Answer:
the answer is A
I wish you a good day!
Answer:
THe answer is graph 2 as it represents the puck going in a linear motion
Explanation:
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If both objects have the same kinetic energy, what is the ratio of the speed of the cylinder to the speed of the spherical shell
Answer:
vcyl / vsph = 1.05
Explanation:
The kinetic energy of a rolling object can be expressed as the sum of a translational kinetic energy plus a rotational kinetic energy.The traslational part can be written as follows:[tex]K_{trans} = \frac{1}{2}* M* v_{cm} ^{2} (1)[/tex]
The rotational part can be expressed as follows:[tex]K_{rot} = \frac{1}{2}* I* \omega ^{2} (2)[/tex]
where I = moment of Inertia regarding the axis of rotation.ω = angular speed of the rotating object.If the object has a radius R, and it rolls without slipping, there is a fixed relationship between the linear and angular speed, as follows:[tex]v = \omega * R (3)[/tex]
For a solid cylinder, I = M*R²/2 (4)Replacing (3) and (4) in (2), we get:[tex]K_{rot} = \frac{1}{2}* \frac{1}{2} M*R^{2} * \frac{v_{cmc} ^{2}}{R^{2}} = \frac{1}{4}* M* v_{cmc}^{2} (5)[/tex]
Adding (5) and (1), we get the total kinetic energy for the solid cylinder, as follows:[tex]K_{cyl} = \frac{1}{2}* M* v_{cmc} ^{2} +\frac{1}{4}* M* v_{cmc}^{2} = \frac{3}{4}* M* v_{cmc} ^{2} (6)[/tex]
Repeating the same steps for the spherical shell:[tex]I_{sph} = \frac{2}{3} * M* R^{2} (7)[/tex]
[tex]K_{rot} = \frac{1}{2}* \frac{2}{3} M*R^{2} * \frac{v_{cms} ^{2}}{R^{2}} = \frac{1}{3}* M* v_{cms}^{2} (8)[/tex]
[tex]K_{sph} = \frac{1}{2}* M* v_{cms} ^{2} +\frac{1}{3}* M* v_{cms}^{2} = \frac{5}{6}* M* v_{cms} ^{2} (9)[/tex]
Since we know that both masses are equal each other, we can simplify (6) and (9), cancelling both masses out.And since we also know that both objects have the same kinetic energy, this means that (6) are (9) are equal each other.Rearranging, and taking square roots on both sides, we get:[tex]\frac{v_{cmc}}{v_{cms}} =\sqrt{\frac{10}{9} } = 1.05 (10)[/tex]
This means that the solid cylinder is 5% faster than the spherical shell, which is due to the larger moment of inertia for the shell.The photograph shows part of the Great Plains of North America. How do
plains form?
A. Magma rises at a divergent plate boundary.
B. Tectonic movements make folds and faults in the crust.
C. Continental plates slip past each other at a transform boundary.
D. Water, wind, or glaciers either remove or deposit crust.
SUBMIT
2 PREVIOUS
Answer:
Some plains form as ice and water erodes, or wears away, the dirt and rock on higher land. Water and ice carry the bits of dirt, rock, and other material, called sediment, down hillsides to be deposited elsewhere. As layer upon layer of this sediment is laid down, plains form. Volcanic activity can also form plains.
An object carries a +15.5 uC charge.
It is 0.525 m from a -7.25 uC charge.
What is the magnitude of the electric
force on the object?
Answer:
3.67 N
Explanation:
From the question given above, the following data were obtained:
Charge of 1st object (q₁) = +15.5 μC
Charge of 2nd object (q₂) = –7.25 μC
Distance apart (r) = 0.525 m
Force (F) =?
Next, we shall convert micro coulomb (μC) to coulomb (C). This can be obtained as follow:
For the 1st object
1 μC = 1×10¯⁶ C
Therefore,
15.5 μC = 15.5 × 1×10¯⁶
15.5 μC = 15.5×10¯⁶ C
For the 2nd object:
1 μC = 1×10¯⁶ C
Therefore,
–7.25 μC = –7.25 × 1×10¯⁶
–7.25 μC = –7.25×10¯⁶ C
Finally, we shall determine the force. This can be obtained as follow:
Charge of 1st object (q₁) = +15.5×10¯⁶ C
Charge of 2nd object (q₂) = –7.25×10¯⁶ C
Distance apart (r) = 0.525 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 15.5×10¯⁶ × 7.25×10¯⁶ / 0.525²
F = 3.67 N
Therefore, the force on the object is 3.67 N
The following statements address the science behind the pulley system illustrated:
A. The pulleys increase the entropy of the system.
B. The force applied to the rope is less than the force needed to lift the object.
C. The pulleys help generate as much energy as possible.
D. The pulleys multiply energy input, resulting in more energy output.
E. The pulleys generate no thermal energy.
Which of these statements is/are true?
i. Statements A and B
ii. Statements D and E
iii. Only statement C
iv. All of the statements
Answer:
i. Statements A and B
Explanation:
Sana nakatulong
A cars engine can deliver 300,000 watts of power to its wheels.
A. If the engine acts for 6 seconds, what is the work done on the car?
B. If the car travels 0.25 miles, what force acted on the car?
C.If the cars mass is 1200 kg, what is the acceleration of the car?
Answer:
A. 1,800,000 J
B. 4473.87 N
C. 3.728 m/s²
Explain how conduction, convection, and radiation occur involving a campfire
Answer:
https://wtamu.edu/~cbaird/sq/2015/02/26/when-i-sit-by-a-campfire-how-does-its-hot-air-heat-me/#:~:text=When%20you%20sit%20by%20a,It%20comes%20from%20thermal%20radiation.&text=Since%20air%20is%20a%20good,of%20pockets%20of%20heated%20fluid.
Here's a link to help you hope it helps have a good day
A wheel rotates about a fixed axis with an initial angular velocity of 24 rad/s. During a 4 s interval the angular velocity decreases to 14 rad/s. Assume that the angular acceleration is constant during the 4 s interval. How many radians does the wheel turn through during the 4 s interval
Answer:
[tex]\theta=76\ rad[/tex]
Explanation:
Hoven that,
Initial angular velocity of the wheel = 24 rad/s
Final angular velocity = 14 m/s
Time, t = 4 s
We need to find how many radians does the wheel turn through during the 4 s interval. Let the displacement is [tex]\theta[/tex]. Using second equation of rotational kinematics to find it such that,
[tex]\theta=\omega_i t+\dfrac{1}{2}\alpha t^2[/tex]
Where
[tex]\alpha[/tex] is angular acceleration
[tex]\alpha =\dfrac{\omega_f-\omega_i}{t}\\\\\alpha =\dfrac{14-24}{4}\\\\\alpha =-2.5\ rad/s^2[/tex]
So,
[tex]\theta=24\times 4+\dfrac{1}{2}\times (-2.5)\times 4^2\\\\\theta=76\ rad[/tex]
So, it will turn 76 radian during the 4 s interval.
Please help me please with both questions
Answer:
6 - iron
7 - by stringing many magnets together
Explanation:
6 - substances such as iron, cobalt, and nickel, most of the electrons spin in the same direction. This makes the atoms in these substances strongly magnetic—but they are not yet magnets. ... The piece of iron has become a magnet. Some substances can be magnetized by an electric current.
7 - it is that only
An airplane flies 1000 miles in 2 hours. What is its average speed in miles per hour?
Answer:
500km per hour
Explanation:
if in 2 hours the airplane flies 1000 km then 1000 divided by 2 is 500km per hour.
Which nucleus completes the following equation?
Answer:
Option D. ²³⁹₉₃Np
Explanation:
From the question given above, the following data were:
²³⁹₉₂U —> ⁰₋₁e + __
Let ⁿₘX represent the unknown. Thus, the equation above becomes
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
Next, we shall determine n, m and X. This can be obtained as follow:
239 = 0 + n
239 = n
n = 239
92 = –1 + m
Collect like terms
92 + 1 = m
93 = m
m = 93
ⁿₘX => ²³⁹₉₃X => ²³⁹₉₃Np
Thus, the balanced equation becomes:
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
²³⁹₉₂U —> ⁰₋₁e + ²³⁹₉₃Np
Option D gives the correct answer to the question.
Answer:
D
Explanation:
239 93 Np
Which of the following correctly explains the difference between sound and light?
A.Sound is a longitudinal wave that does not require a medium through which to travel, and light is a transverse wave that does require a medium.
B.Sound is a longitudinal wave that requires a medium through which to travel, and light is a transverse wave that does not require a medium.
C.Sound is a transverse wave that requires a medium through which to travel, and light is a longitudinal wave that does not require a medium.
D.Sound is a transverse wave that does not require a medium through which to travel, and light is a longitudinal wave that does require a medium.
Answer: i think the answer is C
Explanation:
Two identical loudspeakers are driven in phase by the same amplifier. The speakers are positioned a distance of 3.2 m apart. A person stands 5.0 m away from one speaker and 6.2 m away from the other. Calculate the second lowest frequency that results in destructive interference at the point where the person is standing. Assume the speed of sound to be 330 m/ s. A) 183 Hz B) 275 Hz C) 413 Hz D) 137 Hz E) 550 Hz
Answer:
C) 413 Hz
Explanation:
For destructive interference, the path difference ΔL = (n + 1/2)λ where ΔL = L₂ - L₁ where L₁ = person's distance from one speaker (the closer one) = 5.0m and L₂ = person's distance from other speaker (the farther one) = 6.2 m and λ = wavelength = v/f where v = speed of sound = 330 m/s and f = frequency
So, ΔL = (n + 1/2)λ
L₂ - L₁ = (n + 1/2)v/f
f = (n + 1/2)v/(L₂ - L₁)
At the second lowest frequency that results in destructive interference at the point where the person is standing, n = 1.
So,
f = (1 + 1/2)v/(L₂ - L₁)
f = 3v/2(L₂ - L₁)
Substituting the values of the variables into the equation, we have
f = 3v/2(L₂ - L₁)
f = 3(330 m/s)/2(6.2 m - 5.0 m)
f = 3(330 m/s)/2(1.2 m)
f = 990 m/s ÷ 2.4 m)
f = 412.5 Hz
f ≅ 413 Hz
A substance whose shape can easily change is a
Melvina has a mass of 70 kg and is about to jump from the window ledge of a burning building.
The ledge is 80 m above the ground. What is Melvina's potential energy?
Melvina's potential energy is 54,880 Joules.
To calculate Melvina's potential energy, we need to use the formula for gravitational potential energy:
Potential energy = mass × gravitational acceleration × height
Potential energy is a measure of the energy an object possesses due to its position relative to other objects. In this case, Melvina's potential energy is a result of her height above the ground. As she stands on the ledge of the burning building, her potential energy is stored and can be converted into other forms of energy if she were to jump or fall. The potential energy will decrease as she descends, and it will be converted into kinetic energy (energy of motion).
Given that Melvina has a mass of 70 kg and the ledge is 80 m above the ground, we can substitute the values into the formula:
Potential energy = 70 kg × 9.8 m/s² × 80 m
Calculating this, we find:
Potential energy = 54,880 Joules
For such more questions on energy
https://brainly.com/question/30369234
#SPJ8
A 85-W lamp is connected to 100 V. What is the resistance of the lamp?
What happens to warm air when it cools?
A
It sinks back down to Earth.
B
It is absorbed into clouds.
с
It remains in Earth's upper atmosphere.
D
It breaks apart and disappears.
Answer:
b I'm pretty sure sorry if I'm wrong
Answer:
I think the answer is B
Explanation:
The warm air turns cold and then it goes back to clouds
What causes an electric field?
Answer: The electric field is produced by stationary charges, and the magnetic field by moving charges (currents); these two are often described as the sources of the field. ... The force created by the electric field is much stronger than the force created by the magnetic field.
Explanation: An electric field is an invisible force field created by the attraction and repulsion of electrical charges (the cause of electric flow), and is measured in Volts per meter (V/m).
Answer:
The electric field is produced by stationary charges, and the magnetic field by moving charges (currents); these two are often described as the sources of the field. The force created by the electric field is much stronger than the force created by the magnetic field.
Explanation:
Ggl
As the time period of an object’s momentum change becomes longer, the force
needed to cause this change becomes _______________________.
Answer:
Speesd
Explanation:
What causes the Coriolis effect?
A
The sun's position relative to Earth
B.
Earth's orbit around the sun
с
Moon phases
D
Earth's rotation
hhhep faaast plssssss
Answer:
false
Explanation:
I am in need of points sorry
Force of a Baseball Swing. A baseball has mass 0.153 kg . Part A If the velocity of a pitched ball has a magnitude of 44.5 m/s and the batted ball's velocity is 50.5 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat. Express your answer to three significant figures and include the appropriate units. P
Answer: 14.5 kg.m/s
Explanation:
Given
mass of baseball is [tex]m=0.153\ kg[/tex]
The initial speed of the ball is [tex]u=-44.5\ m/s[/tex]
the final speed of the ball is [tex]v=50.5\ m/s[/tex]
Impulse is given as a change in the momentum
[tex]\vec{J}=\Delta \vec{P}[/tex]
[tex]J=m(v-u)\\J=0.153(50.5-(44.5))\\J=0.153\times 95=14.535\ kg.m/s[/tex]
Change in momentum up to 3 significant figures is 14.5 kg.m/s
Impulse applied by a bat is also the same as the change in momentum
Students are asked to design an experiment to confirm that the pressure and volume of an ideal gas are inversely proportional. They use a cylinder containing an ideal gas that has a plunger equipped with a pressure sensor. They perform several trials, and in each trial they start with the gas at the same initial pressure and volume. The students then quickly push the plunger so that the gas achieves a different final pressure and volume. After analyzing their results, they determine that the final pressures and volumes do not follow an inversely proportional relationship. Which of the following refinements to the procedure would show the inverse proportionality between pressure and volume?
A. Compress the gas slowly so that the temperature remains constant.
B. Perform more trials to obtain more data points.
C. Discard data points that do not show inverse proportionality between pressure and volume.
D. Compress the plunger even faster so that the compression is effectively instantaneous.
Answer:
the answers the correct one is A
Explanation:
Let's analyze the situation, the expression for ideal gases is
PV = n R T
in this case n is the number of moles of the gas remains constant, so we see that there is a relationship between volume, pressure and temperature.
For the experiment we are conducting we must ensure that the temperature remains constant, one way to achieve this is by placing a small thermometer on the surface of the cylinder.
By rapidly compressing part of the work done, it is converted into internal energy of the gas molecules, and from there it is transformed into its temperature. One way to reduce this effect is to COMPRESS SLOWLY and thus keep the temperature constant.
This method of allowing to check
P V = cte
when checking the answers the correct one is A
If each Coulomb of charge is given 20 Joules of energy, what is the voltage of the battery?
A. 20 V
B. 5 V
C. 10 V
D. Not enough info
Answer:
Explanation:
V = J/C
V = 20/1
= 20 v
Option A is the correct answer
A mom pushes her 19.3 kg daughter on the swing. If she gives her an initial velocity of 7.5 m/s at the bottom of the swing and the swing sits 0.6 m above the ground at it's lowest point, what height does she reach above the ground?
Answer:
3.17333333333? I hope I get it right
Explanation:
..................hello
Please help me with this review question.
Answer:
28.7%
Explanation:
efficiency = work output /work input × 100
Please solve for 15 points. Please don’t input a link.
Answer:
a). Single replacement.
Explanation:
Because one element replaces another element in a compound
Two identical copper blocks are connected by a weightless, unstretchable cord through a frictionless pulley at the top of a thin wedge. One edge of the wedge is vertical, and the tip makes an angle of 33. The block that hangs vertically weighs 2.85 kg, and the block on the incline weighs 2.94 kg. If the two blocks do not move, what is magnitude of the force of friction on the second second block
Answer:
13.6 N
Explanation:
Since one side of the wedge is vertical and the wedge makes and angle of 33 with the horizontal, the angle between the weight of the copper block on the incline and the incline is thus 90 - 33 = 57.
Let M be the mass of the block that hangs, m be the mass of the block on the incline and T be the tension in the weightless unstretchable cord.
We assume the motion is downwards in the direction of the hanging block, M.
We now write equations of motion for each block.
So
Mg - T = Ma (1) and T - mgcos57 - F = ma where F is the frictional force on the block on the incline and a is their acceleration.
Now, since both blocks do not move, a = 0.
So, Mg - T = M(0) = 0 and T - mgcos57 - F = m(0) = 0
Mg - T = 0 (3) and T - mgcos57 - F = 0 (4)
From (3), T = Mg
Substituting T into (4), we have
T - mgcos57 - F = 0
Mg - mgcos57 - F = 0
So, Mg - mgcos57 = F
F = Mg - mgcos57
F = (M - mcos57)g
Since g = acceleration due to gravity = 9.8 m/s², and M = 2.94 kg and m = 2.85 kg.
We find F, thus
F = (2.94 kg - 2.85 kgcos57)9.8 m/s²
F = (2.94 kg - 2.85 kg × 0.5446)9.8 m/s²
F = (2.94 kg - 1.552 kg)9.8 m/s²
F = (1.388 kg)9.8 m/s²
F = 13.6024 kgm/s²
F ≅ 13.6 N
Two protons (each with q = 1.60 x 10-19)
in a nucleus are located 1.00 x 10-15 m
apart. How much electric force do they
exert on each other?
[?] N.
Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Answer:
230.4
Explanation:
acellus
Which of the following could be an example of chemical weathering?
a. rocks tumbling against each other
b. water seeping into the ground, dissolving the limestone to form a cave
c. a waterfall boring out a whole in a rock under it
Answer: B
Explanation:
Answers A and C are examples of physical weathering while B is chemical weathering when water and lime mix it creates a reaction
a disk of radius 10 cm speeds up from rest. it turns 60 radians reaching an angular velocity of 15 rad/s. what was the angular acceleration?
b. how long did it take the disk to reach this velocity?
Answer:
a) The angular acceleration is 1.875 radians per square second.
b) The time taken by the disk to reach the final angular speed is 8 seconds.
Explanation:
a) Let suppose that the disk accelerates uniformly, given that initial and final angular speed ([tex]\omega_{o}[/tex], [tex]\omega_{f}[/tex]), in radians per second, and change in angular position ([tex]\Delta \theta[/tex]), in radians, are known. The angular acceleration ([tex]\alpha[/tex]), in radians per square second, are found by using this expression:
[tex]\alpha = \frac{\omega_{f}^{2}-\omega_{o}^{2}}{2\cdot \Delta \theta}[/tex] (1)
If we know that [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex], [tex]\omega_{f} = 15\,\frac{rad}{s}[/tex] and [tex]\Delta \theta = 60\,rad[/tex], then the angular acceleration of the disk is:
[tex]\alpha = \frac{\omega_{f}^{2}-\omega_{o}^{2}}{2\cdot \Delta \theta}[/tex]
[tex]\alpha = 1.875\,\frac{rad}{s^{2}}[/tex]
The angular acceleration is 1.875 radians per square second.
b) The time taken by the disk to reach the final angular velocity is determined by the following kinematic formula:
[tex]t = \frac{\omega_{f}-\omega_{o}}{\alpha}[/tex] (2)
Where [tex]t[/tex] is the time, in seconds.
If we know that [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex], [tex]\omega_{f} = 15\,\frac{rad}{s}[/tex] and [tex]\alpha = 1.875\,\frac{rad}{s^{2}}[/tex], then the time taken by the disk is:
[tex]t = \frac{\omega_{f}-\omega_{o}}{\alpha}[/tex]
[tex]t = 8\,s[/tex]
The time taken by the disk to reach the final angular speed is 8 seconds.