Step-by-step explanation:
so......im not certain about my solution,but this is what I think
f(x)=3x-2
replace f(x) with the latter Y
so its gonna be...y=3x-2
make x subject of the fomula
so is gonna be...y=3x-2
y-2=3x
x = y-2 3A. On place 20000 f à intérêt composé au taux annuel t%. Au
bout d'un an on complète par un dépôt de 20000 f. Un an
après ce nouveau placement on retire la totalité soit :
44298 f. Calculer le taux t.
Answer:
Step-by-step explanation: Après un an on a 20000(1+t%)+20000
Après 2 ans on a 20000(1+t%)^2+20000(1+t%)^1=44298
On a donc 20000[(1+t%)^2+(1+t%)^1]=44298
En résolvant l’équation de second degré dans R, on obtient : t = 7%
Find the area of the window
Answer:
Area = 1250cm²
Step-by-step explanation:
Area of a kite = pq/2
where p and q are diagonals
p = 25+25 = 50
q = 30+ 20 = 50
Area of a kite = pq/2
Area = (50*50 ) / 2
Area = 1250cm²
if(x) = a^x passes through the point (2, 1/16) the base a is
Answer:
1/4
Step-by-step explanation:
y = a^x
1/16 = a^2
so the answer is 1/4
4 Answer:
xy is a
a. monomial
b. binomial
c. trinomial
5 Answer:
k2 is a
a. monomial
b. binomial
c. trinomial
6 Answer:
x2y + xy2 + -5 is a
a. monomial
b. binomial
c. trinomial
7 Answer:
n2 + 4n + 4 is a
a. monomial
b. binomial
c. trinomial
8 Answer:
(2x +3) + (4x + 8) = _____
9 Answer:
(5x2 + 9) + (7x2 + -8) = _____
10 Answer:
(5s + t) + (-3s + 4t) = _____
11 Answer:
(3n2 + 4n) + (n2 + n) = _____
12 Answer:
(2a + 3b + c) + (a + 3b + -4c) = _____
13 Answer:
(7t2 + 3t + -9) + (2t2 + 6) = _____
14 Answer:
(5a + 7b) - (3a + 2b) = _____
15 Answer:
(5c2 + 7c) - (2c2 + 6c) = _____
16 Answer:
(6r + 3s) - (4r + 2s) = _____
17 Answer:
(7xy + 8y) - (3xy + 2y) = _____
18 Answer:
(8a + 2b + 5c) - (2a + b + c) = _____
19 Answer:
(9r2 + 3r + 8) - (2r2 + 7) = _____
20 Answer:
2(n + 7) = _____
21 Answer:
5(3j + -6) = _____
22 Answer:
6n(4n + 6) = _____
23 Answer:
5a(3a + -2) = _____
24 Answer:
8(2w2 + w + -9) = _____
25 Answer:
-4(4d2 + 3d + 2) = _____
26 Answer:
18r + 6
——————— = _____
3
27 Answer:
-15w2 + 10w
——————————— = _____
5w
28 Answer:
2t2 + 8t
———————— = _____
2t
29 Answer:
14z2 + 6z + 8
————————————— = _____
2
30 Answer:
18b3 + 12b2 + 6b
———————————————— = _____
6b
31 Answer:
21x2 + 14xy + -35x
—————————————————— = _____
-7x
32 Answer:
Solve: b + 2(b + 1) = 5 b = _____
33 Answer:
Solve: 3r + 5(r - 1) = 27 r = _____
34 Answer:
Solve: 2y + 2(y + 1) = -6 y = _____
35 Answer:
Solve: 2n + 2(n + 7) + 1 = 39 n = _____
36 Answer:
Solve: -3t + 2(t - 2) + 6 = -3 t = _____
37 Answer:
Solve: -6x + 3(x + 9) - 12 = 27 x = _____
38 Answer:
Solve: 3k + 4(k - 3) + 10 = -58 k = _____
39 Answer:
Solve: -4n + 2(n - 6) + 8 = 10 n = _____
40 Answer:
Solve: 2j + 4(j - 3) - 4 = -16 j = _____
41 Answer:
Solve: 2(x + 3) + 4(x - 2) = -32 x = _____
42 Answer:
Solve: 5(d + 2) + 2(d + 7) = 3 d = _____
43 Answer:
Solve: 6(w + 3) + 2(w - 4) + 10 = -4 w = _____
44 Answer:
Solve: -4z + 2(z + 1) + 3(z - 2) = 7 z = _____
45 Answer:
Solve: 3t + 2(t + 1) + 3(t - 1) = 15 t = _____
46 Answer:
Solve: -6a + 2(a - 3) + 3(a - 5) - 11 = -32 a = _____
47 Answer:
Select the equation that solves this problem:
Eight coins (dimes and nickels) are worth 60 cents. How many dimes are
there?
a. 10d + 25(11 - d) = 170
b. 10d + 25(8 - d) = 170
c. 10d + 5(8 - d) = 60
d. 10d + 5(11 - d) = 60
48 Answer:
Solve: Eight coins (dimes and nickels) are worth 60 cents. How many
dimes are there? _____
49 Answer:
Select the equation that solves this problem:
Eight coins (dimes and quarters) are worth 170 cents. How many dimes are
there?
a. 10d + 25(11 - d) = 170
b. 10d + 25(8 - d) = 170
c. 10d + 5(8 - d) = 60
d. 10d + 5(11 - d) = 60
50 Answer:
Solve: Eight coins (dimes and quarters) are worth 170 cents. How many
dimes are there? _____
51 Answer:
Select the equation that solves this problem:
Eleven coins (dimes and nickels) are worth 60 cents. How many dimes are
there?
a. 10d + 25(11 - d) = 170
b. 10d + 25(8 - d) = 170
c. 10d + 5(8 - d) = 60
d. 10d + 5(11 - d) = 60
52 Answer:
Solve: Eleven coins (dimes and nickels) are worth 60 cents. How many
dimes are there? _____
53 Answer:
Select the equation that solves this problem:
Eleven coins (dimes and quarters) are worth 170 cents. How many dimes
are there?
a. 10d + 25(11 - d) = 170
b. 10d + 25(8 - d) = 170
c. 10d + 5(8 - d) = 60
d. 10d + 5(11 - d) = 60
54 Answer:
Solve: Eleven coins (dimes and quarters) are worth 170 cents. How many
dimes are there? _____
Calculate the distance between the points M=(−6, 1) and F = (1, −7) in the coordinate plane.
Answer:
let M point x1, Y1 and f point X2,y2 then we know the formula of distance root (x2-x1)^2+(y2-y1)^2 then you will found the distance
Subtract the radical expression. Simplify if needed.
Answer:
7[tex]\sqrt{7}[/tex]
Step-by-step explanation:
Take 9 out of [tex]\sqrt{63}[/tex]
You get 3[tex]\sqrt{7}[/tex]
Take 4 out of [tex]\sqrt{28}[/tex]
You get 2[tex]\sqrt{7}[/tex]
So, 3(3[tex]\sqrt{7}[/tex]) - 2[tex]\sqrt{7}[/tex]
= 9 [tex]\sqrt{7}[/tex] - 2[tex]\sqrt{7}[/tex]
=7[tex]\sqrt{7}[/tex]
plsss help meeeeeeeeee
A card is drawn at random without replacement. A second card is then drawn. Determine the probability of getting a number greater than 9 and a number less than 4 if cards are selected at a random
Step-by-step explanation:
it does not say what the card deck consists of, and how many cards of what type there are.
so, I assume a standard playing card set of 52 cards (no jokers) with 4 suits of
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K
in that ranking of value.
so there are 4 cards of each of the 13 different types.
a card with a number greater than 9 means a 10, a J, a Q, or a K.
so, in total there are 4×4 = 16 such cards in the deck.
a card with a number less than 4 means an Ace, a 2, or a 3.
so, in total there are 4×3 = 12 such cards in the deck.
to get a number greater than 9 and a number less than 4 is a combination of the first card being greater than 9 and the 2 card being less than 4 OR the first card being less than 4 and the second card being greater than 9.
an "and" operation (without overlap) we represent by a multiplication, and an "or" operation (without overlap) by an addition.
remember, a probability is always
"desired cases / total possible cases".
so, the probability to draw a first card greater than 9 is
16/52 = 4/13
the probability to draw a second card greater than 9 (after a first card less than 4) is
16/51
because we still have all the large cards, but one of the smaller ones is now gone.
the probability to draw a first card less than 4 is
12/52 = 3/13
the probability to draw a second card less than 4 (after a first card greater than 9) is
12/51.
so, the complete probability of the scenario is
4/13 × 12/51 + 3/13 × 16/51 = 48/663 + 48/663 = 96/663 =
= 32/221 = 0.14479638...
if my assumptions about the cards are wrong, please adapt the numbers accordingly. but the basic structure of the calculation is the same.
Mr. Sanchez is pulling his luggage across the airport floor. He applies a 22-newton force to the handle of the bag when the bag makes a 72-degree angle with the floor. Find the magnitudes of the horizontal and vertical components of the force. Round your answers to the nearest tenth.
A circular ring has a diameter of 20 meters, find its circumference.
Answer:
62.8 meters
Step-by-step explanation:
Use the formula for circumference.
[tex]C = d\pi \\C = 20(3.14)\\C = 62.8[/tex]
Determine which of the expressions could be used to represent the following calculation: Divide the difference between 96 and 72 by 12. Select all that apply. A. ( 96 − 72 ) ÷ 12 B. 96 − ( 72 ÷ 12 ) C. ( 96 ÷ 12 ) − 72 D. 24 ÷ 12 E. 96 ÷ 6 THIS IS DUE TO DAY PLAESSSSSSSSSSSSSSSSSS HALP
Answer:
A. (96 - 72) ÷ 12
D. 24 ÷ 12
Step-by-step explanation:
Difference between 96 and 72 means subtract 72 from 96: 96 - 72
Divide by 12 means: ÷ 12
Therefore, "Divide the difference between 96 and 72 by 12" is:
⇒ (96 - 72) ÷ 12
As the difference between 96 and 72 is 24, we can also represent the calculation by:
⇒ 24 ÷ 12
Find the surface area
Answer:
A≈9248.85
Step-by-step explanation:
A=2πrh+2πr2=2·π·32·14+2·π·322≈9248.84877
if f (1) =5 and f (n) = 5f (n-1) + 5 then find the value of f (3)
Using the given information, the value of the f(3) is 155
Determining the value of a functionFrom the question, we are to determine the value of f(3)
From the given information,
f(n) = 5f(n-1) + 5
∴ f(2) = 5f(2-1) +5
f(2) = 5f(1) + 5
From the given information,
f(1) = 5
Then,
f(2) = 5(5) + 5
f(2) = 25 + 5
f(2) = 30
Also,
f(3) = 5f(3-1) + 5
f(3) = 5f(2) + 5
∴ f(3) = 5(30) + 5
f(3) = 150 + 5
f(3) = 155
Hence, the value of the f(3) is 155.
Learn more on Determining the value of function here: https://brainly.com/question/3082362
#SPJ1
PLeaseeeee Help
6. Given the order pairs (2, 3), (4, 5), (4, 7), (5, 10), and (6, 8) find the following. Round all final answers to three decimals places. Be careful not the round to early.
Express the line of best fit in the form of y = mx+b.
(a) The line of best fit. =
(b) Find the coefficient of linear correlation. =
Answer:
B
Step-by-step explanation:
answer is based on results from the Cartesian plane
What is the first step you would take to solve the equation ?
Like terms are those terms that are having the same variables, also the variables are of the same order as well. The first step to solving an equation is to rearrange the like terms.
What are Like terms?Like terms are those terms that are having the same variables, also the variables are of the same order as well.
for example, 25x and 5x are like terms; 30xy and 7xy are like terms, 9x³ and 4x² are not like terms, etc.
To solve an equation the first step is to rearrange the equation such that like terms are together.
Hence, the first step to solving an equation is to rearrange the like terms.
Learn more about Like Terms:
https://brainly.com/question/2513478
#SPJ1
amusement on a particularly boring transatlanfic fight one of the authors am used himseft by counting the heads of the people in the seats in front of him. He noticed that all 37 of them either had black hair or had a whole row to themselves or both. Of this total 33 had black hair and 6 were fortunate enough to have a whole row of seats to themselves. How many black haired people had whole rows to themselves?
If a = {6 6 4 7 -4 4 -6 9 -3} and B= {1 5 -8 9 -5 -8 9 -5 2}, find 3a +9B Matrix operations
Answer:
[tex]3A+9B=\begin{bmatrix} 27 & 63 & -60 \\\\ 102 & -57 & -60\\\\ 63 & -18 & 9 \end{bmatrix}[/tex]
Step-by-step explanation
[tex]A=\begin{bmatrix} 6 & 6 & 4\\\\7 & -4 & 4\\\\ -6 & 9 & -3\end{bmatrix}\: and \: B=\begin{bmatrix}1 & 5 & -8\\\\ 9 & -5 & -8\\\\ 9 & -5 & 2\end{bmatrix}[/tex][tex]\rightarrow 3A=3\begin{bmatrix} 6 & 6 & 4\\\\7 & -4 & 4\\\\ -6 & 9 & -3\end{bmatrix},\: \: 9B =9\begin{bmatrix}1 & 5 & -8\\\\ 9 & -5 & -8\\\\ 9 & -5 & 2\end{bmatrix}[/tex][tex]\rightarrow 3A=\begin{bmatrix} 3*6 & 3*6 & 3*4\\\\3*7 & 3(-4) & 3*4\\\\ 3(-6) & 3*9 & 3(-3)\end{bmatrix},\:\: 9B =\begin{bmatrix}9*1 &9* 5 &9( -8)\\\\ 9*9 & 9(-5) & 9(-8)\\\\ 9*9 & 9(-5) & 9*2\end{bmatrix}[/tex][tex]\rightarrow 3A=\begin{bmatrix} 18 & 18 & 12 \\\\ 21 & -12 & 12\\\\ -18 & 27 & -9\end{bmatrix},\:\: 9B =\begin{bmatrix} 9 & 45 & -72 \\\\ 81 & -45 & -72\\\\ 81 & -45 & 18\end{bmatrix}[/tex][tex]\rightarrow 3A+9B=\begin{bmatrix}18+9 & 18+45 & 12+(-72) \\\\ 21+81 & -12 +(-45) & 12+(-72)\\\\ -18+81 & 27+(-45) & -9+18 \end{bmatrix}[/tex][tex]\rightarrow 3A+9B=\begin{bmatrix} 18+9 & 18+45 & 12-72 \\\\ 21+81 & -12 -45 & 12-72\\\\ -18+81 & 27-45 & -9+18 \end{bmatrix}[/tex][tex]\rightarrow \purple{\bold{3A+9B=\begin{bmatrix} 27 & 63 & -60 \\\\ 102 & -57 & -60\\\\ 63 & -18 & 9 \end{bmatrix}}}[/tex]In the diagram, the height of the cone is 3 times the
radius. The volume of the cone is 343 Pie cm^3?. What is the
height of the cone?
Answer:
height = 21 cm
Step-by-step explanation:
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
h = 3rVolume = 343π cm³Substituting given values into the formula and solving for r:
[tex]\implies \sf 343 \pi=\dfrac{1}{3} \pi r^2(3r)[/tex]
[tex]\implies \sf 343=\dfrac{1}{3}\cdot3r^3[/tex]
[tex]\implies \sf 343=r^3[/tex]
[tex]\implies \sf r=\sqrt[3]{343}[/tex]
[tex]\implies \sf r=7\:cm[/tex]
As h = 3r, substitute found value of r into the equation and solve for h:
[tex]\implies \sf h = 3r[/tex]
[tex]\implies \sf h=3(7)[/tex]
[tex]\implies \sf h=21\:cm[/tex]
the perimeter of a rectangle is 26 and the area is 30. what are the dimensions of the rectangle ?
Answer:
Step-by-step explanation:
PLEASE HELP ME!!!!!
You are buying a house that is valued at $499.000. You pay a down payment of 20%. You finance the rest at 6.5% for 30 years. Your monthly mortgage payment is $2,522.94. For taxes, the house is assessed at 40 percent, with a tax rate of $3.03 per $100. You pay $1500 annually for homeowner's insurance. (32 points)
Price of House = ?
Down Payment = ?
Amount Financed (Mortgage principal) = ?
Monthly Payment = ?
# of monthly payments = ?
Total Payback = ?
Interest = ?
Assessed Valuation = ?
Real Estate Taxes (annual) = ?
Escrow Payment Per month (taxes & insurance) = ?
Monthly Payment to lender (escrow + mortgage) = ?
PLEASE SHOW FULL WORK!!!
The full workings for the house purchase you made on a mortgage are as follows:
1. Price of House = $499,000 (given)
2. Down Payment = $99,800 ($499,000 x 20%)
3. Amount Financed (Mortgage principal) = $399,200 ($499,000 - $99,800).
4. Monthly Payment = $2,522.94 (given)
5. Number of monthly payments = 360 months (30 x 12)
6. Total Payback = $908,258.40 ($2,522.94 x 360)
7. Total Interest = $509,058.40 ($908,258.40 - $399,200)
8. Assessed Valuation = $199,600 ($499,000 x 40%)
9. Real Estate Taxes (annual) = $6,047.88 ($199,600 x $3.03/$100)
10. Escrow Payment Per month (taxes & insurance) = $628.99 ($6,047.88 + $1,500)/12
11. Monthly Payment to lender (escrow + mortgage) = $3,151.93 ($628.99 + $2,522.94)
What is a mortgage?A mortgage is a loan arrangement that allows a borrower to buy some property, usually a house, without paying for the full cost immediately.
The borrower then makes a monthly payment, which includes the principal and its interest.
Learn more about mortgage payments at https://brainly.com/question/22846480
#SPJ1
The two formats used in an observation checklist are:
A. Performance profiles and Tallies
B. Tallies and video recording
C. Video recording and audio recording
D. Performance profiles and SMART Targets
The two formats used in an observation checklist are: D. Performance profiles and SMART Targets.
What is observation checklist?Observation checklist can be defined as the process of observing and evaluating a person or group of people performance.
When carrying out an observation checklist endeavors to make sure that the checklists are dated.
Observation checklist includes Performance profiles and SMART Targets. Where SMART stands for:
S=Specific
M=Measurable
A=Achievable
R=Relevant
T= Time-Bound
Therefore the correct option is D.
Learn more about Observation checklist here:https://brainly.com/question/584814
#SPJ1
A contalner holds 44 cups of water. How much is this in gallons?
Write your answer as a whole number or a mixed number in simplest form. Include the correct unit in your answer.
Answer:
5 1/4 gallons
Step-by-step explanation:
Hope this helps and have a nice day
Solve the radical equation.
x + 4 =√x + 10
What is the extraneous solution to the radical equation?
O The solution -1 is an extraneous solution.
O Both -1 and -6 are true solutions.
O The solution -6 is an extraneous solution.
ONeither -1 nor -6 is a true solution to the equation.
The solution -1 is an extraneous solution
Neither -1 nor -6 is a true solution to the equation.
Option D is the correct answer.
What is a solution?Solutions are the values of an equation where the values are substituted in the variables of the equation and make the equality in the equation true.
We also find the solution in a system of equations using the substitution or elimination method.
Example:
2x + 4 = 8
The solution is x = 2.
We have,
To solve the equation x + 4 = √(x + 10), we need to isolate the radical term on one side of the equation and then square both sides to eliminate the radical.
Here are the steps:
x + 4 = √(x + 10)
Subtract 4 from both sides:
x = √(x + 10) - 4
Square both sides:
x² = (√(x + 10) - 4)²
Expand the right side using the formula (a - b)^2 = a^2 - 2ab + b^2:
x² = x + 6 - 8√(x + 10)
Move all terms to the left side:
x² - x - 6 + 8√(x + 10) = 0
To solve this equation, we can use a substitution u = √(x + 10):
u = √(x + 10)
Square both sides:
u² = x + 10
Substitute into the original equation:
(u² - 10) + 4 = u
Simplify:
u² - u - 6 = 0
Factor:
(u - 3)(u + 2) = 0
So u = 3 or u = -2.
But u = -2 leads to a negative value under the square root in the substitution u = √(x + 10), which is not allowed.
Therefore, we only consider u = 3, which gives:
√(x + 10) = 3
Square both sides:
x + 10 = 9
Subtract 10 from both sides:
x = -1
So the solution to the original equation is x = -1.
To check if it is extraneous, we need to substitute it back into the original equation:
x + 4 = √(x + 10)
-1 + 4 = √(-1 + 10)
3 = √9
3 = 3
The equation is true, so x = -1 is a valid solution and not extraneous.
Therefore,
Neither -1 nor -6 is a true solution to the equation.
Learn more about solutions of equations here:
https://brainly.com/question/545403
#SPJ7
Which of the following are statistical questions? Select all that apply.
How many books did the students at this school read over the summer?
What is your favorite ice cream flavor?
How many letters are in the first name of each person in this class?
How many hours do the students in this class sleep each night?
How many hours a night do you spend on homework?
How many chocolate chip cookies were made in the bakery last week?
Please help I'll give 100 points to whoever is correct
Answer:
110.5 yd²
Formula's:
Area of triangle:
1/2 × base × height
Area of rectangle:
length × width
Area of the figure:
= area of triangle + area of rectangle's
= 1/2 × 11 × 7 + 3 × 4 + 5 × 3 + 5 × 2 + 7 × 5
= 110.5 yd²
Answer:
110.5 yd²
Step-by-step explanation:
Separate the figure into 1 triangle and 3 rectangles.
(see attached image)
Area 1
Area of a triangle = 1/2 × base × height
= 1/2 × (7 + 2 + 2) × 7
= 1/2 × 11 × 7
= 38.5 yd²
Area 2
Area of a rectangle = width × length
= 3 × (5 + 2 + 2)
= 3 × 9
= 27 yd²
Area 3
Area of a rectangle = width × length
= 5 × (5 + 2)
= 5 × 7
= 35 yd²
Area 4
Area of a rectangle = width × length
= 2 × 5
= 10 yd²
Total Area
Area 1 + Area 2 + Area 3 + Area 2 = 38.5 + 27 + 35 + 10
= 110.5 yd²
A circle has a radius of 6/7 units and is centered at (-2.3,5). Write the equation of this circle.
Answer:
[tex](x + 2.3)^{2} + y^{2} = \frac{36}{49}[/tex]
Step-by-step explanation:
To get the equation of a circle, plug your information into this equation:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
Therefore, the equation of this circle is:
[tex](x + 2.3)^{2} + y^{2} = \frac{36}{49}[/tex]
answer please
need quickly please please
What are the roots of the equation x² + 6x-9 = 07
Answer:
x1 =-3+3[tex]\sqrt{2}[/tex] and x2=-3-3[tex]\sqrt{2\\}[/tex]
Step-by-step explanation:
x² + 6x-9 = 0
-6±[tex]\sqrt{6^{2}-4(1)(-9) }[/tex] / 2
-6±[tex]\sqrt{72}[/tex] /2
so
x1 = -6+[tex]\sqrt{72[/tex] /2
x1 =-3+3[tex]\sqrt{2}[/tex]
and
x2 = -6-[tex]\sqrt{72[/tex] /2
x2=-3-3 [tex]\sqrt{2\\}[/tex]
A local athletic facility offers a four-week training course, hoping to increase athletes’ running speeds. Thirty-five volunteer athletes are timed, in seconds, running a 50-yard dash before the training program begins and then again after the program is complete. The difference in running times (before training – after training) is calculated for each athlete. Are the conditions for inference met?
No. The athletes who volunteered for this study were not randomly assigned a treatment order.
No. The 10% condition is not met.
No. The Normal/Large Sample condition is not met because the sample size is too small.
Yes. All conditions are met.
Using the Central Limit Theorem, it is found that the correct option is given by:
Yes. All conditions are met.
What does the Central Limit Theorem state?It states that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the sampling distribution is also approximately normal, as long as n is at least 30.
In this problem, we have no information about the distribution, but the sample size is greater than 30, hence all the conditions have been met.
More can be learned about the Central Limit Theorem at https://brainly.com/question/24663213
#SPJ1
Find the factor of each ff.
49x²-63x+7
Answer:
7(7x²-9x +1)
Step-by-step explanation:
49x²-63x+7
7(7x²-9x +1)