite figure. What is the surface area of the figure?

Answers

B. 333 in.2

How to solve

The area of the base is 81^2

lateral is 45 x 4 = 180^2  (9x5x4)

180^2 add the 72 pyramid = 252^2 + base of 81^2 = 333^2

The triangle shows us just the height

4 inches

We can see that height is smaller central isosceles height across the center base point.

We also can remember to use the length 9inches but divide by 2 and get each triangle area this way.

4 x 1/2 base = 4x 1/2 4.5 = 4 x 2.25 = 9^2 each right side triangle

9 x 8 = 72^2

we add the areas 72+ 81+lateral 180 = 333 inches^2

Read more about rectangular prism here:

https://brainly.com/question/1015291

#SPJ1

Does the list of numbers include only integers? Choose yes or no for each list.
A. 6; 15; 5,488;536
B. -5;32 1/5; 819; -47
C. -58; -963; -4; -17
D.82; 385; 1,222; 9
E. 302; 19; -6; 4.81

Answers

A. Yes
B. No
C. Yes
D. Yes
E. No

12. determine whether the two statements are equivalent. p ∼ q , ∼ (∼ p q)

Answers

The two statements are not equivalent. To determine whether the two statements are equivalent, we need to examine their logical structures. The statements given are:

1. p ∼ q
2. ∼ (∼ p ∧ q)

The first statement, p ∼ q, represents the exclusive disjunction (XOR) of p and q, which means it is true if either p or q is true, but not both.

The second statement, ∼ (∼ p ∧ q), involves a double negation of p and a conjunction with q. To simplify, we can apply De Morgan's law:

∼ (∼ p ∧ q) = p ∨ ∼ q

This represents the disjunction (OR) of p and the negation of q, which means it is true if p is true or if q is false.

Upon comparing the simplified forms of these two statements, we can see that they are not equivalent, as their logical structures differ:

1. p ∼ q (XOR)
2. p ∨ ∼ q (OR with negation)

Know more about logical structures here:

https://brainly.com/question/29750264

#SPJ11

Using separation of variables technique, solve the following differential equation with initial condition y, = ey sin, and y(-r)-0. The solution is: ? A. e-y =-sinx +2 B. e-y = -cosx +2 C. e-y = cosx +2 D. ey = cosx +2 E. e-y = cosx

Answers

The correct option is (E) e-y = cos(x).To solve the given differential equation using the separation of variables technique and including the provided terms.

Let's first identify the correct initial condition and rewrite the equation. The correct initial condition should be y(-π) = 0.
The given differential equation is:

dy/dx = ey sin(x)

We can separate the variables as:

dy/ey = sin(x) dx

Integrating both sides, we get:

ln|y| = -cos(x) + C

where C is the constant of integration. Exponentiating both sides, we get:

|y| = e-C e-cos(x)

Now, using the initial condition y(0) = e^y sin(0) = 0, we get:

|y| = e-C

Since we are given that y(-π) = 0, we have:

|y| = e-C = eπ

Therefore, C = -π and the solution for y(x) is:

y(x) = ±e-π e-cos(x)

Simplifying further, we get:

y(x) = eπ e-cos(x)    (for y > 0)

or

y(x) = -eπ e-cos(x)   (for y < 0)

To learn more about equation visit;

brainly.com/question/29657983

#SPJ11

Final answer:

To solve the differential equation, use separation of variables technique and integrate both sides. Apply the initial condition to find the value of the constant. The correct solution is B) e-y = -cos(x) + 2.

Explanation:

To solve the differential equation using separation of variables technique, we start by rewriting the equation as:

eydy = sin(x)dx

Next, we integrate both sides of the equation. The integral of eydy is simply ey, and the integral of sin(x)dx is -cos(x). So we have:

ey = -cos(x) + C

Finally, applying the initial condition y(-π) = 0, we can solve for C and obtain the solution:

ey = -cos(x) + 2

Therefore, the correct solution is option B: e-y = -cos(x) + 2.

Learn more about Differential equation here:

https://brainly.com/question/33433874

#SPJ12

Slope for (-5,1) (5,0)

Answers

Slope is -1/10.

Slope is rise/run or y value over x value.


You would do 1-0/-5-5 and this would get your slope

A garden is in the shape of a rectangle 26 feet long and 25 feet wide. If fencing costs $5 a foot, what will it cost to place fencing around the garden? A. $255 B. $510 C. $1020 D. $3250

Answers

Answer:

$5 × 2 × (26 + 25) = $5 × 2 × 51 = $5 × 102

= $510

B is the correct answer.

write the inequality that shows the values of X for which the expression is defined.
(can someone help on all of them?)

Answers

1. The values of x for which the expression is defined;

1. x ≥ 0   2. x ≥ 3    3. x ≥ 0    4. x ≥ 3 and x ≠ 0.

2. The acceptable value of x for the simplified expression;

5.  6x√x,             6.  √(x² - 64),

7. 2x,                     8.  √(25 / (x + 2)),

9. √(x / 9)              10. √(10) or 3.2,  

How did we find the value of x as defined by the expressions?

1. for the inequality √(2x) × √(x + 1) must be non-negative:

2x ≥ 0 => x ≥ 0

x + 1 ≥ 0 => x ≥ -1

if we are to combine terms we find that  x ≥ 0 satisfy both terms.

2. To simplify the expression as much as possible for the value of x

√20x³ ÷ √5x

= (√20x³) / (√5x)

= √(20x³ / 5x)

= √(4x²)

= 2x

The answers are from the questions below as seen in the picture;

1. Write the inequality that shows the values of x for which the expression is defined. 1. √2x  ×  √x + 1      2. √x - 2  ×  √x - 3     3. √5x²   ÷  √2x   4. √x - 3    ÷ √x²

2. Simplify the expression as much as possible for the acceptable value of x.

5. √18x  ×  √2x²      6. √x + 8   ×  √x - 8     7. √20x³    ÷  √5x    8. √75(x + 2)   ÷   √3(x + 2)²    9. √10/x    ×   √x²/90     10. √x³/5   ×   √50/x³

Find more exercises on finding the values of x for which the expression is defined;

https://brainly.com/question/12484252

#SPJ1

Work out the values of a,b,c and d.
justify each of your answers

Answers

The measure of the unknown angles in the cyclic quadrilateral are as follow, a = 57°, b = 24° , c = 39°, and d = 60°.

Angles formed in the cyclic quadrilateral are as follow,

By applying the theorem of angles formed in the same arc of a circle are congruent.

We have,

Measure of angles a° and angle 57°  are formed in the same arc XY of the circle.

This implies,

Measure of angle a° = 57°

Measure of angles  b° and angle 24° are formed in the same arc  ZY of the circle.

This implies,

Measure of angle b° = 24°

Measure of angles c° and angle 39° are formed in the same arc WX of the circle.

This implies,

Measure of angle c° = 39°

Measure of angles d° and angle 60° are formed in the same arc WZ of the circle.

This implies,

Measure of angle d° = 60°

Therefore, for the circle the measures of required angles in the cyclic quadrilateral are as follow  a = 57°, b = 24° , c = 39°, and d = 60°.

Learn more about quadrilateral here

brainly.com/question/29324951

#SPJ1

Other Questions
An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price? 9. Dividing up the tasks (division of labor) is an important part of organizing. you buy a gold crown at a flea market. when you get home, you use your physics knowledge to check whether the crown is pure gold. you hang it form a scale and find its weigh to be 7.84 N. them you weigh the crown when it is completely in water, now the scale reads 6.84 N. The density of gold is 19300 kgm^-3. density of water is 1000kgm^-3. what is the buoyant force on the crown? The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment? In Problems 926, find a particular solution to the differential equation. 9. y" + 3y = -9 10. y" + 2y' - y = 10 11. y"(x) + y(x) = 2 12. 2x' + x = 312 Define the following terms:- space- depth- mass A bag contains five batteries, all of which are the same size and are equally likely to be selected. Each battery is a different brand. If you select two batteries at random, use the counting principle to determine how many points will be in the sample space if the batteries are selected a) with replacement. b) without replacement. for the elements with the electron affinities given in the table in the introduction, which element is most likely to accept an electron?view available hint(s)for part N SrBr Given a sorted list of N numbers, how many list elements will be checked to find a value K using binary search in the worst case? a.0(1) b.O(N) c.O(log N) d.O(N log N) e.O(N * N) 3. Boxes are being loaded with apples. All of the boxes are the same size but have differingnumbers of apples in them. Each box is weighed and the weight is compared to the numberof apples in the box. The results are shown in the scatter plot below. Which of the following statements about motivation is true?a. Something is only motivation if it is a reward for doing something we would not otherwise dob. Something is only motivating if we are expecting praise or money in return for performing a certain action.c. There are dozens of types of motivationd. Motivation drives our behavior and gives us direction. As part of her public opposition to the Equal Rights Amendment, Phyllis Schlafly argued that the ERA was an assault on the rights of ______.a. homemakersb. working womenc. mend. children Define the term human rights violation and state two factors that could contribute to acts of human rights violation in households Antonina throws a coin straight up from a height of 1.2m above the water surface in a fountain. The coin strikes the water 1.3s later. We want to know the vertical velocity of the coin at the moment it strikes the water. We can ignore air resistance.Which kinematic formula would be most useful to solve for the target unknown? How can climate cause Nigeria to devolve into three separate sovereign countries ? A hobbyist builds a circuit in which an AC power supply with an rms voltage of 115 V is connected to a 1.86 k resistor. (a) What is the maximum potential difference across the resistor (in V)? ____ V(b) What is the maximum current through the resistor (in A)? ___ A (c) What is the rms current through the resistor (in A)? ___ A (d) What is the average power dissipated by the resistor (in W)? ____ W When the firm is expressed in terms of a put option, what happens if the cash flow to the firm exceeds the amount due to the bondholders?Select all that apply.A. Group of answer choicesB. Stockholders do not exercise the put option.C. Stockholders exercise the put option.D. Stockholders retain ownership of the firm.E. Bondholders retain ownership of the firm. These fields are included in the related actions section in a help case. (Select all that apply). -Benefits -Training -Human resources -Payroll. assume that the demand curve for milk is given by q = 100 10p, where p is the price per gallon, and q is the quantity demanded per year. the supply curve is horizontal at a marginal cost of $2.Assuming that the market is competitive, what is the price per gallon of milk and the number of gallons sold?The dairy farmers lobby members of Congress, and get permission to form and maintain a dairy cartel (Yes, cartels like this actually exist in the dairy industry). If a cartel is formed, what is the price of milk and how many gallons are sold?What is the deadweight loss from the cartel?Suppose the dairy farmers had to hire lawyers to lobby to create and maintain the cartel. How does this fact affect the deadweight loss you calculated in part c? PLS HELP I NEED THIS DONE TODAY!!! I NEED SOMEONE TO RIGHT THIS LIKE A 5TH GRADER!!Here is your goal for this lesson:Research the Continental DivideUse an encyclopedia or the internet to find more information about the Continental Divide. Write a paragraph of at least five sentences about the Continental Divide. Your paragraph should have a topic sentence, three sentences about the Continental Divide, and a concluding sentence.Pls I need someone to help! AND IF YOU COPY SOMETHING, I WILL TAKE POINTS!! But I will mark brainly if you don't.