Answer:
[tex]\$856.03[/tex]
Step-by-step explanation:
Continuous Compound Interest Formula:The Continuous Compound Interest Formula is derived from the Compound Interest Formula: [tex]A = P(1 + \frac{r}{n})^{nt}[/tex], as the number of times interest is applied, goes to infinity. Through some simple algebraic manipulation, we get the formula: [tex]A = Pe^{rt}[/tex] (e is known as Euler's Number and is notation for a constant value like [tex]\pi[/tex])
Calculating Time:Since Valeria invested 770 in an account with an interest of 53% paying monthly, we want to find how much time it takes to triple her money, and then plug that into Zoey's equation.
So let's generally solve for time in the equation:
[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]
First divide by P
[tex]\frac{A}{P} = (1 + \frac{r}{n})^{nt}[/tex]
From here, it helps to take the base 10 log of both sides, so we can apply logarithmic properties, in this case we want to bring the exponent down.
[tex]log(\frac{A}{P}) = nt * log(1 + \frac{r}{n})[/tex]
Now from here' lets divide both sides by the log (the one on the right side) and "n" to give us:
[tex]\frac{log(\frac{A}{P})}{n * log(1 + \frac{r}{n})} = t[/tex]
Now whenever we need to calculate time, we simply need to plug in these values. We're given the following information from the problem:
[tex]P = 770\\r = 0.53\\n = 12\text{ compound monthly means 12 per year}\\A= 2,310 \text{ this is just 770 * 3, since we're looking for when Valeria's money triples}[/tex]
Plugging in the values we get:
[tex]\frac{log(\frac{2310}{770})}{12*log(1+\frac{0.53}{12}}=t[/tex]
Plugging this into a calculator, gives an approximate value of:
[tex]2.1183\approx t[/tex]
Calculating Zoey's Balance:From here we simply need to plug values into the continuous compound interest formula: [tex]A=Pe^{rt}[/tex]
We're given the following information:
[tex]A = 770\\r= 0.03\\[/tex]
and we know that:
[tex]t\approx 2.1183[/tex]
since we solved for that.
So now let's just plug values into the equation!
[tex]A\approx 770 * e^{0.05 * 2.1183}\\A \approx 856.03[/tex]
So now we have our solution!
The table of values represents a proportional relationship.
What is the constant of proportionality in the relationship, written as an improper fraction (fraction greater than one)?
X Y
2 3
6 9
The constant of proportionality in the relationship is 3/2
How to determine the constant of proportionality in the relationshipFrom the question, we have the following parameters that can be used in our computation:
X Y
2 3
6 9
The above represents the table of values
Since the data on the table of values represents a proportional relationship, then the constant of proportionality is
Constant of proportionality = Y/X
So, we have
Constant of proportionality = 3/2
Hence, the constant of proportionality is 3/2
Read more about proportional relationship at
https://brainly.com/question/28651666
#SPJ1
Tyler hires a Lift driver to give him a ride to Wild
Rivers. It costs $4 to download the Lift app and then
$1.50 for every mile they have to drive you. Tyler's
trip to Wild Rivers cost $23.50. Write an equation
and solve to find the number of miles (m) the Lift
driver had to drive Tyler.
Answer:
23.50=1.50x+4, m=13
Step-by-step explanation:
The $4 is a constant, no matter how many times the app is used, the $4 amount will stay. The $1.50 is dependant on how many times the action is preformed so it has to be put with M. Overall, the cost is 23.50 which is why the entire equation is equal to $23.50.
Subtract 4 from the 23.50, then divide that result with 1.50
What is the range of the function y = x + 3 when the domain is {-2, 0, 4}?
Answer:
The answer is the range of the function y = x + 3 when the domain is {-2, 0, 4}, which is the set {1, 3, 7}.
Step-by-step explanation:
The range of the function y = x + 3 is the set of all possible values of y for a given value of x in the domain of the function. In this case, the domain of the function is the set {-2, 0, 4}, so the range of the function is the set of all possible values of y for x equal to -2, 0, and 4.
To find the range, we need to substitute each of these values of x into the equation y = x + 3 and solve for y. When x = -2, we have y = -2 + 3 = 1. When x = 0, we have y = 0 + 3 = 3. And when x = 4, we have y = 4 + 3 = 7. Therefore, the range of the function y = x + 3 when the domain is {-2, 0, 4} is the set {1, 3, 7}.
Bob bought a sofa on sale for $134.40. This price was 68% less than the original price. What was the original price?
Answer:
$420
Step-by-step explanation:
To find the original price, we need to determine how much the sale price was discounted, and then add that amount back to the sale price. Since the sale price was 68% less than the original price, the discount was 100% - 68% = 32% of the original price.
To find the amount of the discount, we multiply the original price by the discount percentage: 32% * original price = $134.40
Dividing both sides of the equation by the discount percentage gives us the original price: original price = $134.40 / (32% * 1) = $134.40 / 32% = $420.
Therefore, the original price of the sofa was $420.
Newton's Law of Gravitation states that two bodies with masses m1 and m2 attract each other with a force F, where r is the distance between the bodies and G is the gravitational constant. F = G(m_1m_2)/r^2 Use Newton's Law of Gravitation to compute the work W required to propel a 1100 kg satellite out of the earth's gravitational field. You may assume that the earth's mass is 5.98✕1024 kg and is concentrated at its center. Take the radius of the earth to be 6.37✕106 m and G = 6.67✕10-11 Nm2/kg2. (Round your answer to three significant digits.)
The two bodies are being drawn together by a force of 10812 N, according to Newton's Law of Gravitation.
Every particle in the universe is drawn to every other particle with a force that is directly proportional to the product of their masses and inversely proportional to their separation from one another, according to Newton's Law of Universal Gravitation.
Symbolically, Newton came to the following conclusion on the strength of the gravitational force:
F = G(m₁ × m₂) / r²
F is the gravitational force between two bodies, m1 and m2 are the bodies' masses, r is the distance between their centres, and G is the gravitational constant of the universe.
According to the query,
satellite's mass is m1 = 1100 kg.
mass of earth = 5.98 ×10²⁴ kg
Radius of the earth = 6.37 × 10⁶ m
G = 6.67 × 10⁻¹¹ Nm² / kg²
Force = G(m₁ × m₂) / r²
Substituting the values,
F = 6.67 × 10⁻¹¹( 1100 × 5.98 ×10²⁴) /( 6.37 × 10⁶)²
=> F = 6.67 × 1100 × 5.98 × 10¹³ / 40.58 × 10¹²
=> F = 43,875.26 × 10 / 40.58
=> F = 10812 N
To know more about Newton's Law here
https://brainly.com/question/15280051
#SPJ4
a car travels at an average speed of 48 miles per hour how many miles does it travel in 4 hours and 30 minutes
Answer:
4 hours= 192
30 min=24
192+24=216
Step-by-step explanation:
for findin 4 hours time multipky 4 with 48 as yk it travels 48 miles per hour and for findin the 30 mins u have to divide 48/2 bcuz it travelled 48 in one hour and 30 mins is its half so yah and then add both the answers
Type the correct answer in each box. Use numerals instead of words.
If x>0, what values of c and d make the equations true?
Equation A √448 x⁽=8 x³ √7 x
Equation B ∛576 xᵃ=4 x ∛9 x²
In equation A, c is
In equation B, d is
The value of c in the equation A is 7 and the value of d in the equation B is 5
The first equation is
[tex]\sqrt{448x^c}=8x^3 \sqrt{7x}[/tex]
Move the term 8x^3 inside the square root
[tex]\sqrt{448x^c}=\sqrt{7x(8x^3)^2}[/tex]
Multiply the terms in the equation
[tex]\sqrt{448x^c}=\sqrt{448x^7}[/tex]
Here the both terms are equal. Therefore the value of x^c and the x^7 will be equal.
Then the value of c = 7
Part 2
The second equation is
[tex]\sqrt[3]{576x^d}=4x\sqrt[3]{9x^2}[/tex]
Move the term 4x inside the square root
[tex]\sqrt[3]{576x^d}=\sqrt[3]{9x^2(4x)^3}[/tex]
Multiply the terms in the equation
[tex]\sqrt[3]{576x^d}=\sqrt[3]{576x^3}[/tex]
Here the both terms are equal. Therefore the value of x^d and the x^5 will be equal
Then the value of d = 5
Therefore, the value of c = 7 and the value of d = 5
Learn more about equation here
brainly.com/question/22173286
#SPJ4
Which of the following functions represent the graph g(x) above?
Answer:
The first one, G(x)=| x+4 |
Step-by-step explanation:
sage measured her rectangular house is 15.24m long and 9.1m wide. using her calculator she multiply the length by the width
Therefore, the area of rectangular house is 138.684 [tex]m^{2}[/tex].
Specify the area.The size of a region on a planar or curved surface can be expressed mathematically using the idea of area. The term "surface area" refers to the area of an open surface or the perimeter of a three-dimensional object, whereas the term "plane area" refers to the area of a shape or planar lamina.
Here,
Given :
the length of the rectangular house =15.24 m
the width of the rectangular house = 9.1 m
thus, we find the area of rectangular house
Using formula,
=> Area= length * width
=> Area = 15.24 * 9.1
=> Area = 138.684 [tex]m^{2}[/tex]
Therefore, the area of rectangular house is 138.684 [tex]m^{2}[/tex].
To know more about area, visit
https://brainly.com/question/20110859
#SPJ4
la suma de dos números es 45. dividiendo el mayor por el menor se obtiene 2 como cociente y 6 como resto. encontrar los dos números
Answer:
13 and 32
Step-by-step explanation:
x + y = 45
x = 2y + 6
2y + 6 + y = 45
3y = 45 - 6
3y = 39
y = 39/ 3
y = 13
x = 2 · 13 + 6
x = 26 + 6
x = 32
the folllowing is a trues statement ab out safety stock: safety stock only applies to independent demand invenstory
Yes, this is true. Safety stock is an inventory strategy used to ensure that a company has enough of a particular item in stock to meet customer demand.
It is typically used to protect against unexpected changes in demand and/or supply, and is most applicable to independent demand inventory.
Safety stock is an inventory strategy used to ensure that a company has enough of a particular item in stock to meet customer demand. It is typically used to protect against unexpected changes in demand and/or supply. These changes can include anything such as supplier delays, unexpected customer orders, or seasonal fluctuations. Safety stock is most applicable to independent demand inventory, which is inventory that is driven by customer demand and not production requirements. Therefore, the statement that safety stock only applies to independent demand inventory is true.
Learn more about safety stock here
https://brainly.com/question/14054595
#SPJ4
if an exponentiated logistic regression coefficient, i.e. exp(b), is greater than one, when its associated x-variable increases, predicted odds will decrease, holding other x-variables constant.
For the exponential logistic regression coefficient Exp(b) is greater than one it represents the associated x-variable increases and the corresponds to predicted odds will decrease and holding other variables constant is false statement.
As given in the question,
Exponential logistic regression coefficient Exp(b) or given odds ratio, is the predicted change value in odds for a unit value increase in the predictor.The Exp represents the exponential value of b. When Exp(b) is less than 1, and increases values of the x- variable correspond to the decreasing odds of the occurring event's .Here exp(b) is greater than 1 which represents all the all other coefficients should lies between 0 and 1 or less than one.Therefore, the exponential logistic regression coefficient Exp(b) is greater than one it represents the associated x-variable increases is a false statement.
learn more about variables here
brainly.com/question/29583350
#SPJ4
What is the value of s?
10
units
The value of s is 17.
What is the Pythagorean theorem?
The Pythagorean theorem, sometimes known as Pythagoras' theorem, is a basic relationship between a right triangle's three sides in Euclidean geometry. According to this statement, the areas of the squares on the other two sides add up to the size of the square whose side is the hypotenuse.
Here, we have
Given
AB = 5, BD = 15
We have to find AD.
By applying the Pythagorean Theorem, we get
AB² + BD² = AD²
5² +15² = AD²
AD² = 289
AD = 17
Hence, the value of s is 17.
To learn more about the Pythagorean Theorem from the given link
https://brainly.com/question/16176867
#SPJ1
make x the subject of 5x-y=x+z
Answer: 4x=y+z
Step-by-step explanation:
To make x the subject, move all other variables besides x to the other side
5x-y=x+z
5x-y+y=x+z
5x=y+x+z
Move all numbers containing x to the left
5x-x=y+x-x+z
4x=y+z
[tex]f(x)= 5\sqrt{x^2}[/tex]
The values of f(x) for x = 1, 2, 3, 4, 5, ,,,, are 5, 10, 15, 20, 25, 30, , , ,
What is an expression?An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
Example: 2 + 3x + 4y = 7 is an expression.
We have,
f(x) = 5 √x²
√x² = x
f(x) = 5x
For x = 1, 2, 3, 4, 5, ,,,,,,
f(1) = 5
f(2) = 10
f(3) = 15
f(4) = 20
f(5) = 25
Thus,
The final expression is f(x) = 5x.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ1
For this philosopher, the existence of human beings is not reduced to the realization of an essence thought by God; man exists to the extent that he is carried out, it is the set of his acts and nothing else.
The philosopher who thought that the existence of human beings is not reduced to the realization of an essence thought by God has been Jean-Paul Sartre.
¿Who was Jean-Paul Sartre?This character was a Frenchman who had several professions and stood out in different branches, Jean-Paul Sartre was:
PhilosopherWriterNovelistPlaywrightPolitical activistBiographerLiterary criticJean-Paul Sartre is recognized for being an exponent of existentialism and humanist Marxism, among his thoughts, he himself thought that man exists to the extent that he is realized.
¡Hope this helped!
with a coupon, you can get a pair of shoes that normally costs $84 for only $72. what percentage was the discount? round to the nearest tenth of a percent if necessary. type the answer in the box below.
The discount on the pair of the shoes after applying the coupon is 14.2%
The normal cost of the pair of shoes is $84
The discounted price of those pair of shoes is $72
The discount in price is = 84 - 72 = 12
Discount percentage = discount / cost price x 100
Percentage can be calculated by dividing the value by the total value, and then multiplying the result by 100. It is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign, "%".
= 12/84 x 100
= 1/7 x 100
= 14.2%
Therefore, the discount on the pair of the shoes after applying the coupon is 14.2%
To learn more about percentage refer here
https://brainly.com/question/24877689
#SPJ4
Use the given conditions.
tan(u) = -3/4, 3π/2 < u < 2π
(a) Determine the quadrant in which u/2 lies.
O Quadrant I
O Quadrant II
O Quadrant III
O Quadrant IV
(b) Find the exact values of sin(u/2), cos(u/2), and tan(u/2) using the half-angle formulas.
sin(u/2) =
=
cos(u/2) =
tan(u/2)
Submit Answer
The quadrant in which u/2 lies is II quadrant.
What is Quadrant?
Quadrant is a business intelligence tool that helps companies extract, analyze, and visualize data from multiple sources in real-time. It enables users to create actionable insights to improve decision-making, optimize operations, and increase profitability. Quadrant provides an intuitive platform for teams to uncover hidden trends and correlations in data, develop predictive models, and generate reports. It also allows users to customize dashboards and create interactive visualizations. Quadrant simplifies data analysis and helps teams make more informed decisions.
a) tan(u) = -3/4, 3π/2 < u < 2π
[tex]\frac{3\pi }{2} < u < 2\pi \\\\270^{o} < u < 360^{o}\\\\Dividing\ both\ side\ by\ 2\\\\135^{o} < \frac{u}{2} < 180^{o}[/tex]
u/2 lies in II quadrant.
b) We have half angle formula's,
[tex]sin(\frac{u}{2} )= \sqrt[]{\frac{(1-cos\\ u)}{2} } \\[/tex]
[tex]sin \frac{u}{2} = \frac{3}{5}[/tex]
[tex]cos(\frac{u}{2} )= \sqrt[]{\frac{(1+cos\ u)}{2} } \\[/tex]
[tex]cos\frac{u}{2} =\frac{4}{5}[/tex]
[tex]tan(\frac{u}{2} )= \sqrt[]{\frac{(1-cos\ u)}{sin \ u} } \\[/tex]
[tex]tan(\frac{u}{2} )= \frac{3}{4}[/tex]
To know more about Quadrant visit,
https://brainly.com/question/25038683
#SPJ1
Use Green's Theorem to calculate the work done by the force F on a particle that is moving counterclockwise around the closed path C.F(x,y) = (e^x -3 y)i + (e^y + 6x)jC: r = 2 cos thetaThe answer is 9 pi.
the work done by the force F on a particle moving counterclockwise around the closed path C is 9π by integral.
Green's Theorem states that:
∮C F · dr = ∫∫D (∂Q/∂x - ∂P/∂y) dA
Where C is the boundary of the region D, P and Q are the components of the vector field F, and dr is the vector differential along the boundary C.
In this case, the region D is a circle with radius 2, so we can express the boundary C as r = 2 cos θ. We also need to calculate the components of the vector field F. These are P = e^x - 3y and Q = e^y + 6x.
Plugging these values into Green's Theorem, we get integral:
∮C F · dr = ∫∫D (∂Q/∂x - ∂P/∂y) dA
= ∫∫D (e^y + 6 - (-3)) dA
= ∫∫D (e^y + 9) dA
= ∫ 0 2π ∫ 0 2 (e^2 cosθ
+ 9) (2 dθ)
= 4π ∫ 0 2 (e^2 cosθ + 9) dθ
= 9π
Therefore, the work done by the force F on a particle moving counterclockwise around the closed path C is 9π.
Learn more about integral here
https://brainly.com/question/18125359
#SPJ4
7.) Bart is required to pass out 80 flyers for an upcoming event. He passes out an average of 10 flyers per minute. The situation can be represented using the function f(x)=80-10x where x represents time in minutes.
a.) Create a graph of the situation
After finding the point from the given function, we draw the graph. The graph of the given function is given below:
In the given question, Bart is required to pass out 80 flyers for an upcoming event. He passes out an average of 10 flyers per minute.
The situation can be represented using the function f(x)=80-10x
where x represents time in minutes.
We have to create a graph of the situation.
To create the graph we firstly find the value of f(x) for x=0,1,2,3,..............
The given function is f(x) = 80-10x
Now put x = 0
So f(0) = 80-10(0)
f(0) = 80-0
f(0) = 80
Now put x = 1
So f(1) = 80-10(1)
f(1) = 80-10
f(1) = 70
Now put x = 2
So f(2) = 80-10(2)
f(2) = 80-20
f(2) = 60
Now put x = 3
So f(3) = 80-10(3)
f(3) = 80-30
f(3) = 50
Now put x = 4
So f(4) = 80-10(4)
f(4) = 80-40
f(4) = 40
Now the table is
x 0 1 2 3 4
f(x) 80 70 60 50 40
Firstly we denote the point in the graph then we connect the all point to form a graph.
The graph of the given function is given below:
To learn more about draw the function link is here
brainly.com/question/29007062
#SPJ4
Overtime Hours Worked A random sample of 15 registered nurses in a large hospital showed that they worked on average 44.6
hours per week. The standard deviation of the sample was 2.3. Estimate the mean of the population with 99% confidence.
Assume the variable is normally distributed. Round intermediate answers to at least three decimal places. Round your final
answers to one decimal place.
0
6
Answer:
The mean of the population with 99% confidence is between 43.1 and 46.1
Step-by-step explanation:
The mean of the population with 99% confidence and The standard deviation of the sample was 2.3, which is between 43.07 to 46.13.
What is mean?Mean is a measurement of a probability distribution's central tendency along the median and mode. It also goes by the name "anticipated value."
Given:
A random sample of 15 registered nurses in a large hospital showed that they worked on average 44.6 hours per week, X = 44.6
The standard deviation of the sample was, n = 2.3,
The confidence = 99%,
1 - α = 99%
α = 1 - 0.99
α = 0.01
Calculate the margin of the error as shown below,
[tex]E = Z_{\alpha /2} \ Mean / standard\ deviation[/tex]
E = 2.576 × 2.3 / √15
E = 1.5298
Calculate the mean as shown below,
X - E < Mean < X + E
44.6 - 1.5298 < Mean < 44.6 + 1.5298
43.07 < Mean < 46.13
To know more about mean:
https://brainly.com/question/2810871
#SPJ1
To do a case insensitive compare which of the following could be used to test the equality of two strings, str1 and str2?
The following can be used to test the equality of two strings str1 and str2
.(str1.equalsIgnoreCase(str2))
.(str1.compareToIgnoreCase(str2)==0)
what is string?A string is a series of character in computer programming,either as a literal constant or some sort of variables.it must be enclosed in quotation for it to be recognized as a string.It is used for sorting text or character.The term string can also refer to more general arrays or other sequence data type and structures.
what is string compare?The string = compare two strings and is true if they are same (corresponding character are identical) but is false if they are not same.
The function equal calls string =if applied to two string.The string () compare two string character by character.if string are equal the function return to zero.
Therefore, the given test can be used to find the equality and compare of the string.
To learn more about string visit the given link;
https://brainly.com/question/4087119
#SPJ4
find the nth maclaurin polynomial for the function f (x )space equals space sin space x comma space space n space equals space 5. the coefficient of x to the power of 5 is
The nth maclaurin polynomial for the function sinx= x -[tex]\frac{x^{3} }{3!}[/tex]+[tex]\frac{x^{5} }{5!}[/tex]-[tex]\frac{x^{7} }{7!}[/tex]+[tex]\frac{x^{9} }{9!}[/tex]
we can find this by using maclaurin series.
what is expansion of function?A relation in which involving one or more variables.It represent partial function as sum of power in one variables or by sum of power of other function.
what is maclaurin series used for?It can be used to approximate function ,find the antiderivative of complicated function or compute on otherwise uncomputable sums.It is a type of series expansion in which all terms are non-negative integer power of the variables.
Now given a function is
f(x)=sinx n=5
Using x=0 the given equation becomes
f(0)= sin(0) = 0
Now taking derivative of given function and using x=0
Then we have
[tex]f_{1}[/tex](x)= cosx [tex]f_{1}[/tex](0)=cos(0)=1
[tex]f_{2}[/tex](x)=-sinx [tex]f_{2}[/tex](0)=sin(0)=0
[tex]f_{3}[/tex](x)= - cosx [tex]f_{3}[/tex](0)= - cos(0)= -1
[tex]f_{4}[/tex](x)= sinx [tex]f_{4}[/tex](0)= sin(0) = 0
[tex]f_{5}[/tex](x)=cosx [tex]f_{5}[/tex](0)= cos(0)= 1
and so on.
Now using maclaurin polynomial series
f(x)=f(0)+x[tex]f_{1}[/tex](0)+[tex]\frac{x^{2} }{2!}[/tex][tex]f_{2}[/tex](0)+ [tex]\frac{x^{3} }{3!}[/tex][tex]f_{3}[/tex](0)+[tex]\frac{x^{4} }{4!}[/tex][tex]f_{4}[/tex](0)..............
by putting the value in the above series
sinx=0+x(1)+[tex]\frac{x^{2} }{2!}[/tex](0) +[tex]\frac{x^{3} }{3!}[/tex](-1)+[tex]\frac{x^{4} }{4!}[/tex](0)........
sinx=x -[tex]\frac{x^{3} }{3!}[/tex]+[tex]\frac{x^{5} }{5!}[/tex]-[tex]\frac{x^{7} }{7!}[/tex]...
Hence this is the 5th term maclaurin series.
To learn more maclaurin polynomial visit the link;
https://brainly.com/question/24188694
#SPJ4
A bag contains 100 marbles which are red, green, and blue. suppose a student randomly selects a marble without looking, record's the color,and then places the marble back in the bag the student has recorded 7 red marbles, 2 green marbles and 11 blue marbles. predict how many green marbles are in the bag
Answer: 10 marbles
Step-by-step explanation:
First, arrange all the numbers of marbles that the student picked in a ratio
red:green:blue
7:2:11
When adding all the coloured marbles that the student picked together, you get 20 marbles or "parts" as you would usually say in ratio.
Then, it would be helpful to rewrite the ratios as fractions, with 20 as the denominator:
[tex]\frac{7}{20}:\frac{2}{20}:\frac{11}{20}[/tex]
However, the bag contains 100 marbles so we should have 100 as the denominator instead of 20. 20 is a fifth of 100, so in this case, we would multiply everything (the numerator and the denominator) by 5:
[tex]\frac{7*5}{20*5} :\frac{2*5}{20*5} :\frac{11*5}{20*5}[/tex]
[tex]\frac{35}{100}:\frac{10}{100}:\frac{55}{100}[/tex]
Therefore, you could predict you would get 35 red marbles, 10 green marbles, and 55 blue marbles.
organic chemists often purify organic compounds by a method known as fractional crystallization. an experimenter wanted to prepare and purify 4.85 g of aniline. ten 4.85-gram specimens of aniline were prepared and purified to produce acetanilide. the following dry yields were obtained: 3.85, 3.88, 3.90, 3.62, 3.72, 3.80, 3.85, 3.36, 4.01, 3.82 construct a 95% confidence interval for the mean number of grams of acetanilide that can be recovered from 4.85 grams of aniline. assume that the obtained dry yields of acetanilide are i.i.d. and approximately normally distributed with an unknown mean and variance.
As calculated from the given data the confidence interval for μ is (3.65, 3.91).
Let X_1,..,X_nX 1 ,..,X n are n observations
from population with mean μ.
Than sample mean
= n1i=1/n∑X i
Sample variance is defined by,
s = 1/( n-1 )∑(X i - mean) ²
n = sample size = 10
c = 95%
therefore ,
mean = 37.82/10
=3.782
variance = 0.29556/9
=0.03
Data points' variance from the mean is a measure of how they vary. A variance, according to Layman, is a measurement of how widely apart a set of data (numbers) are from their mean (average) value.
Finding the expected difference of deviation from the actual number is what is meant by variance. As a result, variance is influenced by the data set's standard deviation.
Data is more dispersed from its mean the higher the variance value, and less dispersed from mean if the variance value is low or minimal. As a result, it is referred to as a measure of data spread from mean.
To learn more about variance
brainly.com/question/15707019
#SPJ4
PLEASE HELP WILL MARK BRAINLIEST
Answer: C. [tex]y=2(x+4z)[/tex]
Step-by-step explanation:
[tex]m=\frac{0-8z}{-4z-0}=2\\\\\therefore y=2x+8z=2(x+4z)[/tex]
which of the following statements are true regarding the probability density function f(x) and the cumulative density function f(x) of a continuous random variable? select all that apply. multiple answers: multiple answers are accepted for this question select one or more answers and submit. for keyboard navigation...show more a f(x)
The likelihood that a random cumulative variable will fall within a specific range of values rather than taking on a single value is specified by the Probability Density Function.
The probability density function (PDF), also known as the density of a continuous random variable, is a function whose value at any specific sample (or point) in the data point (the range of potential values for the random variable) can be understood as having given a relative likelihood that the value of something similar to the random variable would be closer to that sample.
There is no absolute probability that a random variable will take on any specific value because there are an unlimited number of alternative values to begin with. However, the PDF value at two samples can be used to estimate how much more likely it is for the random variable to have that particular value in any given draw.
The Cantor distribution, which although having no discrete component, does not assign positive probabilities to any specific locations, and discrete random variable probability distributions do not all have a density function.
A distribution has a density function if and only if the cumulative distribution function F(x) is fully continuous. In this case, F is typically always differentiable, and its derivative can be used to symbolize the probability density.
To learn more about probability density function visit:
https://brainly.com/question/14410995
#SPJ4
What is the end behavior of the graph of the polynomial function f(x) = 3x6 + 30x5 + 75x4?
As x→-co, Y→- and as x→∞o, y →→∞
As x→-co Y→- and as x→∞ Y→∞
As x→-co, Y→∞ and as x→∞o, y →-co
As x→-co, y →∞and as x→∞o, y →∞
The end behavior of the graph of the polynomial function (x)=3x⁶+ 30x⁵ + 75x⁴ is x→±∞, y→∞.
What is Polynomial?Polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables
The given polynomial function is f(x)=3x⁶+ 30x⁵ + 75x⁴
y=f(x)=3x⁴(x+5)²≥0
The zeros are 0, 0, 0,0,-5 and -5.
x-intercept ( y = 0 ): x = -5.
Local mini/max turning points ( y' = 0 ): 0 0, 0, -10/3 and -5.-,
As x→±∞, y→∞.
Hence, the end behavior of the graph of the polynomial function (x)=3x⁶+ 30x⁵ + 75x⁴ is x→±∞, y→∞.
To learn more on Polynomials click:
https://brainly.com/question/11536910
#SPJ1
Answer:
the 4th option
Step-by-step explanation:
ed2023
Cash 25 selects 6 numbers between 1 and 25.where repetition isn’t allowed but order doesn’t matter?
Solve for x, (7x-4) (73)
Answer:
x = 11
Step-by-step explanation:
Angles EIC and DJH are alternate exterior angles, which means they're congruent and equal.
Therefore, we can find x by setting the two angles equal to each other:
[tex]7x-4=73\\7x=77\\x=11[/tex]