Answer:
The predicted height is 2.809 meters, writing this in centimeters we get (1m = 100cm):
h = 2.809 m = (2.809)*(100cm) = 280.9 cm
And the total energy is:
E = 6.696 J
Explanation:
First let's see the problem.
We have an object of mass m = 274g which is thrown upwards with an initial velocity v0 = 6.991 m/s, in a place with a gravitational acceleration of g = 8.7 m/s^2
When the object is on the air, the only force acting on it will be the gravitational force, then the acceleration of the object will be equal to the gravitational acceleration, then we can write:
a(t) = -8.7 m/s^2
Where the negative sign is because this acceleration points down.
Now to get the velocity of the object we can integrate over time to get:
v(t) = (-8.7 m/s^2)*t + v0
Where v0 is a constant of integration, which is the initial velocity, then we can write this as:
v(t) = (-8.7 m/s^2)*t + 6.991 m/s
Now we can integrate again over the time to get the position equation.
p(t) = (1/2)*(-8.7 m/s^2)*t^2 + (6.991 m/s)*t + p0
Where p0 is the initial position, because the ball is being thrown from the ground, the initial position is 0.
Then the position equation is:
p(t) = (1/2)*(-8.7 m/s^2)*t^2 + (6.991 m/s)*t
Ok, now we know all the movement equations for the object.
The first thing we want to know is the maximum height of the object.
We know that the object reaches its maximum height when the velocity is zero (this is, the velocity stops being positive, meaning that the object stops going up, then in that time we have the maximum height)
We need to solve:
v(t) = 0m/s = (-8.7 m/s^2)*t + 6.991 m/s
(8.7 m/s^2)*t = 6.991 m/s
t = 6.991 m/s/( (8.7 m/s^2) = 0.804 seconds
The maximum height of the object is given by:
p(0.804s) = (1/2)*(-8.7 m/s^2)*(0.804)^2 + (6.991 m/s)*(0.804) = 2.809 m
The maximum height of the object is 2.809 meters.
Now let's find the maximum energy.
Remember that the energy of an object can be written as the sum of the potential energy U and the kinetic energy K.
E = K + U
Such that for an object of mass m and velocity v, the kinetic energy is:
K = (1/2)*m*v^2
And for an object of mass m, at a height h from the ground and with gravitational acceleration g, the potential energy is:
U = m*g*h
Now, when the object is at its maximum height, the velocity is zero.
Then K = 0
And for conservation of energy, the total energy of the object becomes potential energy.
E = 0 + U
E = U
So if we find the potential energy at the maximum height of the object's path, we can find the total energy of the object.
We know that:
mass = m = 274g = 0.274 kg (here i used that 1kg = 1000g)
height = h = 2.809 meters.
gravitational acceleration = g = 8.7 m/s^2
Then the potential energy at this point is:
U = 0.274 kg*(2.809 meters)*(8.7 m/s^2) = 6.696 J
This means that the total energy of the object is:
E = 6.696 J
Which of the
following
DECREASES
as you go UP a
mountain?
A. climate
B. altitude
C. amount of oxygen
D. buoyancy
Answer:
C. Amount of oxygen
Explanation:
Options A and D are invalid as they aren't affecting factors.
Option B is false as the altitude increases as you go up a mountain.
Option C is true as the air pressure (atmospheric pressure) is inversely proportional to the height/altitude of the mountain.
Establishing a potential difference The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1000 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 60 volts
Answer:
[tex]1.62\times 10^{-8}\ \text{s}[/tex]
Explanation:
[tex]\epsilon_0[/tex] = Vacuum permittivity = [tex]8.854\times 10^{-12}\ \text{F/m}[/tex]
[tex]A[/tex] = Area = [tex]10\times 2\times 10^{-4}\ \text{m}^2[/tex]
[tex]d[/tex] = Distance between plates = 1 mm
[tex]V_c[/tex] = Changed voltage = 60 V
[tex]V[/tex] = Initial voltage = 100 V
[tex]R[/tex] = Resistance = [tex]1000\ \Omega[/tex]
Capacitance is given by
[tex]C=\dfrac{\epsilon_0A}{d}\\\Rightarrow C=\dfrac{8.854\times 10^{-12}\times 10\times 2\times 10^{-4}}{1\times 10^{-3}}\\\Rightarrow C=1.7708\times 10^{-11}\ \text{F}[/tex]
We have the relation
[tex]V_c=V(1-e^{-\dfrac{t}{CR}})\\\Rightarrow e^{-\dfrac{t}{CR}}=1-\dfrac{V_c}{V}\\\Rightarrow -\dfrac{t}{CR}=\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-CR\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-1.7708\times 10^{-11}\times 1000\ln(1-\dfrac{60}{100})\\\Rightarrow t=1.62\times 10^{-8}\ \text{s}[/tex]
The time taken for the potential difference to reach the required level is [tex]1.62\times 10^{-8}\ \text{s}[/tex].
Balance the equation by choosing the correct coefficient numbers in the drop down menus.
[Select]
SO2 +
[Select]
VH₂ →
[Select]
S +
[ Select]
H20
It is suggested you write this on scratch paper and balance it before choosing your answers :)
Answer:
SO₂ + 2H₂ —> S + 2H₂O
The coefficients are: 1, 2, 1, 2
Explanation:
SO₂ + H₂ —> S + H₂O
The above equation can be balance as follow:
SO₂ + H₂ —> S + H₂O
There are 2 atoms of O on the left side and 1 atom on the right side. It can be balance by writing 2 before H₂O as shown below:
SO₂ + H₂ —> S + 2H₂O
There are 2 atoms of H on the left side and 4 atoms the right side. It can be balance by writing 2 before H₂ as shown below:
SO₂ + 2H₂ —> S + 2H₂O
Now, the equation is balanced.
The coefficients are: 1, 2, 1, 2
An object, with mass 64 kg and speed 14 m/s relative to an observer, explodes into two pieces, one 2 times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame
Answer:
K_f = 1881.6 J
Explanation:
To solve this exercise, let's start by finding the velocities of the bodies.
We define a system formed by the initial object and its parts, with this the forces during the explosion are internal and the moment is conserved
initial instant. Before the explosion
p₀ = M v₀
final instant. After the explosion
p_f = m₁ v + m₂ 0
the moeoto is preserved
p₀ = p_f
M v₀ = m₁ v
v = [tex]\frac{m_1}{M}[/tex] v₀
in the exercise they indicate that the most massive part has twice the other part
M = m₁ + m₂
M = 2m₂ + m₂ = 3 m₂
m₂ = M / 3
so the most massive part is worth
m₁ = 2 M / 3
we substitute
v = ⅔ v₀
with the speed of each element we can look for the kinetic energy
initial
K₀ = ½ M v₀²
Final
K_f = ½ m₁ v² + 0
K_f = ½ (⅔ M) (⅔ v₀)²
K_f = [tex]\frac{8}{27}[/tex] (½ M v₀²)
K_f = [tex]\frac{8}{27}[/tex] K₀
the energy added to the system is
ΔK = Kf -K₀
ΔK = (8/27 - 1) K₀
ΔK = -0.7 K₀
K_f = K₀ + ΔK
K_f = K₀ (1 -0.7)
K_f = 0.3 K₀
let's calculate
K_f = 0.3 (½ 64 14²)
K_f = 1881.6 J
The low pressure area near Earth's equator is filled by cool air moving in from
А
Europe and South America
B
the North and South Pole
с
the Prime Meridian
D
the Atlantic and Pacific Ocean
The graph shows the heating curve of water the X axis shows heat added overtime and Y axis shows the temperature identify the regions were liquid water is present
Answer:
liquid, solid, and gas. A heating curve shows how the temperature changes as a substance is heated up at a constant rate.
Explanation:
liquid is often the bridge between solid and gas
not always, but most times.
For water, liquid water would probably be at temperature Y= 32- 212 degrees F, or Y= 0-100 degrees C.
Apologies, I hope this helps.
If a 75 W lightbulb is 15% efficient, how many joules of light energy does the bulb produce every minute?
Answer:
1 W = 1 J / sec Definition of watt is 1 joule / sec
So if a bulb uses 75 J / sec it must use
75 J/s * 60 sec / min = 4500 J/min energy used by bulb
If bulb is 15% efficient then the light delivered is
P = 4500 J / min * .15 = 675 J / min
1- charging by touch occurs when electrons are transmitted by direct contact.
(Right)
(wrong)
2- Electric charges are preserved, they are not created or destroyed.
(Right)
(wrong)
Answer:
#1 - True (touch) charging when electric conductors actually touch one another.
#2. True - electrical charges are conserved (not destroyed)
What is the force between two 1.0 X 10^-5 C charges separated by 2.0 m?
According to Coulomb's law, the force between the given charges is 0.225N which is explained below.
Coulomb's Law:Force on two identical charges q separate by a distance of r is given by:
F = kq²/r²
where k is Coulomb's constant
q is the charge
r is the separation between the charges
Given that q = 1×10⁻⁵C,
and r = 2m
So, the force between the given charges will be:
F = (9×10⁹)(1×10⁻⁵)²/2²
F = 0.225N is the required force.
Learn more about Coulomb's law:
https://brainly.com/question/506926?referrer=searchResults
A spring has a spring constant of 450 N/m. How much must this spring be stretched to store 49 J of potential energy?
Answer:
W = 1/2 K x^2
x^2 = 2 * W / K = 2 * 49 J / (N/m) = .218 / m^2
x = .467 m
What is the speed of a ball that is attached to a string and swings in a horizontal circle of radius 2.0 m with the central acceleration of 15 m/s^2?
Answer:
5.48 m/s.
Explanation:
Use the formula a=v^2/r.
What do thermal energy and electrical energy have in common
Answer:
you can write some points its an explanation
and similarities. or common
Explanation:
Thermal energy refers to the energy contained within a system that is responsible for its temperature. Heat is the flow of thermal energy. A whole branch of physics, thermodynamics, deals with how heat is transferred between different systems and how work is done in the process (see the 1ˢᵗ law of thermodynamics).
The faster the atoms or molecules move, the more heat or thermal energy they have. ... A hair straightener turns the electrical energy from a wall outlet into heat (thermal energy). 4. As electricity runs through the filaments in a space heater, the electrical energy is converted into heat (thermal energy).
PLEASE HELP!! :)
Which of the following options would increase the electric force the most?
a. tripling the charge on one particle
b. changing the sign of one of the particles.
c. doubling the charge on one particle
d. doubling the charge on both particles
Which well will give the most water.
YOU WILL GET 50 POINTS
The well that will have most of the water will be well A.
What is an underground water supply?The underground water supply is defined as a type of water that exists underground in saturated zones beneath the land surface.
From the two wells represented in the diagrams above, Well A has water supply from underground which is lacking in well B.
Therefore, well A will have most of the water more than B.
Learn more about water cycle here:
https://brainly.com/question/25796102
#SPJ1
a sprinter accelerates from rest to 14m/s in 1.38 s. what is her acceleration in km/h^2
The acceleration of the sprinter is approximately 131,426 km/h^2.
To find the acceleration in km/h^2, we need to convert the units from meters per second (m/s) to kilometers per hour (km/h) and adjust the time units accordingly. Here's the step-by-step calculation:
1. Convert the final velocity from m/s to km/h:
14 m/s * (3.6 km/h) / (1 m/s) = 50.4 km/h
2. Convert the time from seconds (s) to hours (h):
1.38 s * (1 h) / (3600 s) = 0.0003833 h
3. Calculate the acceleration using the formula:
Acceleration = (Final velocity - Initial velocity) / Time
Since the initial velocity is 0 m/s (rest), we have:
Acceleration = (50.4 km/h - 0 km/h) / 0.0003833 h
Acceleration = 131425.955 km/h^2
For more such questions on acceleration,click on
https://brainly.com/question/460763
#SPJ8
A +0.0129 C charge feels a 4110 N
force from a -0.00707 C charge. How
far apart are they?
[?] m
Answer:
r = 14.13 m
Explanation:
Given that,
Charge 1, q₁ = +0.0129 C
Charge 2, q₂ = -0.00707 C
The force between charges, F = 4110 N
We need to find the distance between charges. The formula for the force between charges is given by :
[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]
Where
r is the distance between charges
So,
[tex]r=\sqrt{\dfrac{kq_1q_2}{F}} \\\\r=\sqrt{\dfrac{9\times 10^9\times 0.0129 \times 0.00707 }{4110 }} \\\\r=14.13\ m[/tex]
So, the distance between charges is equal to 14.13 m.
Answer:
14.13 m
Explanation:
acellus
How would increasing the pressure of this reaction affect the equilibrium
Explanation:
c because there is element
Answer:
C. H2 and N2 would react to produce more NH3
Explanation:
A.P.E.X
A water balloon weighing 4.5 N rests on a table. The balloon has an area of 2.6 x 10-3
m² in contact with the table. What pressure does the balloon exert on the table?
Answer:
the pressure the balloon exerts on the table is 1,730.77 N/m²
Explanation:
Given;
weight of the water balloon, F = 4.5 N
area of the balloon, A = 2.6 x 10⁻³ m²
The pressure the balloon exerts on the table is calculated as follows;
[tex]P = \frac{F}{A}[/tex]
substitute the given values and solve for pressure, P;
[tex]P = \frac{4.5}{2.6 \times 10^{-3}} \\\\P = 1,730.77 \ N/m^2[/tex]
Therefore, the pressure the balloon exerts on the table is 1,730.77 N/m²
On the map, which major plate is flanked by the red sea rift and the Minor Arabian Plate?
A:#1 North American Plate
B:#3 South American Plate
C:#5 Eurasian Plate
D:#2 African Plate
Answer:
D:#2 African Plate
Explanation:
The African Plate is flanked by the Red sea rift and the minor African plate.
The Red sea rift is a small part of a greater line of rifts known as the Great African Rift Valley. The rift valley is making several small lakes all through Africa and it will eventually split up the African continent.
The Red sea lift is the divergent boundary between the African plate and the Arabian plate. It means that the two plates are moving apart or spreading apart.
An 80- quarterback jumps straight up in the air right before throwing a 0.43- football horizontally at 15 . How fast will he be moving backward just after releasing the ball? Suppose that the quarterback takes 0.30 to return to the ground after throwing the ball. How far d will he move horizontally, assuming his speed is constant?
Answer:
a)
the quarterback will be moving back at speed of 0.080625 m/s
b)
the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm
Explanation:
Given the data in the question;
a)
How fast will he be moving backward just after releasing the ball?
using conservation of momentum;
m₁v₁ = m₂v₂
v₂ = m₁v₁ / m₂
where m₁ is initial mass ( 0.43 kg )
m₂ is the final mass ( 80 kg )
v₁ is the initial velocity ( 15 m/s )
v₂ is the final velocity
so we substitute
v₂ = ( 0.43 × 15 ) / 80
v₂ = 6.45 / 80
v₂ = 0.080625 m/s
Therefore, the quarterback will be moving back at speed of 0.080625 m/s
b) Suppose that the quarterback takes 0.30 to return to the ground after throwing the ball. How far d will he move horizontally, assuming his speed is constant?
we make use of the relation between time, distance and speed;
s = d/t
d = st
where s is the speed ( 0.080625 m/s )
t is time ( 0.30 s )
so we substitute
d = 0.080625 × 0.30
d = 0.0241875 m or 2.41875 cm
Therefore, the distance moved horizontally by the quarterback is 0.0241875 m or 2.41875 cm
An object was thrown from rest upward with an initial velocity of 10m/s with time frame of 6s find the distance of the object from it's resting point
Answer:
60
Explanation:
Work Done= Force×Displacement in the direction of the force
W.D. = 10×6
W.D. = 10×0.6
W.D. = 6m
Guys please help. I need this question
What kind of energy is in a moving skateboard
Answer:
I guess it is kinetic energy
Answer:
kinetic energy because my dog told me
if 400g is 1kg find the ratio in the simplest form
2:5
Explanation:
400g : 1kg
400g: 1000g
4 : 10
2 : 5
Please solve this and please don’t put in a link.
Answer:
synthesis
Explanation:
It is a combination (synthesis) reaction.
A+B→AB
Answer:
i think it is a synthesis
Explanation:
synthesis reaction occurs when two substances combine and form a compound...
hope this helps!!
Pls help will mark Brainliest
An object undergoing simple harmonic motion takes 0.15 s to travel from one point of zero velocity to the next such point. The distance between those points is 30 cm. (a) Calculate the period of the motion. s (b) Calculate the frequency of the motion. Hz (c) Calculate the amplitude of the motion. cm
Answer:
Explanation:
Point of zero velocity are extreme points situated on either side of equilibrium position .
a )
Time taken to travel between these two points is .15 s
time for half the oscillation = .15 s
Time for full one oscillation = .30 s .
Time period of oscillation = .30 s
b)
frequency = 1 / time period
= 1 / .30s = 3.33 oscillation per second.
c )
Distance between these two point is equal to two times amplitude
2 x amplitude = 30 cm
amplitude = 15 cm
A 2.0-kg cart is rolling along a frictionless, horizontal track towards a 1.8-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is 5.9 m/s, and the second cart's velocity is -2.7 m/s. (a) What is the total momentum of the system of the two carts at this instant
Answer:
the total momentum of the system before collision is 6.94 kgm/s
Explanation:
Given;
mass of the first cart, m₁ = 2.0 kg
mass of the second cart, m₂ = 1.8 kg
velocity of the first cart before collision, u₁ = 5.9 m/s
velocity of the second cart before collision, u₂ = -2.7 m/s
The total momentum of the system before collision is calculated as follows;
[tex]P_t = P_1 + P_2 \\\\P_t = m_1u_1 + m_2u_2\\\\P_t = (2\times 5.9) + (1.8 \times -2.7)\\\\P_t = 11.8 - 4.86\\\\P_t = 6.94 \ kgm/s[/tex]
Therefore, the total momentum of the system before collision is 6.94 kgm/s
Select the correct answer Which object is an insulator
A. iron
b. cooper
c. plastic
d. salt water
Are all harmful effects of smoking reversible? Explain your answer.