What are the right ascension and declination of the sun on the following dates:
March 21, June 21, September 21, and December 21?
0 h, 0 degrees
6 h, 23.5 degrees
12 h, 0 degrees
18 h, -23.5 degrees

Answers

Answer 1

The right ascension and declination of the sun depend on the position of the earth in its orbit around the sun. Here are the approximate values for the dates you specified:

March 21 (vernal equinox): The sun's right ascension is 0 hours and its declination is 0 degrees (it is at the celestial equator).

June 21 (summer solstice): The sun's right ascension is 6 hours and its declination is 23.5 degrees North (it is at the Tropic of Cancer).

September 21 (autumnal equinox): The sun's right ascension is 12 hours and its declination is 0 degrees (it is at the celestial equator).

December 21 (winter solstice): The sun's right ascension is 18 hours and its declination is 23.5 degrees South (it is at the Tropic of Capricorn).

Note that these values are approximate and may vary slightly depending on the year and the exact position of the sun.

learn more abouT declination  here:

https://brainly.com/question/14071370

#SPJ4


Related Questions

A section of a sphere is mirrored on both sides. If the magnification of an object is +4.10 when the section is used a concave mirror, what is the magnification of an object at the same distance in front of the convex side?
_______________

Answers

Magnification is the relationship between the size of an image and the size of the item that created it in optics. The ratio of the image length to the object length, as measured in planes perpendicular to the optical axis, is referred to as linear magnification, also known as lateral or transverse magnification.

Since the section of the sphere is mirrored on both sides, the focal length of the concave mirror and the convex mirror will be the same. Therefore, we can use the mirror formula:
1/f = 1/u + 1/v
Where f is the focal length, u is the distance of the object from the mirror, and v is the distance of the image from the mirror.

When the section is used as a concave mirror, the magnification is given by:
m = -v/u = +4.10

Since the magnification is positive, the image is upright.

Now, when the same object is placed in front of the convex side at the same distance u, the image will be virtual and erect. The magnification is given by:
m = v/u

To find v, we need to first find f. We know that:
m = -v/u = +4.10
Therefore, v = -4.10u

Now, using the mirror formula, we can find f:
1/f = 1/u + 1/v
1/f = 1/u - 1/4.10u
1/f = (4.10 - 1)/4.10u
f = 4.10u/3.10
f = 1.32u

Now that we know the focal length, we can find the image distance v:
1/f = 1/u + 1/v
1/1.32u = 1/u + 1/v
v = -0.32u

Therefore, the magnification is: m = v/u = -0.32

So, the at the same distance in front of the convex side is -0.32.

Know more about the magnification of the object:

https://brainly.com/question/20486185

#SPJ11

a 0.142 kgkg baseball leaves a pitcher's hand at a speed of 28.5 m/sm/s. If air drag is negligible, how much work has the pitcher done on the ball by throwing it?

Answers

The pitcher has done 57.68 Joules of work on the 0.142 kg baseball by throwing it.

To calculate the work done on a 0.142 kg baseball by the pitcher, we need to consider the initial speed of the ball (28.5 m/s) and the terms "speed" and "work."

First, let's calculate the ball's kinetic energy (KE) using the formula: KE = 0.5 * mass * speed^2

KE = 0.5 * 0.142 kg * (28.5 m/s)^2

Now, solve for the kinetic energy:
KE = 0.071 * 812.25
KE = 57.68 J (Joules)

Since air drag is negligible, the work done by the pitcher on the ball is equal to the ball's kinetic energy. So, the pitcher has done 57.68 Joules of work on the 0.142 kg baseball by throwing it at a speed of 28.5 m/s.

To know more about work: https://brainly.com/question/25573309

#SPJ11

(a) Find the voltage drop in an extension cord having a 0.0600- Ω resistance and through which 5.00 A is flowing. (b) A cheaper cord utilizes thinner wire and has a resistance of 0.300 Ω . What is the voltage drop in it when 5.00 A flows? (c) Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance?

Answers

To find the voltage drop in the extension cord, we can use Ohm's Law, which states that V = IR, where V is the voltage drop, I is the current, and R is the resistance. Plugging in the given values, we get V = (5.00 A)(0.0600 Ω) = 0.3 V.

Using the same formula, we can find the voltage drop in the cheaper cord: V = (5.00 A)(0.300 Ω) = 1.5 V. The voltage drop occurs because the resistance of the cord causes some of the electrical energy to be converted into heat, rather than being delivered to the appliance. This reduces the voltage that reaches the appliance, which can affect its performance. For example, a motor might run more slowly, or a light bulb might be dimmer when the voltage is reduced. In some cases, the reduced voltage can also cause the appliance to draw more current, which can lead to further voltage drops and potentially damage the cord or the appliance.

Learn more about Ohm's Law here: https://brainly.com/question/19892453

#SPJ11

To find the voltage drop in the extension cord, we can use Ohm's Law, which states that V = IR, where V is the voltage drop, I is the current, and R is the resistance. Plugging in the given values, we get V = (5.00 A)(0.0600 Ω) = 0.3 V.

Using the same formula, we can find the voltage drop in the cheaper cord: V = (5.00 A)(0.300 Ω) = 1.5 V. The voltage drop occurs because the resistance of the cord causes some of the electrical energy to be converted into heat, rather than being delivered to the appliance. This reduces the voltage that reaches the appliance, which can affect its performance. For example, a motor might run more slowly, or a light bulb might be dimmer when the voltage is reduced. In some cases, the reduced voltage can also cause the appliance to draw more current, which can lead to further voltage drops and potentially damage the cord or the appliance.

Learn more about Ohm's Law here: https://brainly.com/question/19892453

#SPJ11

Listen Choose the items that help to fully describe VOLTAGE in a parallel circuit. 1) Directly related to resistance 2) Inversely proportional to current 3) Directly related to current 4) Used to slow the current 5) The resistance to the flow of current UND 6) Inversely proportional to resistance 7) Also known as Potential difference UN 8) Remains the same everywhere in a PARALLEL circuit UD 99 is provided by the battery 10) Is the flow of electricity 11) Directly related to voltage 12) Adds up to the total resistance

Answers

The items that help to fully describe VOLTAGE in a parallel circuit are 3) Directly related to current, 6) Inversely proportional to resistance, 7) Also known as Potential difference, and 11) Directly related to voltage.

Voltage can be used to slow the current, but it is not directly related to resistance in a parallel circuit.In a parallel circuit, the voltage remains the same everywhere, and it is provided by the battery. The total resistance in a parallel circuit is the sum of all the individual resistances. Current is the flow of electricity, and it is directly related to voltage and inversely proportional to resistance.

To learn more about  voltage, visit:

https://brainly.com/question/27861305

#SPJ11

a 30 g ball of clay is thrown horizontally at 20 m/s toward a 1.2 kg block sitting at rest on a frictionless surface. the clay hits and sticks to the block.

Answers

During the impact, kinetic energy lost is KE lost = 5.8495 J as heat and sound.

Since there are no outside forces operating on the system and it is isolated, the overall momentum before and after the impact must be the same for frictionless surface. Therefore: The conservation of momentum principle, which asserts that the overall momentum of a system stays constant if no external forces impinge on it, must be used to address this issue.

Let's first calculate the initial momentum of the clay before it hits the block:

[tex]p_c = m_c* v_c\\p_c = 0.03 kg * 20 m/s\\p_c = 0.6 kg*m/s[/tex]

Since the block is at rest initially, its momentum is zero. After the clay hits and sticks to the block, the total momentum of the system is:

[tex]p_t = p_c + p_b\\\\p_t_b = p_t_av_f= 0.6 kg*m/s / (0.03 kg + 1.2 kg)\\\\v_f= 0.4878 m/s[/tex]

Therefore, the clay and block move together with a final velocity of 0.4878 m/s. To find the kinetic energy lost during the collision, we can calculate the initial and final kinetic energies of the clay:

[tex]KE_i = 0.5 * m_c * v_c^2\\KE_i = 0.5 * 0.03 kg * (20 m/s)^2\\KE_i = 6 J\\KE_f = 0.5 * (m_c + m_b) * v_f^2\\KE_f= 0.5 * 1.23 kg * (0.4878 m/s)^2\\KE_f = 0.1505 J[/tex]

Therefore, the kinetic energy lost during the collision is:

[tex]KE_l = KE_i - KE_f\\KE_l = 6 J - 0.1505 J\\KE_l = 5.8495 J[/tex]

Learn more about frictionless surface visit: brainly.com/question/30611138

#SPJ4

Correct Question:

A 30 g ball of clay is thrown horizontally at 20 m/s toward a 1.2 kg block sitting at rest on a frictionless surface. the clay hits and sticks to the block. Find the amount of kinetic energy lost.

a) what magnitude point charge (in c) creates a 16,000 n/c electric field at a distance of 0.270 m? c (b) how large (in n/c) is the field at 10.0 m? n/c

Answers

To answer your question:

(a) The magnitude of the point charge that creates a 16,000 N/C electric field at a distance of 0.270 m can be calculated using the equation:

E = k*q/r^2

where E is the electric field, k is Coulomb's constant (9 x 10^9 Nm^2/C^2), q is the magnitude of the point charge, and r is the distance from the point charge.

Rearranging the equation to solve for q, we get:

q = Er^2/k

Substituting the given values, we have:

q = (16,000 N/C) x (0.270 m)^2 / (9 x 10^9 Nm^2/C^2)

q = 1.85 x 10^-8 C

Therefore, a magnitude point charge of 1.85 x 10^-8 C creates a 16,000 N/C electric field at a distance of 0.270 m.

(b) To find out how large the electric field is at a distance of 10.0 m, we can use the same equation:

E = k*q/r^2

But this time, we know the magnitude of the point charge (q) and the distance (r), and we need to solve for the electric field (E).

Substituting the values, we have:

E = (9 x 10^9 Nm^2/C^2) x (1.85 x 10^-8 C) / (10.0 m)^2

E = 3.7 x 10^-13 N/C

Therefore, the electric field at a distance of 10.0 m is 3.7 x 10^-13 N/C.
a) To find the magnitude of the point charge (in C) that creates a 16,000 N/C electric field at a distance of 0.270 m, you can use the formula for the electric field E:

E = k * |q| / r^2

where E is the electric field, k is Coulomb's constant (8.99 × 10^9 N m²/C²), |q| is the magnitude of the charge, and r is the distance.

16,000 N/C = (8.99 × 10^9 N m²/C²) * |q| / (0.270 m)^2

Solving for |q|, we get:

|q| ≈ 1.27 × 10^-6 C

b) To find the electric field (in N/C) at 10.0 m, we can use the same formula, with r = 10.0 m:

E = (8.99 × 10^9 N m²/C²) * (1.27 × 10^-6 C) / (10.0 m)^2

E ≈ 114 N/C

Visit here to learn more about Coulomb's constant brainly.com/question/9658349

#SPJ11

Traveling at a speed of 21 m/s, the driver of a car suddenly locks the wheels by slamming on the brakes. The coefficient of kinetic friction between the tires and the road is 0.72. How much time does it take for the car to come to stop? A) 1 sec B) 2 sec C) 3 sec D) 4 sec E) 5 sec

Answers

Option C is Correct. Traveling at a speed of 21 m/s, the driver of a car suddenly locks the wheels by slamming on the brakes so 3 sec need come to stop.

To solve this problem, we will use the concepts of kinetic friction and time. The formula to calculate the acceleration due to kinetic friction is:
a = μk × g
where a is the acceleration, μk is the coefficient of kinetic friction, and g is the acceleration due to gravity (approximately 9.81 m/s²).
1. Calculate the acceleration Speed due to kinetic friction:
a = 0.72  × 9.81 = 7.0632 m/s² (deceleration, since it's against the motion)
2. Next, we can use one of the equations of motion to find the time it takes for the car to stop. We'll use the following equation, where vf is the final velocity (0 m/s, as the car comes to a stop), vi is the initial velocity (21 m/s), a is the acceleration we calculated, and t is the time we want to find:
vf = vi + (a × t)
3. Solve for time, t:
0 = 21 + (-7.0632  × t)
7.0632  × t = 21
t = 21 / 7.0632 ≈ 2.97 sec
So, the answer is approximately 3 seconds.

Learn more about kinetic friction here

https://brainly.com/question/30886698

#SPJ11

calculate the wavelength given a frequency of 7.187x106 mhz (1 mhz = 106 hz)

Answers

the wavelength of the given frequency is approximately 4.18 x 10^-5 meters.

To calculate the wavelength given a frequency of 7.187x106 MHz, we need to use the equation:

wavelength = speed of light / frequency

The speed of light is approximately 3x108 meters per second.

First, we need to convert the frequency from MHz to Hz, since the speed of light is in meters per second and the frequency needs to be in hertz.

7.187x106 MHz = 7.187x106 x 106 Hz = 7.187x1012 Hz

Now we can plug in the values:

wavelength = 3x108 / 7.187x1012 = 4.17x10-5 meters

Therefore, the wavelength for a frequency of 7.187x106 MHz is approximately 4.17x10-5 meters.
To calculate the wavelength given a frequency, you can use the following formula:

wavelength = speed of light / frequency

Given the frequency of 7.187 x 10^6 MHz, first convert it to Hz:

7.187 x 10^6 MHz x 10^6 Hz/MHz = 7.187 x 10^12 Hz

Now, using the speed of light (c) which is approximately 3 x 10^8 m/s:

wavelength = (3 x 10^8 m/s) / (7.187 x 10^12 Hz)

wavelength ≈ 4.18 x 10^-5 m

So, the wavelength of the given frequency is approximately 4.18 x 10^-5 meters.

To know more about wavelength click here:

brainly.com/question/12924624

#SPJ11

Suppose the number of turns in a rectangular coil of wire that is rotating in a magnetic field is tripled, what happens to the induced emf, assuming all the other variables remain the same?
A. It is reduced by a factor of 3
B. It is reduced by a factor of 9
C. It is increased by a factor of 3
D. It it reduced by a factor of 9
E. It remains the same

Answers

If the number of turns in a rectangular coil of wire that is rotating in a magnetic field is tripled, the induced emf is increased by a factor of 3. (C)

This is because the emf is directly proportional to the number of turns in the coil. So, if the number of turns is tripled, the induced emf will also be tripled. It is important to note that this assumes all other variables, such as the magnetic field strength and the angular velocity of the coil, remain constant.

In summary, increasing the number of turns in a rotating rectangular coil of wire will increase the induced emf, while decreasing the number of turns will decrease the induced emf. This principle is used in many electrical devices, such as generators and motors, to control the amount of electrical energy produced or consumed.

To know more about induced emf click on below link:

https://brainly.com/question/31256154#

#SPJ11

True or False finding an eigenvector of a might be difficult, but checking whether a given vector is in fact an eigenvector is easy?

Answers

True. Finding an eigenvector of a matrix can involve solving systems of equations and can be a difficult task, but once a potential eigenvector is found,

checking whether it is indeed an eigenvector only involves performing a scalar multiplication and a matrix multiplication, which is relatively easy.

To know more  about eigenvector  click this link-

brainly.com/question/31013028

#SPJ11

one of the lines in the brackett series (series limit = 1458 nm) has a wavelength of 1944 nm. find the next higher and next lower wavelengths in this series.

Answers

The next higher wavelength in the Brackett series is 1819.4 nm and the next lower wavelength is 2166.1 nm.

The Brackett series is a set of spectral lines in the infrared region of the electromagnetic spectrum that corresponds to the electron transition from higher energy levels to the n=4 energy level in hydrogen atoms. The series limit for the Brackett series is at 1458 nm.

The wavelength given in the question, 1944 nm, corresponds to the Brackett series transition from n=6 to n=4. To find the next higher and next lower wavelengths in this series, we need to look at the transitions from higher energy levels to n=4.

The next higher wavelength in the Brackett series would correspond to the electron transition from n=7 to n=4. To calculate this wavelength, we can use the following formula:

1/λ = R(1/n1^2 - 1/n2^2)

where λ is the wavelength, R is the Rydberg constant, and n1 and n2 are the initial and final energy levels, respectively.

Plugging in the values for n1=7 and n2=4, we get:

1/λ = R(1/7^2 - 1/4^2)
λ = 1819.4 nm

Therefore, the next higher wavelength in the Brackett series is 1819.4 nm.

Similarly, the next lower wavelength in the Brackett series would correspond to the electron transition from n=5 to n=4. Using the same formula and plugging in n1=5 and n2=4, we get:

1/λ = R(1/5^2 - 1/4^2)
λ = 2166.1 nm

Therefore, the next lower wavelength in the Brackett series is 2166.1 nm.

For more such questions on Brackett series.

https://brainly.com/question/28265285#

#SPJ11

what is the energy required to accelerate a 1765 kg car from rest to 29 m/s?

Answers

The energy required to accelerate a 1765 kg car from rest to 29 m/s is approximately 373,128,250 Joules.

To calculate the energy required to accelerate a car from rest to 29 m/s, we can use the formula:

E = (1/2)mv^2

where E is the energy, m is the mass of the car, and v is the final velocity.

First, we need to convert the mass of the car from kilograms to grams:

m = 1765 kg = 1,765,000 g

Next, we can substitute the values into the formula:

E = (1/2)(1,765,000 g)(29 m/s)^2

Simplifying the equation:

E = (1/2)(1,765,000)(841) JE = 373,128,250 J

To know more about accelerate, click here.

https://brainly.com/question/30660316

#SPJ4

a. Sisyphus is pushing a 95 kg flat stone up a 30 frictionless slope. How much force must he apply to push it up the slope at a constant speed of 22 cm/s? Hint: you might want to do part b first. force, including the normal force. You can use g 10 m/s. the ramp. If the stone has a constant acceleration downward of 2.6 m/s. What is a likely coefficient of b. Draw a fully labeled force diagram for the stone. Include all magnitudes for each c. Let's say the slope does have considerable friction, and Sisyphus lets the stone freely slide back down kinetic friction μ? μ

Answers

A 95 kg flat stone is being pushed by Sisyphus up a 30° frictionless slope. To move it up the hill at a steady pace of 22 cm/s, he needs exert 475 N of effort. The kinetic friction coefficient is 0.26.

Therefore Acceleration, 0.26 is likely to be the kinetic friction coefficient.

Here: Mass of stone, m = 95 kg

Speed, v = 22 cm/s

Slope, θ = 30°g = 10 m/s²(a)

The force required to push the stone up the slope at a constant speed can be found using the formula:

Force = Weight x Component of Weight along the slope

F = mgsinθF = 95 x 10 x sin30°F = 475 N

Therefore, the force required to push the stone up the slope at a constant speed is 475 N.

b. Let's say the slope does have considerable friction, and Sisyphus lets the stone freely slide back down the ramp. If the stone has a constant acceleration downward of 2.6 m/s², then the likely coefficient of kinetic friction μ can be found using the formula:

μ = a/gμ = 2.6/10μ = 0.26

To know more about "Acceleration" refer here:

brainly.com/question/8231525#

#SPJ4

The gap in the outer and inner walls of a calorimeter (the device to measure heat) is filled with air because ita. allows only the heat to flow from inside to outside of the calorimeterb. restricts only the heat to flow from inside to outside of the calorimeterc. restricts the flow of heat from inside to outside and outside to inside of the calorimeter

Answers

The gap in the inner walls as well as outer walls of the calorimeter is filled with air because it restricts the flow of the heat from inside to outside as well as outside to inside of the calorimeter. Option C is correct.

The gap in the outer and inner walls of a calorimeter is typically filled with air to act as an insulator. Air is a poor conductor of heat, meaning that it restricts the flow of heat from inside to outside and outside to inside of the calorimeter. This helps to maintain the temperature inside the calorimeter and prevents heat from escaping or entering the calorimeter too quickly.

Hence, C. is the correct option.

To know more about calorimeter here

https://brainly.com/question/4802333

#SPJ4

two lamps illuminate a screen equally. the first lamp has an intensity of 12.5 cd and is 3.0 m from the screen. the second lamp is 9.0 m from the screen. what is its intensity?

Answers

The intensity of the second lamp can be calculated using the inverse square law, which states that the intensity of light decreases with the square of the distance from the source. The equation for the inverse square law is:

I2 = I1 * (d1/d2)^2

where I1 is the intensity of the first lamp, d1 is the distance from the first lamp to the screen, I2 is the intensity of the second lamp, and d2 is the distance from the second lamp to the screen.

Substituting the given values, we get:

I2 = 12.5 cd * (3.0 m/9.0 m)^2

I2 = 12.5 cd * (1/3)^2

I2 = 12.5 cd * 0.111

I2 = 1.39 cd

Therefore, the intensity of the second lamp is 1.39 cd.

Learn more about Intensity here:- brainly.com/question/28145811

#SPJ11

In the four trials of Exercise 1, one needs to accurately measure ... a. The length of four different radii and the corresponding time for 10 revolutions b. The weight hanger c. The mass of the stopperd. All of the above

Answers

In the four trials of Exercise 1, one needs to accurately measure the length of four different radii and the corresponding time for 10 revolutions in order to calculate the speed of the stopper in revolutions per minute.

Additionally, one needs to measure the mass of the stopper in order to calculate the centripetal force acting on it. Therefore, the correct answer is d. All of the above.
one needs to accurately measure all of the above options, which include:
a. The length of four different radii and the corresponding time for 10 revolutions
b. The weight hanger
c. The mass of the stopper
Accurately measuring these factors ensures that the results and conclusions drawn from the experiment are reliable and valid.

Visit here to learn more about centripetal force:

brainly.com/question/14249440

#SPJ11

: each cord can sustain a maximum tension of 20lbf. determine the largest weight of the lamp that can be supported. also, determine of cord for equilibrium

Answers

The correct answer is the use of 3 cords for equilibrium.

To determine the largest weight of the lamp that can be supported, we need to convert the maximum tension of the cord from pounds-force (lbf) to pounds-mass (lbm) since weight is measured in pounds-mass.


1 pound-force (lbf) = 0.453592 pounds-mass (lbm)


So, each cord can sustain a maximum tension of 20 lbf which is equivalent to 20 x 0.453592 = 9.07184 lbm. Therefore, the largest weight of the lamp that can be supported by one cord is 9.07184 lbm.



To determine the number of cords required for equilibrium, we need to consider the weight of the lamp and the direction of the forces acting on it. Since the lamp is hanging vertically downwards, the weight acts downwards while the tension in the cords acts upwards.


For equilibrium, the sum of the upward forces (tension in the cords) must be equal to the weight of the lamp acting downwards. Therefore, we can determine the number of cords required for equilibrium by dividing the weight of the lamp by the maximum tension of one cord.


If the weight of the lamp is W lbm, then the number of cords required for equilibrium is:


Number of cords = W / (maximum tension of one cord in lbm)



For example, if the weight of the lamp is 25 lbm, then the number of cords required for equilibrium is:


Number of cords = 25 / 9.07184 = 2.755


Since we cannot have a fractional number of cords, we would need to use 3 cords for equilibrium.

To know more about equilibrium here

https://brainly.com/question/30807709

#SPJ11

A good tutor will be correct in saying that velocity and acceleration are A) different concepts. B) the same concept, but expressed differently. C) expressions for changing speeds. D) rates of one another.

Answers

A good tutor will be correct in saying that velocity and acceleration are different concepts. The correct option is A.

Velocity and acceleration are distinct concepts in physics and describe different aspects of motion.

Velocity refers to the rate at which an object changes its position in a particular direction over time. It is a vector quantity, meaning it has both magnitude (speed) and direction. Velocity is calculated as the change in displacement divided by the change in time.

Acceleration, on the other hand, refers to the rate at which an object changes its velocity over time. It is also a vector quantity and is calculated as the change in velocity divided by the change in time.

While velocity and acceleration are related, they are not the same concept and are expressed differently. Velocity describes the speed and direction of motion, while acceleration describes how quickly the velocity changes.

They are both important in understanding the motion of objects and are fundamental concepts in physics.

To know more about acceleration, refer here:

https://brainly.com/question/14683118#

#SPJ11

Tyson Gay's best time to run 100.0 meters was 9.69 seconds. What was his average speed during this run, in miles per hour? (3.281ft=1 m)(1 mile=5280 ft)
Report your answer to three significant figures (round your answer to one decimal place).

Answers

Tyson Gay's average speed during the 100-meter run was approximately 23.1 mph

To find Tyson Gay's average speed during the 100.0-meter run, we'll first convert meters to feet, then feet to miles, and finally seconds to hours.

1. Convert meters to feet: 100.0 meters * 3.281 ft/m = 328.1 feet
2. Convert feet to miles: 328.1 feet / 5280 ft/mile ≈ 0.0621 miles
3. Convert seconds to hours: 9.69 seconds * (1 hour / 3600 seconds) ≈ 0.00269 hours

Now we can calculate the average speed:
Average speed = distance/time = 0.0621 miles / 0.00269 hours ≈ 23.1 miles per hour

So, Tyson Gay's average speed during the 100-meter run was approximately 23.1 mph, reported to three significant figures and rounded to one decimal place.

Learn more about average speed here:

https://brainly.com/question/12322912

#SPJ11

A section of a sphere is mirrored on both sides. If the magnification of an object is +3.70 when the section is used a concave mirror, what is the magnification of an object at the same distance in front of the convex side?

Answers

A section of a sphere is mirrored on both sides. If the magnification of an object is +3.70 the magnification is -4.70.

The magnification of an object at the same distance in front of the convex side of the mirrored section of a sphere can be found using the mirror equation:
1/f = 1/di + 1/do
where f is the focal length of the mirror, di is the distance of the object from the mirror, and do is the distance of the image from the mirror.
Since the section is mirrored on both sides, the focal length of the concave and convex sides will be the same. Therefore, we can use the magnification equation:
m = -di/do

where m is the magnification.
We know that when the section is used as a concave mirror, the magnification is +3.70. Therefore,
+3.70 = -di/do

Solving for do, we get
do = -di/3.70
Now, substituting this value of do into the mirror equation, we get
1/f = 1/di - 3.70/di
Simplifying this equation, we get
f = di/4.70
Therefore, the magnification of an object at the same distance in front of the convex side of the mirrored section will be
m = -di/(di/4.70)
m = -4.70


Learn more about magnification here:

https://brainly.com/question/21370207

#SPJ11

2. how do the results of this simulation exercise support the law of conservation of momentum? explain your answer.

Answers

This agreement between the simulation results and the Law of Conservation of Momentum serves as evidence that the law holds true in the simulated scenario.

The results of this simulation exercise support the Law of Conservation of Momentum by showing that the total momentum before an event (collision or separation) is equal to the total momentum after the event.

1. In the simulation exercise, you likely observed two objects interacting, such as colliding or separating.

2. Before the event, you can calculate the total momentum by adding the individual momenta of the objects (momentum = mass x velocity).

3. After the event, you can calculate the total momentum again by adding the individual momenta of the objects with their new velocities.

4. Comparing the total momentum before and after the event, you'll notice that they are equal or very close to equal, which demonstrates the Law of Conservation of Momentum in action.

Hence, the results of this simulation exercise support the Law of Conservation of Momentum.

To learn more about Law of Conservation of Momentum, visit:

https://brainly.com/question/1113396

#SPJ11

according to phil, the only way we know how to get accurate stellar masses is group of answer choices when they have iron absorption lines when they are incredibly dim when they are incredibly bright when they have hydrogen absorption lines when they are in a binary system

Answers

According to Phil, the only way we know how to get accurate stellar masses is when they are in a binary system.

In a binary system, two stars orbit each other, and their gravitational interaction can be observed and measured. This interaction allows astronomers to determine the stars' masses using Kepler's laws and other astrophysical methods. Other methods, such as using iron or hydrogen absorption lines, can provide information about the stars' compositions and temperatures, but not their masses with the same accuracy as binary systems.

To obtain accurate stellar masses, it is essential to observe stars in a binary system, as their gravitational interaction provides the most reliable measurements.

To know more about gravitational interaction visit:

brainly.com/question/11974484

#SPJ11

a spring of force constant 245.0 n/m and unstretched length 0.280 m is stretched by two forces, pulling in opposite directions at opposite ends of the spring, that increase to 22.0 n. How long will the spring now be, and how much work was required to stretch it that distance?

Answers

The spring constant is 245.0 N/m and the unstretched length is 0.280 m. The forces pulling on the spring increase to 22.0 N, pulling in opposite directions at opposite ends of the spring.

To find the new length of the spring, we can use Hooke's law, which states that the force applied to a spring is directly proportional to the amount of stretch or compression of the spring. The formula for Hooke's law is:

F = -kx

Where F is the force applied to the spring, k is the spring constant, and x is the amount of stretch or compression of the spring. The negative sign indicates that the force applied to the spring is in the opposite direction of the displacement of the spring.

We can rearrange this formula to solve for x:

x = -F/k

Plugging in the values we have:

x = -(22.0 N)/(245.0 N/m)
x = -0.0898 m

Therefore, the new length of the spring is:

L = Lo + x
L = 0.280 m - 0.0898 m
L = 0.1902 m


To find the work required to stretch the spring this distance, we can use the formula:

W = (1/2)kx^2

Plugging in the values we have:

W = (1/2)(245.0 N/m)(0.0898 m)^2
W = 0.975 J


Therefore, the work required to stretch the spring 0.0898 m is 0.975 J.
Hello! I'd be happy to help you with your question.

Given the spring's force constant (k) is 245.0 N/m, and the force applied (F) is 22.0 N, we can use Hooke's Law to determine the change in the spring's length (Δx):

F = k * Δx

Rearranging the formula to find Δx:

Δx = F / k
Δx = 22.0 N / 245.0 N/m
Δx ≈ 0.0898 m


Now, to find the new length of the spring (L'), add the change in length (Δx) to the unstretched length (L):

L' = L + Δx
L' = 0.280 m + 0.0898 m
L' ≈ 0.3698 m


To calculate the work (W) done in stretching the spring, we use the formula:

W = 0.5 * k * Δx²
W = 0.5 * 245.0 N/m * (0.0898 m)²
W ≈ 1.003 J


So, the spring will now be approximately 0.3698 meters long, and 1.003 Joules of work was required to stretch it that distance.

Learn more about Hooke's law here:

https://brainly.com/question/29126957

#SPJ11

An ideal monatomic gas cools from 455.0 K to 405.0 K at constant volume as 831) of energy is removed from it. How many moles of gas are in the sample? The ideal gas constant is R = 8.314 J/mol · K. 2.15 mol 0.725 mol 1.33 mol 1.50 mol2.50 mol

Answers

There are approximately 1.33 moles of the ideal monatomic gas in the sample.

To find the number of moles of the ideal monatomic gas in the sample, we can use the following formula:

q = n * C_v * ΔT
where q is the energy removed from the gas, n is the number of moles, C_v is the heat capacity at constant volume, and ΔT is the change in temperature.

For a monatomic gas, C_v = (3/2) * R, where R is the ideal gas constant (8.314 J/mol·K).

First, we need to find the change in temperature (ΔT).

ΔT = T_final - T_initial = 405.0 K - 455.0 K = -50.0 K

Now, we can rearrange the formula to solve for the number of moles (n):

n = q / (C_v * ΔT)

Substitute the values:
n = -831 J / ((3/2) * 8.314 J/mol·K * (-50.0 K))
n ≈ 1.33 mol

Learn more about moles:

https://brainly.com/question/29367909

#SPJ11

) A rectangular bar is cut from AISI 1020 cold-drawn steel flat. The bar is 2.5in wide by 3/8in thick and has a 0.5-in-dia. Hole drilled through the center as depicted in Figure 1. The bar is concentrically loaded in push-pull fatigue by axial forces Fa, uniformly distributed across the width. Using a design factor of nd-2, estimate the largest force Fa that can be applied ignoring column action. 0.5 1020

Answers

The greatest force Fa that can be applied while ignoring column action is 12,000 lbf, while the question states that the bar's permissible stress is 20,000 psi.

What is force?

A push or pull that causes a physical change in an item, such as a change in velocity, form, or size, is known as force. Forces may be physical or psychological. In contrast to non-contact forces like gravity, electricity, and magnetism, contact forces are generated by physical contact. A force's strength is often expressed in newtons (N).

The Goodman diagram can be used to calculate the bar's maximum load capacity.

The allowed stress and load factor are plotted on a chart called a Goodman diagram. The greatest load applied to the bar divided by the material's yield strength is known as the load factor.

The yield strength of cold-drawn flat steel AISI 1020 is about 40,000 psi. By dividing the yield strength by the design factor (nd-2), in this example 0.5, the allowed stress for the bar is calculated. Therefore, 20,000 psi is the maximum tension that the bar can withstand.

The Goodman diagram and 20,000 psi of permissible stress can be used to calculate the bar's maximum load capacity. The bar can support a maximum load of about 12,000 lbf. Therefore, 12,000 lbf is the maximum force Fa that can be applied while disregarding column action.

To learn more about force, visit:

brainly.com/question/12785175

#SPJ1

if an object has a moment of inertia 26 kg·m2 and rotates with an angular speed of 80 radians/s, what is its rotational kinetic energy?

Answers

The rotational kinetic energy of the object is 83,200 Joules.

The rotational kinetic energy of an object is the energy it possesses due to its rotation. It can be calculated using the formula:

[tex]K_rot = (1/2) * I * ω^2[/tex]

where K_rot is the rotational kinetic energy, I is the moment of inertia of the object, and ω is its angular velocity.

In this case, the object has a moment of inertia of [tex]26 kg·m^2[/tex]and is rotating with an angular speed of 80 radians/s. Substituting these values into the formula gives:

[tex]K_rot = (1/2) * 26 kg·m^2 * (80 radians/s)^2[/tex]

= 83,200 J

Therefore, the rotational kinetic energy of the object is 83,200 Joules.

learn more about kinetic energy

https://brainly.com/question/26472013

#SPJ4

A railroad car with a mass of 13000 kg collides and couple with a second car of mass 20,000kg that is initially at rest. the first car is moving with a speed of 3.5 m/s prior to the collision. a) what is the initial momentum of the first car ? b) if external forces can be ignored, what is the final velocity of the two railroad cars after they couple.

Answers

The initial momentum of the first car with the given data is:45500 kg*m/s

a) The initial momentum of the first car can be calculated using the formula p = mv, where p is momentum, m is mass, and v is velocity. Thus, the initial momentum of the first car is:

p = 13000 kg * 3.5 m/s
p = 45500 kg*m/s

b) Since external forces can be ignored, we can use the law of conservation of momentum, which states that the total momentum of a system is conserved in the absence of external forces. Thus, the total momentum before the collision is equal to the total momentum after the collision.

Before the collision:
Total momentum = p1 + p2
where p1 is the momentum of the first car and p2 is the momentum of the second car, which is initially zero.

Total momentum = 45500 kg*m/s + 0
Total momentum = 45500 kg*m/s
After the collision:

Total momentum = p1 + p2
where p1 and p2 are the final momenta of the two cars.
Since the two cars couple together after the collision, their final momentum is shared between them. We can assume that the final velocity of the two cars is v, which we want to find.

Thus, the final momentum of the two cars can be calculated using the formula p = (m1 + m2) * v, where m1 and m2 are the masses of the two cars.
Total momentum = (13000 kg + 20000 kg) * v
Total momentum = 33000 kg * v

Equating the total momentum before and after the collision, we get:
45500 kg*m/s = 33000 kg * v
Solving for v, we get:

v = 1.38 m/s
Therefore, the final velocity of the two railroad cars after they couple is 1.38 m/s.

To know more about momentum refer here:

https://brainly.com/question/30677308#

SPJ11#

A healthy mind and body is important. The decisions you make can have a serious effect on your health and the health of those around you. Think about what you have learned in the module. Use the information from your milestone 1 and milestone 2 projects to help you complete your final project.

Your project should be about the diseases that can be caused by hereditary traits.

Choose a healthy behavior and develop a positive health media message.
TV commercial
Radio commercial
Magazine ad
Internet popup ad
Teacher approved idea
Examples of hereditary diseases include heart disease, Type 1 Diabetes, or many other diseases you may have learned about in your interviews.

You will present a message that tries to get people to make health choices that will help them reduce the impact of hereditary disease. Your message can be presented as a video or by using a Web 2.0 tool such as Weebly or Jing.
Your presentation will focus on:
Making people aware of hereditary traits.
Getting people to make good health choices to help lessen the risk of hereditary disease.
Answer the following questions to help you get started on your project:

What is the purpose of your media message? (to inform or persuade)
What type of medium is it? (commercial, advertisement, or teacher approved)
Who is your intended audience?
What is the message? (main idea or main points)
What information can be omitted?
What techniques are you going to use to get attention?

(Please put an actual answer please.)

Answers

I can answer the following general questions to help you get started

-What is the purpose of your media message? (to inform or persuade)
The purpose of your media message can be both to inform and persuade. You want to inform people about the hereditary traits that can lead to diseases and persuade them to make healthy choices to reduce the risk of hereditary disease.

-What type of medium is it? (commercial, advertisement, or teacher approved)
The type of medium you choose for your message can be a commercial, advertisement, or teacher-approved project.

-Who is your intended audience?
Your intended audience can be anyone who has a hereditary risk for a specific disease or anyone who wants to live a healthier lifestyle to reduce the risk of hereditary disease.

-What is the message? (main idea or main points)
The main idea of your message can be to raise awareness about hereditary traits that can lead to diseases and to encourage healthy behaviors to reduce the risk of hereditary disease. The main points of your message can include information about the specific hereditary diseases, the importance of genetic testing and counseling, and the benefits of healthy lifestyle choices.

-What information can be omitted?
You can omit any information that is not relevant to your message or that might confuse or overwhelm your audience. You want to focus on the most important information and keep your message clear and concise.

-What techniques are you going to use to get attention?
You can use different techniques to get attention, such as emotional appeals, humor, or shocking statistics. You can also use visual aids, such as images or videos, to make your message more engaging and memorable.

Which one of the following does Kepler's Second Law indirectly describe?
- the masses of planets - the sizes of planets - the densities of the materials that planets are made of - the speeds with which planets travel in their orbits

Answers

Kepler's Second Law indirectly describes the speeds with which planets travel in their orbits.

This law, also known as the Law of Equal Areas, states that a line connecting a planet to the sun sweeps out equal areas in equal times, implying that planets move faster when closer to the sun and slower when farther away.

According to Kepler's Second Law, a line that connects a planet to the sun, known as the radius vector, sweeps out equal areas in equal times as the planet moves along its elliptical orbit.

This means that a planet covers the same amount of area in its orbit during equal time intervals, regardless of where it is in its orbit. This implies that a planet moves faster when it is closer to the sun and slower when it is farther away.

This observation has significant implications for our understanding of planetary motion. As a planet moves closer to the sun, it experiences a stronger gravitational pull, which accelerates its motion and causes it to move faster.

Conversely, as a planet moves farther away from the sun, the gravitational pull weakens, resulting in a slower motion. This is consistent with Kepler's Second Law, which states that planets move faster in the inner parts of their orbits (when closer to the sun) and slower in the outer parts (when farther away from the sun).

To learn more about motion, refer below:

https://brainly.com/question/22810476

#SPJ11

A lighted candle is placed 38.0 cm in front of a diverging lens. The light passes through the diverging lens and on to a converging lens of focal length 14.0 cm that is 6.0 cm from the diverging lens. The final image is real, inverted, and 42.0 cm beyond the converging lens. Find the focal length of the diverging lens.

Answers

Let's use f1 to represent the diverging lens's focal length. The thin lens equation may be used to connect the problem's distances and focal lengths: Consequently, the divergent lens's focal length is 9.15 cm.

Now: 1/f1 = 1/d1 - 1/d2

1/f2 = 1/d2 - 1/d3

Here d1 is the distance from the candle to the diverging lens, d2 is the distance between the two lenses, and d3 is the distance from the converging lens to the final image. We can also use the magnification equation to relate the magnifications produced by the two lenses:

m = -(d2/f1)(f2/d3)

Here the negative sign indicates that the final image is inverted.

Values and solving the equations simultaneously, we get:

d1 = 38.0 cm

d2 = 6.0 cm

d3 = 42.0 cm

f2 = 14.0 cm

1/f1 = 1/d1 - 1/d2 = 1/38.0 cm - 1/6.0 cm = -0.0263 cm^-1

1/f2 = 1/d2 - 1/d3 = 1/6.0 cm - 1/42.0 cm = 0.1667 cm^-1

m = -(d2/f1)(f2/d3) = -(6.0 cm/(-0.0263 cm^-1))(0.1667 cm^-1/42.0 cm) = 1.53

Using the magnification equation, we can also relate the distances and focal lengths:

m = -f2/f1

Value of m and the given value of f2, we get:

1.53 = -14.0 cm/f1

f1 = -14.0 cm/1.53 = -9.15 cm

Since the focal length of a lens cannot be negative, we take the absolute value and get:

f1 = 9.15 cm

Learn more about focal length visit: brainly.com/question/28039799

#SPJ4

Other Questions
find a parameterization of the portion of the circular cylinder y2 z2=16 between the planes x=2 and x=6. Consider a particle with rest mass m _0, momentum p. and kinetic- energy T. Show that p^2c^2 = T(2m _0 c^2 + T). Can someone pls help me with this? 1,23456789x10power-6 is not the same value as DEVEPLLOMENTALLY APPROPRIATE CHILDREN'S BOOK COMPETENCY STATEMENT III REFLECTIVE STATEMENT ABOUT THIS COMPETENCY STANDAR PARAGRAPH ABOUT HOW TEACHING PRACTICE MEET THIS STANDAR Which of the following muscles is not part of the quadriceps femoris group? A. rectus femoris. B. biceps femoris. C. vastus medialis. D. vastus lateralis. E. Discuss at least 3 different parameters that either were or could be used when comparing your zeolites to charcoal. These do not all have to be chemical properties. You do not have to compare the zeolites to charcoal using all three methods, but at least one of them should have been tested during the project. Ask yourselves the question, "If I were the Environmental Protection Agency (EPA) what would I need to know before I would to want to use this zeolite over charcoal?"*The absorbance values at lambda max were obtained for each sequestration agent for this experiment after adding each material to a solution of red dye* Dali runs three times as fast as he walks. In the morning he goes to school. He walks half the distance and runs half the distance, taking 24 minutes altogether. After school he goes home. He walks half the time and runs half the time. How many minutes does it take Dali to get home? as a student where will you apply the data analysis skills using excel? Refer to the opening vignette in chapter 7 about Lego. Describe the types of promotion-related research that could be conducted that would help the company more effectively promote its biggest brand. Who do you think is Lego's target? Why? What type of research would you suggest to Lego to determine who they should target with advertising? Wendy says that she can find the sale price of an item by multiplying bythe difference of 100% and the percent of the sale. Is Wendy correct?Explain and give an example. A study examined the average pay for men and women entering the workforce as doctors for 21 different positions.(a) If each gender was equally paid, then we would expect about half of those positions to have men paid more than women and women would be paid more than men in the other half of positions.(b) Men were, on average, paid more in 19 of those 21 positions. Complete a hypothesis test using your hypotheses from part (a).4. Write the appropriate hypotheses to test this scenario5. Calculate a test statistics and p-value6. Does this sample provide a convincing evidence that men are paid more than women at a significance level $\alpha$ of 0.05? A set of 3 cards, spelling the word ADD, are placed face down on the table. Determine P(D, D) if two cards are randomly selected with replacement. Write the general form of the capacitor voltage forthe electrical network shown in Figure P4.4.[Section: 4.4] is Qu posicin relativa ocupa Venezuela en telefona bsica, en comparacin con los pases del mundo? A. Se encuentra un poco por debajo del promedio mundial. B. El locutor no presenta esta informacin. C. Es uno de los pases lderes. D. Este tipo de telefona casi no existe en Venezuela how to calculate gpa from select menu javascript why is medical supervision advised for a person suffering from chronic vomiting or diarrhea? Check all that apply. In Exhibit 9 of the CPK case, you were given market values of equity and market value of capital. Those calculation were implicitly assuming that: CPK will maintain a constant debt ratio in perpetuity. CPK will not incur any financial distress costs with increasing amounts of debt. CPK's equity beta will not increase with increasing amounts of debt. CPK's cost of debt will increase with increasing amounts of debt. CPK will maintain a constant debt level in perpetuity. Dont spread gossip is an example of _____________. Find an angle measure