Using the known Maclaurin series expansion for e^x: e^x = 1 + x + (x^2 / 2!) + (x^3 / 3!) + ...
We can obtain the Maclaurin series for the function f(x) = xe^(7x) by multiplying the Maclaurin series for e^x by x:
f(x) = x(1 + 7x + (7x)^2 / 2! + (7x)^3 / 3! + ...)
Simplifying further:
f(x) = x + 7x^2 + (49x^3 / 2!) + (343x^4 / 3!) + ...
Therefore, the Maclaurin series expansion for f(x) is:
f(x) = x + 7x^2 + (49x^3 / 2!) + (343x^4 / 3!) + ...
The associated radius of convergence, R, can be determined by applying the ratio test. In this case, we have an infinite power series with terms involving powers of x. The ratio test states that if the limit of |a_(n+1) / a_n| as n approaches infinity is L, then the radius of convergence is R = 1 / L.
In our case, applying the ratio test yields a limit of 0 as n approaches infinity. Therefore, the radius of convergence R is infinite, indicating that the Maclaurin series for f(x) converges for all values of x.
to learn more about Maclaurin series click here:
brainly.com/question/30756411
#SPJ11
What is the answer? Please help, I need this done today.
Answer:
27 is the answer
Step-by-step explanation:
Solve the following DE using Power series around x₁ = 0. Find the first eight nonzero terms of this DE. y" + xy' + 2y = 0.
To solve the differential equation y" + xy' + 2y = 0 using power series, we assume a power series representation for the solution and derive a recurrence relation for the coefficients. The first eight nonzero terms can be found by solving the recurrence relation.
To solve the differential equation y" + xy' + 2y = 0 using power series around x₁ = 0, we can assume a power series representation for the solution:
y(x) = ∑(n=0 to ∞) aₙxⁿ
Let's substitute this power series representation into the given differential equation and find the recurrence relation for the coefficients aₙ.
Differentiating y(x) with respect to x:
y'(x) = ∑(n=0 to ∞) aₙn xⁿ⁻¹
y''(x) = ∑(n=0 to ∞) aₙn(n-1) xⁿ⁻²
Substituting these expressions into the differential equation:
∑(n=0 to ∞) aₙn(n-1) xⁿ⁻² + x ∑(n=0 to ∞) aₙn xⁿ⁻¹ + 2∑(n=0 to ∞) aₙxⁿ = 0
Now, we can rearrange and collect like terms based on the powers of x:
∑(n=0 to ∞) [aₙn(n-1) xⁿ⁻² + aₙn xⁿ⁺¹ + 2aₙxⁿ] = 0
Since this equation must hold for all values of x, each coefficient of xⁿ must be zero. Therefore, we get the following recurrence relation for the coefficients:
aₙ(n-1)(n-2) + aₙ₋₁(n-1) + 2aₙ = 0
Simplifying the recurrence relation:
aₙ(n² - 3n + 2) + aₙ₋₁(n-1) = 0
Now, we can start finding the first few nonzero terms of the power series solution by using the recurrence relation.
First term (n=0):
a₀(0² - 3(0) + 2) + a₋₁(-1) = 0
a₀ + a₋₁ = 0
Second term (n=1):
a₁(1² - 3(1) + 2) + a₀(1-1) = 0
a₁ - a₀ = 0
From the first and second terms, we find a₀ = a₁ and a₋₁ = -a₀.
Third term (n=2):
a₂(2² - 3(2) + 2) + a₁(2-1) = 0
a₂ - 3a₁ = 0
a₂ - 3a₀ = 0
Fourth term (n=3):
a₃(3² - 3(3) + 2) + a₂(3-1) = 0
a₃ - 6a₂ = 0
a₃ - 6a₀ = 0
Continuing this process, we can find the values of a₄, a₅, a₆, and so on, using the recurrence relation.
By solving the recurrence relation for each term, we can determine the first eight nonzero terms of the power series solution to the differential equation y" + xy' + 2y = 0.
To learn more about differential equation visit : https://brainly.com/question/28099315
#SPJ11
The Leungs sold a valuable painting for $55,000. This price is $1,000
more than twice the amount they originally paid for it. How much
did they originally pay?
A. $25,000 B. $27,000 C. $27,500 D. $28,000
Answer:
B. $27,000
Step-by-step explanation:
So 55,000 = 2x + 1,000
Simply for x
55,000 = 2x + 1,000
54,000 = 2x
x = 27,000
The well-known psychologist Dr. Elbod has established what he calls his Generalized Anxiety Scale (GAS). The GAS, which is a scale from 0 to 10, measures the "general anxiety" of an individual, with higher GAS scores corresponding to more anxiety. (Dr. Elbod's assessment of anxiety is based on a variety of measurements, both physiological and psychological.) The bivariate data below give the GAS score (denoted by x) and the number of hours of sleep last night (denoted by y) for each of the fifteen adults in a study. The least-squares regression line for these data has equation y = 8.42 -0.27%. This line, along with a scatter plot of the sample data, is shown below. GAS score, X Sleep time, y (in hours) 5.0 5.8 3.2 7.1 6.6 6.3 10+ 1.0 7.4 8.1 6.6 9+ X X 2.0 X 8.1 6.6 9.0 X Sleep time (in hours) 7 X x 6.0 8.1 X X X X 1.5 8.6 6 4.1 6,8 5 3.4 7.6 5.6 U 10 8.0 8.8 5.4 GAS score 6.6 7.1 3.7 8.7 Based on the study's data and the regression line, complete the following. Х s ? (a) For these data, GAS scores that are less than the mean of the GAS scores tend to be paired with sleep times that are (Choose one) the mean of the sleep times. (b) According to the regression equation, for an increase of one in GAS score, there is a corresponding decrease of how many hours in sleep time?
The regression line is y = 8.42 - 0.27x and there is a corresponding decrease of 0.27 hours in sleep time.
Given below is the calculation of the mean, variance, and standard deviation of GAS scores.
X f fx x^2 3.2 1 3.2 10.24 3.4 1 3.4 11.56 3.7 1 3.7 13.69 4.1 1 4.1 16.81 5 1 5 25 5.4 1 5.4 29.16 5.6 1 5.6 31.36 5.8 1 5.8 33.64 6 1 6 36 6.3 1 6.3 39.69 6.6 2 13.2 43.56 7.1 1 7.1 50.41 7.4 1 7.4 54.76 8 1 8 64 8.1 2 16.2 65.61 8.6 1 8.6 73.96 8.7 1 8.7 75.69
Total 15 131.8
Mean = sum of x*f/sum of f = 131.8/15 = 8.78
To find the variance of the given data set, use the formula:
Variance (s²) = (Σx² / n) - (mean)²
Variance = (520.75 / 15) - 76.96 = 8.977
The standard deviation is the square root of the variance, so:
Sd = sqrt(8.977) = 2.996
For these data, GAS scores that are less than the mean of the GAS scores tend to be paired with sleep times that are more than the mean of the sleep times.
According to the regression equation, for an increase of one in GAS score, there is a corresponding decrease of 0.27 hours in sleep time.
To learn more about regression
https://brainly.com/question/28178214
#SPJ11
Jason wants to create a box with the same volume as the one shown below. He wants the length to be 4
inches. What would be the measurements of the width and height?
Length: 4 inches
Width: inches
Height: inches
Explain how you determined the width and height.
- cubic inch
Given : jason wants to create a box with the same volume as the one shown
To find : measurements of width and height .
Solution :
Volume of given box
=> 6 * 2 * 3
=36
length to be 4 inches .
lwh = 36
=> 4 wh = 36
=> wh = 9
9 = 1 * 9
9 = 3 * 3
Width and Height can be 3 inches each or 1 and 9 inches
Z is a standard normal random variable. The P(1.41 < z < 2.85) equals
A) 0.4772
B) 0.3413
C) 0.8285
D) None of the other answers is correct
The correct answer is 0.4772.
Step-by-step explanation: We know that Z is a standard normal random variable.
The standard normal distribution has a mean of 0 and a standard deviation of 1. It is also symmetric around the mean with 50% of the area to the left and 50% to the right of the mean.
The area under the standard normal curve is always equal to 1.
Now, we need to calculate the probability of the interval (1.41 < z < 2.85).
We know that the total area under the standard normal curve is 1. Therefore, we can calculate the required probability by finding the area between the two given values on the standard normal curve.
Using a standard normal distribution table, we can find the area corresponding to each value as shown below: Z (from the table)1.41 0.41922.85 0.4978
The area between these two values can be calculated as follows: P(1.41 < z < 2.85) = P(z < 2.85) - P(z < 1.41) = 0.49784 - 0.4192 = 0.07864
So, P(1.41 < z < 2.85) equals 0.07864 or approximately 0.4772.
To know more about the standard normal distribution table visit:
https://brainly.com/question/12632407
#SPJ11
Find the intersections of these pairs of linear equations. Al) 4x-3y=6 -2x+(3/2)y-3 A2) x-4y=-5 3x-2y.15 A3) 4x+y=9 2x-3y22 A4) -6x+9y = 9 2x-3y=6 Note on answers: If the answer is a point, write It as an ordered pair, (a,b). No spaces. Include the parentheses. If there is no solution, enter none, If they are the same line and there is an Infinite number of solutions, enter
A1) To find the intersection of the two equations, we can solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
4x - 3y = 6
Solving for y:
-3y = -4x + 6
y = (4/3)x - 2
Now let's look at the second equation:
-2x + (3/2)y - 3 = 0
Solving for y:
(3/2)y = 2x + 3
y = (4/3)x + 2
Now we have two expressions for y:
y = (4/3)x - 2 and y = (4/3)x + 2
These lines have different y-intercepts and the same slope, so they are not parallel and must intersect at some point.
Setting the two expressions equal to each other:
(4/3)x - 2 = (4/3)x + 2
Subtracting (4/3)x from both sides:
-2 = 2
This is a contradiction, so there is no solution.
Answer: none
A2)
To find the intersection of the two equations, we can again solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
x - 4y = -5
Solving for y:
-4y = -x - 5
y = (1/4)x + (5/4)
Now let's look at the second equation:
3x - 2y = 15
Solving for y:
-2y = -3x + 15
y = (3/2)x - 7.5
Now we have two expressions for y:
y = (1/4)x + (5/4) and y = (3/2)x - 7.5
Setting the two expressions equal to each other:
(1/4)x + (5/4) = (3/2)x - 7.5
Subtracting (1/4)x and adding 7.5 to both sides:
(11/4) = (5/2)x
Multiplying both sides by 2/5:
x = 22/20 = 11/10
Now we can substitute this value of x into either equation to find y:
y = (1/4)(11/10) + (5/4) = (11/40) + (50/40) = 61/40
Answer: (11/10, 61/40)
A3)
Starting with the first equation:
4x + y = 9
Solving for y:
y = -4x + 9
Now let's look at the second equation:
2x - 3y = 22
Solving for y:
-3y = -2x + 22
y = (2/3)x - (22/3)
Now we have two expressions for y:
y = -4x + 9 and y = (2/3)x - (22/3)
Setting the two expressions equal to each other:
-4x + 9 = (2/3)x - (22/3)
Adding 4x and (22/3) to both sides:
33/3 = (14/3)x
Multiplying both sides by 3/14:
x = 9/14
Now we can substitute this value of x into either equation to find y:
y = -4(9/14) + 9 = -18/7
Answer: (9/14, -18/7)
A4)
Starting with the first equation:
-6x + 9y = 9
Solving for y:
9y = 6x + 9
y = (2/3)x + 1
Now let's look at the second equation:
2x - 3y = 6
Solving for y:
-3y = -2x + 6
y = (2/3)x - 2
Now we have two expressions for y:
y = (2/3)x + 1 and y = (2/3)x - 2
Setting the two expressions equal to each other:
(2/3)x + 1 = (2/3)x - 2
Adding -2/3x and -1 to both sides:
0 = -3A1)
To find the intersection of the two equations, we can solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
4x - 3y = 6
Solving for y:
-3y = -4x + 6
y = (4/3)x - 2
Now let's look at the second equation:
-2x + (3/2)y - 3 = 0
Solving for y:
(3/2)y = 2x + 3
y = (4/3)x + 2
Now we have two expressions for y:
y = (4/3)x - 2 and y = (4/3)x + 2
These lines have different y-intercepts and the same slope, so they are not parallel and must intersect at some point.
Setting the two expressions equal to each other:
(4/3)x - 2 = (4/3)x + 2
Subtracting (4/3)x from both sides:
-2 = 2
This is a contradiction, so there is no solution.
Answer: none
A2)
To find the intersection of the two equations, we can again solve for one variable in terms of the other and substitute that equation into the other equation.
Starting with the first equation:
x - 4y = -5
Solving for y:
-4y = -x - 5
y = (1/4)x + (5/4)
Now let's look at the second equation:
3x - 2y = 15
Solving for y:
-2y = -3x + 15
y = (3/2)x - 7.5
Now we have two expressions for y:
y = (1/4)x + (5/4) and y = (3/2)x - 7.5
Setting the two expressions equal to each other:
(1/4)x + (5/4) = (3/2)x - 7.5
Subtracting (1/4)x and adding 7.5 to both sides:
(11/4) = (5/2)x
Multiplying both sides by 2/5:
x = 22/20 = 11/10
Now we can substitute this value of x into either equation to find y:
y = (1/4)(11/10) + (5/4) = (11/40) + (50/40) = 61/40
Answer: (11/10, 61/40)
A3)
Starting with the first equation:
4x + y = 9
Solving for y:
y = -4x + 9
Now let's look at the second equation:
2x - 3y = 22
Solving for y:
-3y = -2x + 22
y = (2/3)x - (22/3)
Now we have two expressions for y:
y = -4x + 9 and y = (2/3)x - (22/3)
Setting the two expressions equal to each other:
-4x + 9 = (2/3)x - (22/3)
Adding 4x and (22/3) to both sides:
33/3 = (14/3)x
Multiplying both sides by 3/14:
x = 9/14
Now we can substitute this value of x into either equation to find y:
y = -4(9/14) + 9 = -18/7
Answer: (9/14, -18/7)
A4)
Starting with the first equation:
-6x + 9y = 9
Solving for y:
9y = 6x + 9
y = (2/3)x + 1
Now let's look at the second equation:
2x - 3y = 6
Solving for y:
-3y = -2x + 6
y = (2/3)x - 2
Now we have two expressions for y:
y = (2/3)x + 1 and y = (2/3)x - 2
Setting the two expressions equal to each other:
(2/3)x + 1 = (2/3)x - 2
Adding -2/3x and -1 to both sides: 0 = -3
Learn more about equation from
https://brainly.com/question/17145398
#SPJ11
uppose V1 and V2 are both uniformly distributed between 0.2 and 0.8, and their probability distribution is modelled by using a Gaussian copula with a correlation coefficient of rho=0.5. Write down the joint probability Prob(V1<0.5, V2<0.3) in terms of the cumulative bivariate normal distribution function: M(U1
The joint probability, Prob(V1 < 0.5, V2 < 0.3), of two uniformly distributed variables V1 and V2, modelled using a Gaussian copula with a correlation coefficient of ρ = 0.5.
Given that V1 and V2 are uniformly distributed between 0.2 and 0.8, we need to transform these variables to standard normal variables before calculating the joint probability. The Gaussian copula is commonly used for this purpose.
The transformation from the uniform distribution to the standard normal distribution can be achieved using the inverse of the cumulative distribution function (CDF) of the standard normal distribution. Let Φ denote the CDF of the standard normal distribution. The transformed variables, denoted as U1 and U2, can be calculated as follows:
U1 = Φ^(-1)(V1)
U2 = Φ^(-1)(V2)
Since the correlation coefficient between U1 and U2 is ρ = 0.5, we can calculate the joint probability using the bivariate normal distribution function with mean 0, standard deviation 1, and correlation coefficient 0.5. Let Φ2 denote the cumulative bivariate normal distribution function.
[tex]Prob(V1 < 0.5, V2 < 0.3) = Prob(U1 < Φ^(-1)(0.5), U2 < Φ^(-1)(0.3))[/tex]
[tex]= Φ2(Φ^(-1)(0.5), Φ^(-1)(0.3); ρ = 0.5)[/tex]
By evaluating the bivariate normal distribution function at the given values, we can obtain the joint probability.
Learn more about joint probability here:
https://brainly.com/question/32099581
#SPJ11
To write down the joint probability Prob(V1 < 0.5, V2 < 0.3) in terms of the cumulative bivariate normal distribution function, we need to utilize the properties of the Gaussian copula and the correlation coefficient.
4(2a - 3) = 2(3a + 1)
What's the answer?
Answer:
a=7
Step-by-step explanation:
4(2a-3) = 2(3a+1)
8a-12 = 6a+2
2a-12=2
2a=14
a=7
write the ratios sin m, cos m, and tan m. give the exact value and four decimal approximation. Please help.
Trigonometric functions are the ratio of different sides of a triangle. The ratios sin∠m, cos∠m, and Tan∠m are 0.758, 0.6522, and 1.1624.
What are Trigonometric functions?The trigonometric function gives the ratio of different sides of a right-angle triangle.
[tex]\rm Sin \theta=\dfrac{Perpendicular}{Hypotenuse}\\\\\\Cos \theta=\dfrac{Base}{Hypotenuse}\\\\\\Tan \theta=\dfrac{Perpendicular}{Base}[/tex]
where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
As it is given that the base of the triangle for the ∠m is Mk(15 units), the perpendicular is KL(4√19), and the hypotenuse is 23. Now, the trigonometric ratios can be written as,
Sine
[tex]\rm Sin \theta=\dfrac{Perpendicular}{Hypotenuse}\\\\\\\rm Sin (\angle m)=\dfrac{KL}{ML}\\\\\\\rm Sin (\angle m)=\dfrac{4\sqrt{19}}{23}\\\\\\\rm Sin (\angle m)=0.758069\approx 0.758[/tex]
Cosine
[tex]\rm Cos\theta=\dfrac{Base}{Hypotenuse}\\\\\\\rm Cos(\angle m)=\dfrac{MK}{ML}\\\\\\\rm Cos(\angle m)=\dfrac{15}{23}\\\\\\\rm Cos (\angle m)=0.65217\approx 0.6522[/tex]
Tangent
[tex]\rm Tan\theta=\dfrac{Perpendicular}{Base}\\\\\\\rm Tan(\angle m)=\dfrac{KL}{MK}\\\\\\\rm Tan(\angle m)=\dfrac{4\sqrt{19}}{15}\\\\\\\rm Tan(\angle m)=1.16237\approx 1.1624[/tex]
Hence, the ratios sin m, cos m, and tan m are 0.758, 0.6522, and 1.1624.
Learn more about Trigonometric functions:
https://brainly.com/question/6904750
Find the area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1).
The area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1) is 6.5 square units.
To find the area of the triangle with vertices: Q(2,-1,1), R(3,-2,-2), S(5,1,-1), we can use the formula Area of triangle = 1/2 * |(x2-x1) (y3-y1)-(x3-x1)(y2-y1)|
where, x1, y1, x2, y2, x3 and y3 are the coordinates of the given triangle Q(2,-1,1)
corresponds to x1=2, y1=-1R(3,-2,-2)
corresponds to x2=3, y2=-2S(5,1,-1)
corresponds to x3=5, y3=1
We can substitute these values in the above formula to get Area of triangle = 1/2 * |(x2-x1) (y3-y1)-(x3-x1)(y2-y1)|= 1/2 * |(3-2)(1-(-1)) - (5-2)(-2-(-1))| = 1/2 * |-4 - 9| = 1/2 * 13 = 6.5
Know more about area of the triangle here:
https://brainly.com/question/29156501
#SPJ11
PLEASE HELP ME! NO LINKSSSSSS!!!
In four days, your family drives 5/7 of a trip. Your rate of travel is the same throughout the trip. The total trip is 1250 miles. In how many more days will you reach your destination?
In 4 days your family drive 5/7 of a trip. Your rate of travel is the same throughout the trip. The total trip is 1250 miles. How many more days until you reach your destination?
Find the amount traveled in one day by dividing
(5/7)/4 = 5/28 of the trip
How many days would it take to add up to 1
1/(5/28) = 5.6 days total
since we already traveled for 4 days, we have 1.6 more days to go
Identify two ratios that are equivalent to 3:5
Which expression is equivalent to 13 22b
If 3 out of 4 people use a certain headache
medicine, how many in a city of 150,400
will use this medicine?
(A) 118, 200
(B) 37,600
(C) 50, 133
(D) 112,800
Answer:
(D) 112,800
Step-by-step explanation:
75%x150,400= 112,800
112,800 use the headache medicine.
Answer:
option D
Step-by-step explanation:
Out of 4 , 3 use headache medicine . So the fraction is 3/4 .
Total number of people in city = 150,400 .
So ,
⇒ n = 3/4 × Population
⇒ n = 3/4 × 150,400
⇒ n = 112,800
Hence option D is correct.Help please I’m a little confused
Answer:
answer is a . x²-8x+16=32
x²-8x=32-16
help me please it's due tonight
Answer:
π
Step-by-step explanation:
S = rФ
Arc length = radius x theta
S = (3)([tex]\frac{\pi }{3}[/tex]) = [tex]\pi[/tex]
Find the centre of mass of the 2D shape bounded by the lines y = ±1.3x between x = 0 to 2.1. Assume the density is uniform with the value: 3.5kg. m-2 Also find the centre of mass of the 3D volume created by rotating the same lines about the x-axis. The density is uniform with the value: 1.9kg. m (Give all your answers rounded to 3 significant figures.) a) Enter the mass (kg) of the 20 plate: Enter the Moment (kg.m) of the 2D plate about the y-axis: Enter the x-coordinate (m) of the centre of mass of the 2D plate: Submit part ed Enter the mass (kg) of the 3D body: Enter the Moment (kg.m) of the 3D body about the y-axis: Enter the x-coordinate (m) of the centre of mass of the 3D body:
The mass of the 2D plate is 20.067 kg, with a moment of 5.742 kg.m about the y-axis. The x-coordinate of the center of mass of the 2D plate is 0.286 m. The mass of the 3D body is 62.137 kg, with a moment of 39.748 kg.m about the y-axis. The x-coordinate of the center of mass of the 3D body is 0.640 m.
To determine the center of mass of the 2D shape bounded by the lines y = ±1.3x between x = 0 to 2.1, we need to calculate the mass, moment, and x-coordinate of the center of mass.
1) Mass of the 2D plate:
The area of the 2D shape can be calculated by finding the difference in the areas under the two lines y = ±1.3x between x = 0 and x = 2.1.
Area = ∫(1.3x)dx - ∫(-1.3x)dx
= ∫1.3xdx + ∫1.3xdx
= 2 * ∫1.3xdx
= 2 * [0.65x²] between x = 0 and x = 2.1
= 2 * (0.65 * (2.1)²)
= 2 * (0.65 * 4.41)
= 2 * 2.8665
= 5.733
Mass = Area * Density
= 5.733 * 3.5
≈ 20.067 kg
Therefore, the mass of the 2D plate is approximately 20.067 kg.
2) Moment of the 2D plate about the y-axis:
The moment of the 2D shape about the y-axis is given by the integral of the product of the y-coordinate and the area element.
Moment = ∫(y * dA)
= ∫(±1.3x * dA)
= 2 * ∫(1.3x * dA) between x = 0 and x = 2.1
= 2 * 1.3 * ∫(x * dA) between x = 0 and x = 2.1
= 2 * 1.3 * ∫(x * dx)
= 2 * 1.3 * [0.5x²] between x = 0 and x = 2.1
= 2 * 1.3 * (0.5 * (2.1)²)
= 2 * 1.3 * (0.5 * 4.41)
= 2 * 1.3 * 2.205
= 5.742 kg.m
Therefore, the moment of the 2D plate about the y-axis is 5.742 kg.m.
3) x-coordinate of the center of mass of the 2D plate:
The x-coordinate of the center of mass of the 2D shape can be calculated using the formula:
x-coordinate = Moment / Mass
x-coordinate = 5.742 kg.m / 20.067 kg
≈ 0.286 m
Therefore, the x-coordinate of the center of mass of the 2D plate is approximately 0.286 m.
For the 3D body created by rotating the same lines about the x-axis:
1) Mass of the 3D body:
The volume of the 3D body can be calculated by finding the difference in the volumes between the two shapes obtained by rotating y = ±1.3x about the x-axis between x = 0 and x = 2.1.
Volume = π * ∫(1.3x)^2 dx - π * ∫(-1.3x)^2 dx
= π * ∫1.69x^2 dx - π * ∫1.69x^2 dx
=
2 * π * ∫1.69x² dx
= 2 * π * [0.5633x³] between x = 0 and x = 2.1
= 2 * π * (0.5633 * (2.1)³)
= 2 * π * (0.5633 * 9.261)
= 2 * π * 5.2167
≈ 32.703 m³
Mass = Volume * Density
= 32.703 * 1.9
≈ 62.137 kg
Therefore, the mass of the 3D body is approximately 62.137 kg.
2) Moment of the 3D body about the y-axis:
The moment of the 3D body about the y-axis can be calculated similarly to the 2D plate but considering the additional dimension.
Moment = ∫(x * dV)
= π * ∫(x * (1.3x)² dx) - π * ∫(x * (-1.3x)^2 dx)
= 2 * π * ∫(1.3x³ dx)
= 2 * π * [0.325x⁴] between x = 0 and x = 2.1
= 2 * π * (0.325 * (2.1)⁴)
= 2 * π * (0.325 * 19.4481)
= 2 * π * 6.3252
≈ 39.748 kg.m
Therefore, the moment of the 3D body about the y-axis is approximately 39.748 kg.m.
3) x-coordinate of the center of mass of the 3D body:
The x-coordinate of the center of mass of the 3D body can be calculated using the formula:
x-coordinate = Moment / Mass
x-coordinate = 39.748 kg.m / 62.137 kg
≈ 0.640 m
Therefore, the x-coordinate of the center of mass of the 3D body is approximately 0.640 m.
To summarize the answers:
a) Mass of the 2D plate: 20.067 kg
b) Moment of the 2D plate about the y-axis: 5.742 kg.m
c) x-coordinate of the center of mass of the 2D plate: 0.286 m
d) Mass of the 3D body: 62.137 kg
e) Moment of the 3D body about the y-axis: 39.748 kg.m
f) x-coordinate of the center of mass of the 3D body: 0.640 m
To know more about center of mass refer here:
https://brainly.com/question/27549055#
#SPJ11
Could someone please help me? Thank you and explain the work because I don’t get this
Answer:
5.59 times per second.
Step-by-step explanation:
Direct variation is in the form:
[tex]y=kx[/tex]
Where k is the constant of variation.
Inverse variation is in the form:
[tex]\displaystyle y=\frac{k}{x}[/tex]
In the given problem, the frequency of a vibrating guitar string varies inversely as its length. In other words, using f for frequency and l for length:
[tex]\displaystyle f=\frac{k}{\ell}[/tex]
We can solve for the constant of variation. We know that the frequency f is 4.3 when the length is 0.65 meters long. Thus:
[tex]\displaystyle 4.3=\frac{k}{0.65}[/tex]
Solve for k:
[tex]k=4.3(0.65)=2.795[/tex]
So, our equation becomes:
[tex]\displaystyle f=\frac{2.795}{\ell}[/tex]
Then when the length is 0.5 meters, the frequency will be:
[tex]\displaystyle f=\frac{2.795}{.5}=5.59\text{ times per second.}[/tex]
What is equivalent ratio of 5:8:4 and explain how u got it
this is example
So, first we need to write the given ratio as fraction,
= 8/18
= (8 × 2)/(18 × 2)
= 16/36
= 16 : 36 (one equivalent ratio),
So, 16 : 36 is an equivalent ratio of 8 : 18.
Now we will find another equivalent ratio of 8 : 18 by using division.
Similarly, first we need to write the given ratio as fraction,
= 8/18
= (8 ÷ 2)/(18 ÷ 2)
= 4/9
= 4 : 9 (another equivalent ratio)
So, 4 : 9 is an equivalent ratio of 8 : 18.
Therefore, the two equivalent ratios of 8 : 18 are 16 : 36 and 4 : 9.
2. Frame two equivalent ratios of 4 : 5.
Solution:
To find two equivalent ratios of 4 : 5 we need to apply multiplication method only to get the answer in integer form.
First we need to write the given ratio as fraction,
= 4/5
= (4 × 2)/(5 × 2)
= 8/10
= 8 : 10 is one equivalent ratio,
Similarly again, we need to write the given ratio 4 : 5 as fraction to get another equivalent ratio;
= 4/5
= (4 × 3)/(5 × 3)
= 12/15 is another equivalent ratio
Therefore, the two equivalent ratios of 4 : 5 are 8 : 10 and 12 : 15.
Note: In this question we can’t apply division method to get the answer in integer form because the G.C.F. of 4 and 5 is 1. That means, 4 and 5 cannot be divisible by any other number except 1.
The two equivalent ratios of 5:8:4 are 8: 10 and 12: 15.
What is a fraction?The fraction is defined as the division of the whole part into an equal number of parts. In mathematics, ratios are used to determine the relationship between two numbers it indicates how many times is one number to another number.
First, we need to write the given ratio as a fraction,
F= 8/18
F= (8 × 2)/(18 × 2)
F= 16/36
F= 16 : 36 (one equivalent ratio),
16: 36 is an equivalent ratio of 8: 18.
Find another equivalent ratio of 8: 18 by using division. Similarly, first, we need to write the given ratio as a fraction,
F= 8/18
F= (8 ÷ 2)/(18 ÷ 2)
F= 4/9
F= 4 : 9 (another equivalent ratio)
4: 9 is an equivalent ratio of 8: 18.
Therefore, the two equivalent ratios of 5:8:4 are 16: 36 and 4: 9.
To know more about equivalent ratio follow
https://brainly.com/question/2328454
#SPJ5
A local charity receives 1/3 of funds raised during a craft fair and a bake sale. The total amount given to the charity was $137.45. How much did the bake sale raise?
(NEED ANSWER ASAP!!)
Answer:
$412.35
Step-by-step explanation:
Answer: $412.35
Step-by-step explanation:
$137.45 x 3 = $412.35 for the total that the bake sale raised.
Is it possible for the rug to have an area of 71.25 square feet? If it is possible, give approximate dimensions of the rectangle and explain your work. If it is not possible, explain why not.
Answer:
Yes 2*35.625
Step-by-step explanation:
Just divide by two and now you have dimensions for a rug that has an area of 71.25
Yes, Is it possible for the rug to have an area of 71.25 square feet.
What is mean by Rectangle?A rectangle is a two dimension figure with 4 sides, 4 corners and 4 right angles. The opposite sides of the rectangle are equal and parallel to each other.
We have to given that;
A rug weaver wants to create a large rectangular rug.
Now, From the figure;
Area (S) = (8 + x) (9 - x)
= - x² + x + 72
= - (x² - x + 1/4) + 1/4 + 72
= - (x - 1/2)² + 72.25
Hence,
S (max) = 72.25 square feet
And, 72.25 > 71.25
Thus, Is it possible for the rug to have an area of 71.25 square feet.
Learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ2
Complete question is shown in figure.
Graph the line with slope 3 and intercept 1 X
estimate each product 49.2×10.3
Let' be a given function A graphical interpretation of the 2-point backward difference formula for approximating a) is the slope of the line joining the points of shissas - and X with > 0 True False
False. A graphical interpretation of the 2-point backward difference formula for approximating is not the slope of the line joining the points.
The 2-point backward difference formula is a method for approximating the derivative of a function at a specific point using two nearby points.
The backward difference formula is given by:
f'(x) ≈ (f(x) - f(x - h)) / h
Where f(x) is the given function, f(x - h) is the function evaluated at a point slightly to the left of x, and h is a small step size.
The formula calculates the approximate derivative by computing the difference between the function values at two points and dividing it by the step size. It does not involve the concept of connecting points with a line or calculating slopes.
Therefore, the statement is false. The graphical interpretation of the 2-point backward difference formula does not represent the slope of the line joining the points.
To know more about 2-point backward difference, refer here:
https://brainly.com/question/31501259
#SPJ4
help pleaseee i don’t understand thisss
Answer:
The answer is;
box A:3/2
box B:2/3
The volume of a sphere is 36π cubic inches. What is the radius of the sphere?
Answer 2.05
Step-by-step explanation: hope this helps
Help plzz I need the length of "b" and the answers and the steps to find that answer??? Plz help don't have a lot of time to submit this! Plz don’t give me a file it won’t work plz type the answer if you know it ty
Answer:
Use pythagorean theorem.
Step-by-step explanation:
The length of the shorter sides are 1 & 4
1^2+4^2=c^2
1+16=c^2
17=c^2
So, the length, rounded to the nearest whole inch, would be 4.
To find the perimeter, you need to find the side lengths first.
The short sides are 6 & 7.
6^2+7^2=c^2
36+49=c^2
85=c^2
So the length for that would be 8, in the nearest whole number.
Add all of the side lengths together.
6+7+8= 21
The perimeter is 21.
This is a scale drawing of a flag. The scale factor of a drawing to the actual flag is represented by the ratio 1:18. What is the area in square inches of the actual flag.
Answer:
2:36
Step-by-step explanation:
i don't know for my answer
What is the measure of the unknown segment?
Answer:6
Step-by-step explanation: