Question 38
Considered by many as the source of greatest public exposure related to nuclear power production is:
a. Power plant emissions
b. Leakage from power plants
c. Uranium mill tailings
d. Radon gas emissions

Answers

Answer 1

The correct answer is d. Radon gas emissions. Radon is a radioactive gas that can seep into homes and buildings from the ground and rocks beneath them.

It is a naturally occurring element in uranium deposits and is released during the process of nuclear power production. Radon exposure is a significant concern as it is the second leading cause of lung cancer after smoking. The greatest source of public exposure related to nuclear power production is radiation emitted from power plants. This radiation can come from a variety of sources, including the processing of uranium and plutonium fuel, the operation of reactors, and the disposal of nuclear waste. Nuclear power plants are required to meet strict safety standards and emit only a small amount of radiation into the environment.

To learn more about power plants click here https://brainly.com/question/14314816

#SPJ11


Related Questions

Does the current through R1 increase, decrease, or stay the same? Select the correct answer and explanation.

Answers

Answer:

Explanation:

when the switch is closed in the current conducting circuit the resistor r1 sees the same potential difference so the current through r1 stays the same.

(Table 352-30) 1 inch rigid nonmetallic conduit must be supported every _____ feet.

Answers

According to Table 352.30 of the National Electrical Code (NEC), 1 inch rigid nonmetallic conduit must be supported at intervals not exceeding 10 feet.

The National Electrical Code (NEC) is a standard that provides guidelines for the safe installation and use of electrical wiring and equipment in the United States. The NEC is updated every three years to incorporate new technology, safety advancements, and other changes in the electrical industry.

Table 352.30 of the NEC specifies the maximum spacing between supports for rigid nonmetallic conduit. The spacing requirements are based on the diameter of the conduit, the weight of the conduit and the contents it carries, and the temperature of the surrounding environment.

In the case of 1 inch rigid nonmetallic conduit, Table 352.30 specifies that the conduit must be supported at intervals not exceeding 10 feet. This means that there must be a support bracket or hanger installed at least every 10 feet along the length of the conduit to prevent it from sagging or breaking under its own weight.

Proper support of conduit is important for ensuring that electrical systems are safe and reliable. Unsupported conduit can become damaged, causing electrical faults, shorts, or even fires. By following the NEC guidelines for conduit support, electricians and contractors can ensure that electrical systems are installed and maintained safely and effectively.

To know more about diameter

brainly.com/question/5501950

#SPJ11

a straight length of wire carries a current of 50 a in a region where a uniform magnetic field has a magnitude of 0.100 t. the field is directed at an angle of 30 degrees away from the wire. there is a force on the wire measured to be 10n. how long is the wire?

Answers

The equation F = BILsinθ, where F is the force on the wire, B is the magnitude of the magnetic field, I am the current in the wire, L is the length of the wire, and θ is the angle between the magnetic field and the wire. Plugging in the given values, we get10 = 50 Lsin30Simplifying this equation, we get. L = 4 meters Therefore, the length of the wire is 4 meters.


The solve this problem, we will use the formula for the magnetic force on a current-carrying wire.F = I * L * B * sin(θ)
where F is the force, I am the current, L is the length of the wire, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the direction of the current. We are given the following information = 10 I = 50 A
B = 0.100 T θ = 30 degrees First, we need to convert the angle to radians θ = 30 degrees × π radians / 180 degrees = π/6 radians Now, we can plug the given values into the formula and solve for L10 N = 50 A * L * 0.100 T * sin(π/6) Divide both sides by 50 A * 0.100 T * sinπ/6 L = 10 N / 50 A * 0.100 T * sinπ/6 Calculate the length L ≈ 3.464 m So, the length of the wire is approximately 3.464 meters.

learn more about magnetic here.

https://brainly.com/question/2841288

#SPJ11

Question 7
Which one of the following is most penetrating?
a. Alpha rays
b. Beta rays
c. Gamma rays
d. x-rays

Answers

The most penetrating of the given options is gamma rays.

Therefore the answer is c. Gamma rays

When it comes to ionizing radiation, the term "penetration" refers to how deeply the radiation can penetrate into matter before being absorbed. Alpha, beta, and gamma rays are all types of ionizing radiation, but they differ in their ability to penetrate matter.

Alpha rays consist of positively charged particles (helium nuclei) and are relatively large and heavy. As a result, they can be stopped by a sheet of paper or a few centimeters of air, and do not penetrate deeply into matter.

Beta rays consist of fast-moving electrons and can penetrate slightly farther than alpha rays, but can be stopped by a few millimeters of aluminum.

Gamma rays are a form of electromagnetic radiation (like x-rays), and are extremely penetrating. They can pass through thick layers of material, including concrete and steel, and can only be fully stopped by several inches of dense material, such as lead or concrete.

X-rays have similar properties to gamma rays and can also penetrate deeply into matter, but typically have a lower energy and are less penetrating than gamma rays.

To know more on gamma rays

https://brainly.com/question/23281551

#SPJ4

An experimental set up designed to measure the resistance of an unknown resistor R using to known resistors R₁ and R₂, the variable resistor R₃, a voltage source, and a voltmeter; which relationship gives the value of R when R₃ is adjusted so that the voltmeter reading is zero?

Answers

The relationship that gives the value of the unknown resistor R when R₃ is adjusted so that the voltmeter reading is zero is the parallel resistance formula.

When R₃ is adjusted to balance the circuit, the resistance of R₁ and R₂ combined in parallel will be equal to the resistance of the unknown resistor R. Thus, the formula for calculating the resistance of R is R = (R₁ x R₂) / (R₁ + R₂).
Hi! In the experimental setup you've described, the circuit utilizes known resistors R₁ and R₂, variable resistor R₃, a voltage source, and a voltmeter to determine the value of an unknown resistor R. When the voltmeter reading is adjusted to zero, it indicates that the circuit is in a balanced state.

In this case, the relationship that gives the value of the unknown resistor R can be determined using the Wheatstone Bridge principle. The Wheatstone Bridge formula is:

(R₁ / R₂) = (R / R₃)

To find the value of R, you can rearrange the formula:

R = R₃ * (R₁ / R₂)

Visit here to learn more about voltmeter brainly.com/question/8505839

#SPJ11

10-year-old Sarah stands on a skateboard. Her older brother Jack starts pushing her backward and she starts speeding up. The force of Jack on Sarah isA. greater than the force of Sarah on Jack.B. equal to the force of Sarah on Jack.C. less than the force of Sarah on Jack.

Answers

When Jack pushes Sarah on the skateboard, the force he exerts on her is equal and opposite to the force Sarah exerts on Jack. This is known as Newton's Third Law of Motion.

However, the acceleration of Sarah and the skateboard depends on the net force acting on the system. In this case, the net force acting on the system is the force of Jack on Sarah minus the force of friction between the skateboard and the ground. If the force of Jack on Sarah is greater than the force of friction, then the net force is in the backward direction and Sarah speeds up. Therefore, the answer to the question is A. The force of Jack on Sarah is greater than the force of Sarah on Jack, but this does not mean that Jack is stronger than Sarah. It simply means that he is exerting a greater force on her in this particular situation.When Jack pushes Sarah on the skateboard, the force he exerts on her is equal and opposite to the force Sarah exerts on Jack. This is known as Newton's Third Law of Motion.

learn more about equal here

https://brainly.com/question/11400066

#SPJ11

The average distance from Earth to the sun is 9.3 × 107 miles. How many kilometers isthis?A) 1.5 × 108 km D) 1.7 × 10-8 kmB) 1.5 × 105 km E) 1.5 × 1011 kmC) 5.6 × 107 km

Answers

The  distance from Earth to the sun is approximately 1.5 x 10^8 kilometers.

To convert miles to kilometers, we can use the conversion factor 1 mile = 1.609344 kilometers.

So, to find the distance from Earth to the sun in kilometers, we can multiply the given distance in miles by the conversion factor:

d (km) = 9.3 x 10^7 miles x 1.609344 km/mile
d (km) = 1.496 x 10^8 km

Therefore, the distance from Earth to the sun is approximately 1.5 x 10^8 kilometers.

The closest answer choice is A) 1.5 x 10^8 km, which is the correct answer.

Visit to know more about Distance:-

brainly.com/question/26550516

#SPJ11

WF4-358 is a white dwarf in the globular cluster NGC 6397. This star's spectrum is highlighted with the red box. Notice that wavelength is tracked on the X axis and intensity is tracked on the Y axis. For this activity, we will be paying attention to the wavelengths that have the highest intensity. As you progress throughout the steps of this activity, you will be filling in this table:

Wavelength Suspected Element Frequency Energy
1.
2.
3.
Step 1: Study the Spectrum

Familiarize yourself with the spectral signature of this star, which shows which wavelengths are absorbed at which intensities. After studying the spectrum, notice which wavelengths ranges have the highest intensity (in other words, notice where the black line under WF4-358 reaches a high point and note which wavelengths ranges that point is associated with). Write down three wavelengths that have the highest intensity in WF4-358. Not that because of the scale of this particular graph, you likely won't be able to tell an exact wavelength. Instead, make the best guess that you can with the information you have. Fill in the first column (Wavelengths) of the table with your answer.


Step 2: Determine Elements

After documenting three wavelengths, refer to the diagram below to investigate which elements may be associated with those wavelengths.


For each of the three peaks in the spectrum you noted, make a guess about which element that peak represents. You will take the wavelength you noted in Step 1, and finding that wavelength on the diagram. For example, if you thought that a wavelength of 475 nm was a peak, you would find that wavelength on the chart and note that Argon might be the element represented by that peak. Repeat for all three peaks. Fill the second column (Suspected Element) of the table with your answers.

Step 3: Find Frequencies

Do some online research to find the frequencies of the three wavelengths you identified. Fill in the third column (Frequency) of the table with your answers.

Step 4: Calculate Energy

Use Planck's Equation to calculate the energy of a photon of light at each of the wavelengths you identified. Planck's Equation goes as follows:

E = hv

In this equation:

E = energy, and is unknown. This is what we are solving for.
h = Planck's constant (6.626 x 10^-34 joule-seconds)
v = frequency
Fill in the last column (Energy) of the table with your answers.

Step 5: Reflection Questions)

Would you expect the spectrum of a blackbody radiator to have peaks and valleys like the spectrum of WF4-358? Why or why not? Define blackbody radiators in your answer.
Pick one element from the chart you made. How might you expect its wavelength to change if it goes from traveling through Earth's atmosphere to traveling through water in the ocean?
Submit the following in one word processing document:

The table you completed in Steps 1-4
The answers to the reflection questions from Step 5

Answers

The highest points of intensity for WF4-358 include 390nm, 402nm, and 420nm (all estimated by x-axis locations in 10 nm increments).

What is wavelength?

Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire. In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.

These are the closest approximate wavelengths along the x-axis that correspond to the highest intensities along the y-axis for WF4-358.

The highest points of intensity for WF4-358 include 390nm, 402nm, and 420nm (all estimated by x-axis locations in 10 nm increments).

Learn more about wavelength on

https://brainly.com/question/10728818

#SPJ1

at steady state, a 1 m thick wall has a temperature difference (between the left and right surfaces) of capital delta t equals 5 k. if the wall's thermal conductivity is k equals 10 space fraction numerator w over denominator m k end fraction, what is the heat flux across this wall? (assume 1d conduction heat transfer.)

Answers

The magnitude of the heat flux across the wall is [tex]50 W/m^2[/tex] at steady state, a 1 m thick wall has a temperature difference.

To calculate the heat flux across the 1 m thick wall at steady state, we can use Fourier's Law of Heat Conduction. The formula is: q = -k * (dT/dx)
where q is the heat flux ([tex]W/m^2[/tex]), k is the thermal conductivity (10 W/m·K), dT is the temperature difference (5 K), and dx is the thickness of the wall (1 m).
Now, plug in the given values:
q = -10 * (5 K / 1 m)
q = [tex]-50 W/m^2[/tex]
Since we're considering 1D conduction heat transfer and the heat flux is negative, it means the heat is transferred from the higher temperature side to the lower temperature side.

To learn mote about heat flux click here https://brainly.com/question/30708042

#SPJ11

Two slits spaced 0. 0720 mm apart are 0. 800 m from a screen. Coherent light of wavelength λ passes through the two slits. In their interference pattern on the screen, the distance from the center of the central maximum to the first minimum is 3. 00 mm. The intensity at the peak of the central maximum is 0. 0700 W/m2. What is the intensity at point on the screen that is 2. 00 mm from the center of the central maximum? What is the intensity at point on the screen that is 1. 50 mm from the center of the central maximum?

Answers

The intensity at a point on the screen 2.00 mm from the center of the central maximum is approximately 0.034 W/m². The intensity at a point on the screen 1.50 mm from the center of the central maximum is approximately 0.024 W/m².

I = Imax cos² (πd sin θ / λ),

where Imax is the intensity at the center of the interference pattern, d is the distance between the two slits, θ is the angle between the line connecting the point on the screen to the center of the interference pattern and the line perpendicular to the screen, and λ is the wavelength of the light.

To find the angle θ, we can use the small angle approximation:

sin θ ≈ θ ≈ y/L,

where y is the distance from the center of the interference pattern to the point on the screen, and L is the distance between the slits and the screen.

We are given d = 0.0720 mm, λ = unknown, L = 0.800 m, Imax = 0.0700 W/m², and the distance from the center of the central maximum to the first minimum y = 3.00 mm.

Using the given distance y, we can find the value of sin θ:

y/L = sin θ,

3.00 mm / 0.800 m = sin θ,

sin θ = 0.00375.

Now we can solve for the wavelength λ:

Imax cos² (πd sin θ / λ) = I,

0.0700 W/m² cos² (π(0.0720 × 10⁻³ m)(0.00375) / λ) = I,

cos² (π(0.0720 × 10⁻³ m)(0.00375) / λ) = I / 0.0700 W/m²,

π(0.0720 × 10⁻³ m)(0.00375) / λ = ± cos⁻¹ (√(I / 0.0700 W/m²)),

λ = π(0.0720 × 10⁻³ m)(0.00375) / cos⁻¹√(I / 0.0700 W/m²)),

λ = 5.70 × 10⁻⁷ m (for the positive root).

Now we can find the intensities at the given distances from the center of the central maximum.

For y = 2.00 mm:

sin θ = y/L = 2.00 mm / 0.800 m = 0.00250,

I = Imax cos² (πd sin θ / λ)

I = 0.0700 W/m² cos² (π(0.0720 × 10⁻³m)(0.00250) / (5.70 × 10⁻⁷ m))² ≈ 0.034 W/m².

So the intensity at a point on the screen 2.00 mm from the center of the central maximum would be approximately 0.034 W/m².

For y = 1.50 mm:

sin θ = y/L = 1.50 mm / 0.800 m = 0.001875,

I = Imax cos² (πd sin θ / λ)

I= 0.0700 W/m² cos² (π(0.0720 × 10⁻³m)(0.001875) / (5.70 × 10⁻⁷ m))² ≈ 0.034 W/m².

I ≈ 0.024 W/m².

So the intensity at a point on the screen 1.50 mm from the center of the central maximum would be approximately 0.024 W/m².

To know more about intensity

https://brainly.com/question/13854245

#SPJ4

Question 38
Which one of the following gases was not scheduled for phaseout by 1996 as a result of the Montreal Protocol?
a. chlorofluorocarbon
b. halon
c. methyl chloroform
d. carbon tetrachloride

Answers

The correct answer is d. carbon tetrachloride. The Montreal Protocol, which was signed in 1987, aimed to reduce the production and consumption of ozone-depleting substances, including chlorofluorocarbons (CFCs), halons, and methyl chloroform.

However, carbon tetrachloride was not specifically scheduled for phaseout by 1996 under the protocol.
The Montreal Protocol scheduled phaseouts for several gases by 1996. However, methyl chloroform (option c) was not scheduled for phaseout by that specific year.

The other gases listed, including chlorofluorocarbon, halon, and carbon tetrachloride, were scheduled for phaseout.

To know more about Tetrachloride click here .

brainly.com/question/30849888

#SPJ11

Galileo discovered that when air resistance can be neglected, all objects fall with the same _______.

Answers

Galileo discovered that when air resistance can be neglected, all objects fall with the same acceleration, which is approximately 9.81 meters per second squared (m/s^2) near the surface of the Earth.

Galileo's discovery of the universality of free fall was a significant contribution to the development of physics and mechanics. Prior to his experiments, it was commonly believed that heavier objects fell faster than lighter objects. However, Galileo demonstrated through his experiments that this was not the case, and that all objects fall with the same acceleration in the absence of air resistance.

Galileo's experiments involved rolling balls of different masses down inclined planes and measuring their motion. By carefully controlling the angle of the incline and the distance traveled by the balls, Galileo was able to show that the acceleration of the balls was independent of their mass. He also observed that the acceleration due to gravity was constant, and that it did not depend on the velocity or direction of motion.

Galileo's discovery of the universality of free fall laid the foundation for the development of classical mechanics, which is the branch of physics that deals with the motion of objects under the influence of external forces. It also played a crucial role in the development of the theory of gravitation by Isaac Newton, who used Galileo's work as a starting point to develop his laws of motion and the law of universal gravitation. Today, the principle of the universality of free fall is a fundamental concept in physics and is used in a wide range of applications, including in the design of spacecraft and in the study of the structure and evolution of the universe.

Visit to know more about Galileo:-

brainly.com/question/14479486

#SPJ11

In an oscillating LC circuit, the total stored energy is U and the maximum charge on the capacitor is Q. When the charge on the capacitor is Q/2, the energy stored in the inductor is closest to:

Answers

In an oscillating LC circuit, the total stored energy is divided between the capacitor and the inductor. When the charge on the capacitor is Q/2, the energy stored in the capacitor is also half of its maximum value.

Therefore, the energy stored in the inductor is also closest to half of its maximum value, which is U/2. This is because the energy oscillates back and forth between the capacitor and the inductor, with the charge on the capacitor and the current in the inductor both reaching their maximum values at opposite times during each cycle. So, when the charge on the capacitor is at its midpoint, the energy stored in the inductor is also at its midpoint.

To learn more about capacitor click here https://brainly.com/question/17176550

#SPJ11

the heating element of a hair dryer dissipates 1500 w when connected to a 160 v outlet. part a what is its resistance? express your answer with the appropriate units.

Answers

The heating element of a hair dryer dissipates 1500 w when connected to a 160 v outlet. The resistance of the heating element of a hair dryer is 17.07 ohms.


We can use Ohm's law to find the resistance of the heating element of a hair dryer. Ohm's law states that the resistance of a conductor is equal to the voltage across it divided by the current flowing through it.
In this case, we know that the power dissipated by the heating element is 1500 W and the voltage across it is 160 V. We can use the formula for power, which is power = voltage x current, to find the current flowing through the heating element.
1500 W = 160 V x current
Solving for current, we get:
Current = 9.375 A
Now we can use Ohm's law to find the resistance:
Resistance = Voltage / Current
Resistance = 160 V / 9.375 A
Resistance = 17.07 ohms (rounded to two decimal places)  

Therefore, the resistance of the heating element of a hair dryer is 17.07 ohms, when connected to a 160 V outlet.

Learn more about Ohm's law here:

https://brainly.com/question/1247379

#SPJ11

What is the total internal energy of a monoatomic ideal gas? Diatomic ideal gas? Non-linear?

Answers

The total internal energy of an ideal gas, monoatomic or diatomic, is a measure of the energy contained within the gas due to its molecular motion.

For a monoatomic ideal gas, the internal energy is proportional to the temperature of the gas and is given by the equation

U = (3/2) nRT

where U is the internal energy, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

This equation reflects the fact that each molecule of a monoatomic ideal gas has three degrees of freedom for translational motion, and thus contributes (1/2)kT to the internal energy of the gas, where k is Boltzmann's constant.

For a diatomic ideal gas, the internal energy is slightly more complex due to the additional degrees of freedom associated with molecular rotation. At low temperatures, the diatomic molecules cannot rotate and the internal energy is given by U = (5/2) nRT, which includes the three degrees of freedom for translational motion and two degrees of freedom for vibration.

At higher temperatures, the diatomic molecules can rotate and the internal energy is given by U = (7/2) nRT, which includes the additional two degrees of freedom for rotation.

For a non-linear ideal gas, the internal energy depends on the specific molecular structure and the number of degrees of freedom associated with molecular motion. In general, the internal energy is given by

U = (f/2) nRT

where f is the total number of degrees of freedom for motion.

For example, a triatomic gas molecule has six degrees of freedom: three for translational motion, two for vibration, and one for rotation about a specific axis.

Therefore, its internal energy would be

U = (6/2) nRT = 3nRT.

In conclusion, the total internal energy of an ideal gas depends on its molecular structure and the number of degrees of freedom for molecular motion, with monoatomic, diatomic, and non-linear gases each having a distinct formula for their internal energy.

For similar question on total internal energy

https://brainly.com/question/14083294

#SPJ11

a man pushes a 15 kg block to the west with an acceleration of 0.1 m/s/s. using newton's second law of motion, what is the total force used?

Answers

The total force used by the man to push the block to the west is 1.5 N (Newtons).

Hi! I'd be happy to help you with your question. To find the total force used by a man pushing a 15 kg block to the west with an acceleration of 0.1 m/s², we can use Newton's second law of motion.



Newton's second law states that Force (F) equals mass (m) multiplied by acceleration (a), or F = m × a.

Step 1: Identify the mass (m) and acceleration (a).
Mass (m) = 15 kg
Acceleration (a) = 0.1 m/s²

Step 2: Apply Newton's second law of motion formula.
F = m × a

Step 3: Substitute the values and calculate the force.
F = 15 kg × 0.1 m/s²

F = 1.5 N

So, the total force used by the man to push the block to the west is 1.5 N (Newtons).

To know more about total force refer here:

https://brainly.com/question/30149537

#SPJ11

The man applied 1.5 N (Newtons) of force in total to move the block in the west.

Hi! I'd be delighted to answer your query. Newton's second equation of motion can be used to calculate the total force applied by a man pushing a 15 kg block with an acceleration of 0.1 m/s2 to the west.

According to Newton's second law, force (F) is equal to mass (m) times acceleration (a), or F = m a.

Determine the mass (m) and acceleration (a) in step 1.

Weight (m) = 15 kilogramme

0.1 m/s2 is the acceleration (a).

Step 2: Use the calculus for Newton's second law of motion.

F = m × a

Step 3: Calculate the force by substituting the values.

F = 15 kg × 0.1 m/s²

F = 1.5 N

The man utilised 1.5 N (Newtons) of force in total to push the block in a westward direction.

learn more about Newton's second law here:

https://brainly.com/question/13447525

#SPJ4

An object moving in a straight line at a constant speed (a=0) is in

Answers

Answer:

uniform motion

Explanation:

Uniform motion is defined as the motion of an object in which the object travels in a straight line and its velocity remains constant along that line as it covers equal distances in equal intervals of time.

A company is developing a system which can heat up and melt ice on roads in the winter. This system is called 'energy storage'.
During the summer, the black surface of the road will heat up in the sunshine.
This energy will be stored in a large amount of soil deep under the road surface. Pipes will run through the soil. In winter, cold water entering the pipes will be warmed and brought to the surface to melt ice.
The system could work well because the road surface is black.
Suggest why.​

Answers

Answer:

Explanation:

The color of a surface can affect how much solar energy it absorbs or reflects. Black surfaces absorb more solar radiation than lighter-colored surfaces, which reflects more of the sunlight. This is because black surfaces have a lower albedo, which is a measure of how much light a surface reflects.

When a black surface, such as a road, is exposed to sunlight, it absorbs more of the sun's energy, which is then converted into heat. This heat is then transferred to the soil underneath the road surface, where it can be stored for later use. During winter, the pipes running through the soil can be used to extract this stored heat and warm the cold water, which can then be used to melt ice on the road surface.

Therefore, the black surface of the road is beneficial for this energy storage system because it allows for more efficient absorption of solar energy, which can then be used to heat the soil and melt ice during the winter months.

With a 1/16" ball penetrator and a penetration depth of 0.082 mm, this makes

Answers

It appears that a penetration depth of 0.082mm would result in a superficial Rockwell hardness value of approximately 18, using a 1/16" ball penetrator and the corresponding test load.

However, as you mentioned, there are various superficial Rockwell scales that use different combinations of penetrators and test loads.

It's important to use the appropriate scale for the material being tested and to follow standardized testing procedures to ensure accurate and reproducible results.

The Rockwell hardness test requires a specific testing procedure, including the use of a calibrated hardness tester, a specific type of penetrator, and standardized testing conditions.

The hardness values obtained from this test are dependent on the material being tested, and cannot be determined solely based on penetration depth.

For more question on penetration depth click on

https://brainly.com/question/25473552

#SPJ11

correct form of question would be

With a diamond or ball penetrator and a penetration depth of 0.082mm this makes 100 – 0.082/0.001 = 18 superficial Rockwell.

Due to the different combinations of penetrators and test loads, there is a great number of superficial Rockwell scales, whichare labelled with different letters. The respective letter is also preceded by a number which indicates the total load used in the test (see Table 2)

Penetrator- F=441,3N / F=294,2N / F=147,1N /

Diamond Cone = 45 N / 30 N / 15 N

Ball 1/16"1,5875mm= 45 T / 30 T / 15 T

Ball 1/8"* = 45 W / 30 W / 15 W

Ball 1/4"* = 45 X / 30 X / 15 X

Ball 1/2"* = 45 Y / 30 Y / 15 Y

What kind of expansion do ideal gases undergo?

Answers

Answer:

Isothermal Expansion

Explanation:

This shows the expansion of gas at constant temperature against weight of an object's mass (m) on the piston. Temperature is held constant, therefore the change in energy is zero (U=0). So, the heat absorbed by the gas equals the work done by the ideal gas on its surroundings

Ch19: For which two out of the following 4 processes entropy of the system increase (ΔS>0)?I. Condensing water vaporII. Heating hydrogen gas from 60° C to 80° CIII. Forming sucrose crystals from a supersaturated solutionIV. Subliming dry ice

Answers

The two processes for which the entropy of the system increases (ΔS>0) are I. Condensing water vapor and IV. Subliming dry ice.

In both these processes, the system undergoes a change from a less ordered state to a more ordered state, which leads to an increase in entropy. In contrast, in process II. Heating hydrogen gas from 60° C to 80° C, the system becomes more disordered as the molecules move faster and the distribution of energy becomes more random, leading to a decrease in entropy. Similarly, in process III. Forming sucrose crystals from a supersaturated solution, the system becomes more ordered as the molecules come together in a specific arrangement, leading to a decrease in entropy.

To learn more about entropy click here https://brainly.com/question/30597662

#SPJ11

a mass m is attached to an ideal massless spring. when this system is set in motion, it has a period t . what is the period if the mass is doubled to 2 m ?

Answers

The period of a mass-spring system is given by T = 2π√(m/k), where m is the mass of the object attached to the spring and k is the spring constant. Since the spring is ideal and massless, k remains constant when the mass is changed.

Using the equation T = 2π√(m/k), we can find the period when the mass is doubled. Let's call the new period T2 and the original period T1.

T1 = 2π√(m/k)
T2 = 2π√(2m/k)

To find the relationship between T1 and T2, we can take the ratio of the two equations:

T2/T1 = √(2m/k)/√(m/k)
T2/T1 = √(2)

Therefore, when the mass is doubled, the period of the system increases by a factor of √(2).

The period of the mass-spring system will increase by a factor of √(2) when the mass is doubled.

We can conclude that increasing the mass of an ideal massless spring system will increase its period. In this case, doubling the mass will increase the period by a factor of √(2).

To know more about mass-spring visit

https://brainly.com/question/19425414

#SPJ11

Place the following in sequence: A) Hubble makes his discoveries; B) Cosmic background radiation is first detected; C) Lemaitre proposes his theory

Answers

The correct sequence is:

C) Lemaitre proposes his theory --> A) Hubble makes his discoveries --> B) Cosmic background radiation is first detected.

Lemaitre proposed his theory of the expanding universe, which later became known as the Big Bang theory, in the 1920s. Hubble's observations in the 1920s and 1930s provided evidence for the expansion of the universe and the relationship between distance and recession velocity for galaxies.

The cosmic microwave background radiation, which is the afterglow of the Big Bang, was first detected in 1964 by Arno Penzias and Robert Wilson.

For more question on sequence click on

https://brainly.com/question/31455892

#SPJ11

6) The most common form of gas in the disk of the Milky Way Galaxy is
A) molecular hydrogen.
B) gas in hot bubbles.
C) atomic hydrogen gas.
D) gas in stellar winds.

Answers

The most common form of gas in the disk of the Milky Way Galaxy is:C) atomic hydrogen gas.

This is because atomic hydrogen gas is abundant in the interstellar medium of the Milky Way, making up a significant portion of the galaxy's overall gas content. It is composed of single hydrogen atoms and is found in large quantities in the interstellar medium. It is the primary component of most of the stars and gas clouds in the galaxy. Atomic hydrogen gas can be detected through its radiation in the radio part of the electromagnetic spectrum.It is typically found at temperatures of around 10,000 K and is highly ionized.

Learn more about Galaxy Refer: https://brainly.com/question/30714548

#SPJ11

at what speed do a bicycle and its rider, with a combined mass of 90 kg , have the same momentum as a 1500 kg car traveling at 6.0 m/s ? express your answer to two significant figures and include the appropriate units.

Answers

100 m/s speed do a bicycle and its rider, with a combined mass of 90 kg , have the same momentum as a 1500 kg car traveling at 6.0 m/s

To find the speed at which the bicycle and its rider have the same momentum as the car, we can use the momentum formula:
momentum = mass × speed
First, let's find the momentum of the car:
momentum car = (1500 kg) × (6.0 m/s) = 9000 kg m/s
Now we want the bicycle and its rider to have the same momentum:
momentum bicycle = momentum car = 9000 kg m/s
We can now use the mass of the bicycle and its rider (90 kg) to find the speed at which they have the same momentum:
speed bicycle = momentum bicycle / mass bicycle
speed bicycle = 9000 kg m/s

90 kg = 100 m/s
Therefore, the bicycle and its rider need to travel at a speed of 100 m/s to have the same momentum as the car.

Learn more about momentum here

https://brainly.com/question/30677308

#SPJ11

a large block of ice is being pushed on a frozen pond by layla and nadia. layla pushes the block to the right with a force of 40 n and nadia pushes the block to the left with a force of 70 n. what is the net force on the block of ice?

Answers

30N is the net force on the block of ice for a large block of ice is being pushed on a frozen pond by layla and nadia

The net force on the block of ice is the result of combining the forces pushing in opposite directions. Layla pushes to the right with a force of 40 N, while Nadia pushes to the left with a force of 70 N. To find the net force, we need to subtract the smaller force from the larger force, since they are in opposite directions.

When forces are in balance, there is no net force, hence there is no net force.

There is either no movement or steady movement when something is in balance.

Equal in size and directed in the opposite direction, balanced forces are. When forces are evenly distributed, motion remains unchanged.
So, the net force on the block of ice is:
70 N (Nadia's force) - 40 N (Layla's force) = 30 N
Therefore, the net force on the block of ice is 30 N to the left, since Nadia's force is greater than Layla's force.

Learn more about force here

https://brainly.com/question/15711576

#SPJ11

44. What is the magnitude of the centripetal acceleration of a point on the rim of the grindstone?
A) zero m/s2
B) 0.5 m/s2
C) 1.0 m/s2
D) 2.0 m/s2
E) 4.0 m/s2

Answers

The centripetal acceleration of a point on the rim of a grindstone is determined by the formula a = v^2/r, where a is the acceleration, v is the velocity, and r is the radius of the circle. In this case, we assume that the grindstone is rotating at a constant speed, which means that the velocity of any point on the rim is constant.

Therefore, the magnitude of the centripetal acceleration depends only on the radius of the circle.Since the question does not provide any information about the radius of the grindstone, we cannot determine the magnitude of the centripetal acceleration. However, we can conclude that options A and B are incorrect because the centripetal acceleration cannot be zero if the grindstone is rotating, and it cannot be less than 0.5 m/s^2 because that is the minimum acceleration required to keep an object moving in a circle.
Therefore, the correct answer must be either C, D, or E, depending on the radius of the grindstone. If the radius is relatively small, the acceleration will be closer to 4.0 m/s^2 (option E), while if the radius is relatively large, the acceleration will be closer to 1.0 m/s^2 (option C). The centripetal acceleration of a point on the rim of a grindstone is determined by the formula a = v^2/r, where a is the acceleration, v is the velocity, and r is the radius of the circle. In this case, we assume that the grindstone is rotating at a constant speed, which means that the velocity of any point on the rim is constant.
In summary, the magnitude of the centripetal acceleration of a point on the rim of a grindstone depends on the radius of the circle and is given by the formula a = v^2/r. We cannot determine the exact answer without knowing the radius of the grindstone, but we can eliminate options A and B as incorrect.

learn more about speed here

https://brainly.com/question/8518482

#SPJ11

the melting point and boiling point of steel pot

Answers

Answer:

Explanation:

The melting point and boiling point of a steel pot can vary depending on the specific type of steel and its composition. However, the melting point of most common types of steel used in pots and pans ranges from 1370°C to 1530°C (2500°F to 2790°F).

It is important to note that the boiling point of steel is much higher than its melting point, and it is not practical to heat a steel pot to its boiling point as it would require extremely high temperatures and could result in damage or deformation of the pot.

a filter is 18 feet wide and 20 feet long. The maximum filtration rate allowed for this unit is 6.0 gpm/ft2. what is the highest flow rate that this filter can process

Answers

The highest flow rate that this filter can process is 2,160 gpm.

The maximum filtration rate allowed for a filter depends on the filter's size and the permissible flow rate per unit area of the filter. In this case, the filter has an area of 18 feet x 20 feet = 360 square feet.

The surface area of the filter is:

18 feet x 20 feet = 360 square feet

To determine the maximum flow rate, we need to multiply the surface area by the maximum filtration rate allowed:

360 square feet x 6.0 gpm/ft2 = 2,160 gallons per minute (gpm)

Therefore, the highest flow rate that this filter can process is 2,160 gpm.

Learn more about filtration

https://brainly.com/question/31504556

#SPJ4

Question 63
Which one of the following is probably least susceptible to microwave induced injury?
a. Eyes
b. Urinary bladder
c. Gastrointestinal test
d. liver

Answers

The urinary bladder is probably the least susceptible to microwave-induced injury among the given options. Microwave energy has a higher chance of affecting tissues with higher water content, such as the eyes, gastrointestinal tract, and liver.

The urinary bladder, on the other hand, has less water content and is less likely to be affected by microwave radiation.The eyes, gastrointestinal tract, and liver are organs that contain tissues with higher water content and are therefore more susceptible to microwave-induced injury, as microwaves can be absorbed by water molecules and generate heat. However, the urinary bladder is a muscular organ that stores urine and does not contain as much water content compared to other organs, making it less likely to be as susceptible to microwave-induced injury. Nonetheless, it's important to note that microwave radiation should be used with caution and in accordance with safety guidelines to minimize potential risks to all organs and tissues in the body.

learn more about Urinary bladder here:

https://brainly.com/question/21381665

#SPJ11

Other Questions
An individual that loves hurting animals becomes a vet in order to inflict pain on animals in a more acceptable way. What defense mechanism is being exhibited? Which of the following are the three common risks of using email, text messaging, instantmessaging, and voice mail?A. Over-communication, over-reliance, and too many acronymsnon-delivery, and over-relianceB. Misinterpretation,C. Misinterpretation, technical problems, and loss of self-awarenessD. Loss of self-awareness, lack of courtesy, and safety what time can prep be done throughout the day? Question 16(Multiple Choice Worth 1 points)(05.05 MC)Towers A and B are located 3.2 miles apart. A cell phone user is 5.9 miles from tower A.Tower AXTower BIf x = 84.3, what is the distance between tower B and the cell phone user? Round your answer to the nearest tenth of a mile.O 7.0 milesO 6.7 milesO 6.4 milesCell PhoneUserO-3-6-milesPlease help fast HELP ME GUYS ITS DUE IN 7 MINS! Given the following equation: K2CO3 + 2 HCl H2O + CO2 + 2 KClWhat would be the percent yield if you reacted 34.5g of K2CO3 and 22.5g of HCl and produced 3.4 g of H2O? 1. calculate the limiting reagent:2. calculate theoretical yield:3. calculate percent yield: The heads of each business unit at Disney are given goals and a strategic vision, then are allowed to run their unit in a way they believe will achieve the organization's goals. This decentralization of authority is likely to result in 1. _______________ and 2. __________________ hollis industries produces flash drives for computers, which it sells for $20 each. each flash drive costs $13 of variable costs to make. during april, 1,000 drives were sold. fixed costs for march were $2 per unit for a total of $1,000 for the month. how much is the contribution margin ratio? group of answer choices 65% 25% 75% 35% Cefixime displays what inhibitive behavior on PBP? Irreversibily = Bryan is training for a triathlon and needs to swim a certain distance for today's workout. If he swims at the rec center pool, he will complete a 100-yard warmup and then swim laps in a lane that is 39 yards long. If Bryan swims at the indoor pool at his gym, he will complete a 104-yard warmup, plus a main set that consists of 37 yards per lap. If Bryan swims the correct number of laps, he can complete the same distance in either pool. How long will Bryan's workout be in total? How many laps will that take? Mason Corporation borrows funds for the expansion of its business. The loan is secured with the office building. Therefore, the office building serves as _____ for the loan.a. a liabilityb. collateralc. debtd. insurancee. corporate deposit A) Give a marine mammal example of a non-monophyletic group and B) explain what is meant by the term? C)What's wrong with recognizing non-monophyletic groups? PLEASE ANSWER ASAPIT WOULD BE HELPFUL if a company writes off a specific customer's account with a debit to bad debt expense and credit to accounts receivable, it must be using the method. MPDS words or phrases that have a specific dispatch definition are marked using: A. bold text. B. green text. C. italic text Elements that help create brand equity include all of the following except branda. quality.b. associations.c. loyalty.d. recognition.e. awareness. sanitation, which involves the provision of toilets and the elimination of personal waste, is an institution because Question 19The greatest number of casualties as the result of air pollution occurred in:a. Meuse River Valley, Belgiumb. London, Englandc. Los Angeles, CAd. Donora, PA discuss the powers used by the Texas Governor during the COVID-19 pandemic. In a paragraph, explain how the author shows the protagonist's conflicting perspectives about his life in the short story. Be sure to put in at least one piece of evidence from the text, cited properly. 1. a) Describe how a Carbon Tax works. What would be the expected benefits of a Carbon Tax system? What would be the drawbacks? Research cases where a carbon tax is currently being used. What have been the results?b) Describe how a Cap-and-Trade system works. What would be the expected benefits of a Cap-and-Trade system? What would be the drawbacks? Research cases where a Cap-and-Trade system is currently being used. What have been the results?