Answer:
C=3e
Step-by-step explanation:
Slope=
simplify the following 10^9÷10^7
Answer:
Step-by-step explanation:
[tex]10^9 \div 10^7\\=\frac{10^9}{10^7} \\=10^9 \times 10^{-7}\\=10^{9-7}\\=10^2\\=100[/tex]
A drug company testing a pain medication wants to know the impact of different dosages on patients' pain levels. They recruited volunteers experiencing pain to try one of 666 different dosages and then rate their pain levels on a scale of 111 to 101010. Here are the results: Average pain level 6.06.06, point, 0 5.85.85, point, 8 5.25.25, point, 2 4.94.94, point, 9 3.93.93, point, 9 3.63.63, point, 6 3.53.53, point, 5 Dosage (mg) 000 505050 100100100 150150150 200200200 250250250 300300300 All of the scatter plots below display the data correctly, but which one of them displays the data best?
Answer: Graph A
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
Correct on khan
Please help im not good at theses
Answer:
[tex]y=\frac{1}{4} x-3[/tex]
Step-by-step explanation:
y=mx+b -- m = slope, b = y-int
Write a differential equation that describes the relationship: Every month the balance B of Rachel's car loan increases by 4.5% and decreases by $375.00.
The differential equation describing the relationship between the balance B of Rachel's car loan and time t is given by dB/dt = 0.045B - 375.
The equation represents the change in the balance of Rachel's car loan over time. The term dB/dt represents the rate of change of the balance with respect to time. The right-hand side of the equation consists of two terms. The first term, 0.045B, represents the increase in the balance by 4.5% per month. This term accounts for the growth of the loan balance due to accrued interest.
The second term, -375, represents the decrease in the balance by $375.00 each month, which could be the monthly payment towards the loan principal. By subtracting this payment from the growth, the equation captures the net change in the balance. The equation allows us to model and analyze the behavior of the loan balance as time progresses.
LEARN MORE ABOUT differential equation here: brainly.com/question/32538700
#SPJ11
NEED HELP!! NO Absurd answers!
Use technology or a z-score table to answer the question.
The normal admission price to see a movie at different theaters is normally distributed with a mean of $11.80 and a standard deviation of $1.15.
Approximately what percent of theaters charge more than $10 to see the movie?
5.8%
19.8%
80.2%
94.2%
Answer:
Approximately 94% of theaters charge more than $10 to see the movie.
Step-by-step explanation:
Use a calculator with distribution functions such as normalcdf(
Here we have normalcdf(10,1000,11.80, 1.15) = 0.941
Approximately 94% of theaters charge more than $10 to see the movie. This agrees with the last answer choice.
28. for the following case, would the mean or the median probably be higher, or would they be about equal? explain.
To determine whether the mean or the median would be higher, or if they would be about equal, we need more specific information about the case or dataset in question.
The mean and median are statistical measures used to describe different aspects of a dataset.
Mean: The mean is the average value of a dataset and is calculated by summing all the values and dividing by the total number of values. The mean is sensitive to extreme values or outliers since it takes into account every value in the dataset.
Median: The median is the middle value in a sorted dataset. If the dataset has an odd number of values, the median is the middle value itself. If the dataset has an even number of values, the median is the average of the two middle values. The median is less affected by extreme values or outliers since it only depends on the order of values.
Without specific information about the dataset, it is difficult to determine whether the mean or the median would be higher or if they would be about equal. Different datasets can exhibit different characteristics, such as skewed distributions or symmetric distributions, which can influence the relationship between the mean and the median.
In general terms, if the dataset is symmetrical and does not contain extreme values, the mean and the median are likely to be about equal. However, if the dataset is skewed or contains extreme values, the mean may be influenced more by these outliers, potentially making it higher or lower than the median.
To provide a more accurate assessment, please provide additional details about the case or dataset under consideration.
Learn more about median here:
https://brainly.com/question/300591
#SPJ11
Find the Inverse Laplace Transform of each of the following:
1. 42/9s-30
2. 9s-8/s^2+24s
3. 3s-16/s^2-24s-69
The Inverse Laplace Transform of each of the following:
1. 42/9s-30 is 14/3 * e^(10t/3).
2. 9s-8/s^2+24s is (-1/3) + (10/3) * e^(-24t).
3. 3s-16/s^2-24s-69 is (5/8) * e^(3t) + (19/8) * e^(23t).
To find the inverse Laplace transform of each expression, we'll use partial fraction decomposition and consult a table of Laplace transforms. Here are the solutions for each case:
1. To find the inverse Laplace transform of 42/(9s - 30):
First, let's factor out the denominator: 9s - 30 = 9(s - 10/3).
The inverse Laplace transform of 42/(9s - 30) is then given by:
L^-1 {42/(9s - 30)} = L^-1 {42/[9(s - 10/3)]}
We can use the property that the inverse Laplace transform is linear and the following table entry:
L{1/(s - a)} = e^(at)
Using these, the inverse Laplace transform can be simplified as follows:
L^-1 {42/[9(s - 10/3)]} = 42/9 * L^-1 {1/(s - 10/3)}
= 14/3 * L^-1 {1/(s - 10/3)}
= 14/3 * e^(10t/3)
Therefore, the inverse Laplace transform of 42/(9s - 30) is (14/3) * e^(10t/3).
2. To find the inverse Laplace transform of (9s - 8)/(s^2 + 24s):
The denominator s^2 + 24s can be factored as s(s + 24).
Now, we need to perform partial fraction decomposition on the expression:
(9s - 8)/(s^2 + 24s) = A/s + B/(s + 24)
To find the values of A and B, we can multiply both sides of the equation by the common denominator (s(s + 24)) and equate the numerators:
9s - 8 = A(s + 24) + B(s)
Expanding and equating coefficients, we get:
9s - 8 = (A + B)s + 24A
Equating coefficients of s:
9 = A + B
Equating constant terms:
-8 = 24A
Solving the above equations, we find A = -1/3 and B = 10/3.
Now, we can express the original expression as:
(9s - 8)/(s^2 + 24s) = (-1/3) * 1/s + (10/3) * 1/(s + 24)
Using the Laplace transform table, the inverse Laplace transform of 1/s is 1, and the inverse Laplace transform of 1/(s + a) is e^(-at).
Therefore, the inverse Laplace transform of (9s - 8)/(s^2 + 24s) is:
L^-1 {(9s - 8)/(s^2 + 24s)} = (-1/3) * 1 + (10/3) * e^(-24t)
Simplifying, we get:
L^-1 {(9s - 8)/(s^2 + 24s)} = (-1/3) + (10/3) * e^(-24t)
Hence, the inverse Laplace transform of (9s - 8)/(s^2 + 24s) is (-1/3) + (10/3) * e^(-24t).
3. To find the inverse Laplace transform of (3s - 16)/(s^2 - 24s - 69), we need to perform partial fraction decomposition. First, let's factor the denominator:
s^2 - 24s - 69 = (s - 3)(s - 23)
Now, we can express the given expression as:
(3s - 16)/(s^2 - 24s - 69) = A/(s - 3) + B/(s - 23)
To find the values of A and B, we can multiply both sides of the equation by the common denominator (s - 3)(s - 23) and equate the numerators:
3s - 16 = A(s - 23) + B(s - 3)
Expanding and equating coefficients, we get:
3s - 16 = (A + B)s - (23A + 3B)
Equating coefficients of s:
3 = A + B
Equating constant terms:
-16 = -23A + 3B
Solving the above equations, we find A = 5/8 and B = 19/8.
Now, we can express the original expression as:
(3s - 16)/(s^2 - 24s - 69) = (5/8) * 1/(s - 3) + (19/8) * 1/(s - 23)
Using the Laplace transform table, the inverse Laplace transform of 1/(s - a) is e^(at).
Therefore, the inverse Laplace transform of (3s - 16)/(s^2 - 24s - 69) is:
L^-1 {(3s - 16)/(s^2 - 24s - 69)} = (5/8) * e^(3t) + (19/8) * e^(23t)
Simplifying, we get:
L^-1 {(3s - 16)/(s^2 - 24s - 69)} = (5/8) * e^(3t) + (19/8) * e^(23t)
Hence, the inverse Laplace transform of (3s - 16)/(s^2 - 24s - 69) is (5/8) * e^(3t) + (19/8) * e^(23t).
To learn more about Inverse Laplace Transform: https://brainly.com/question/27753787
#SPJ11
Determine the number of centimeters in 2 inches.
Answer:
5
Step-by-step explanation:
Answer:
5 centimeters
Step-by-step explanation:
You have to look at where it says 2 inches, and follow the line up to where the red stops and see how many centimeters it crosses
JT bisects AJH and the measure of MJT is four times that of TJH. If the measures of MJT is 120 find the measure of MJA.
MJH = 120
Let TJH = x
You’re told MJT is 4 times TJH
So you have 4x + x = 120
Simplify: 5x = 120
Divide both sides by 5:
X = 24
TJH = x = 24 degrees.
JT is a bisector so both TJH and TJA are the same. So TJA is also 24 degrees
So MJA = 120 - 24 - 24 = 72
MJA = 72 degrees
Answer
34MJT
Step-by-step explanation:
did it on edge
On any weekday during the semester, the probability that Beth does yoga is 0.75, the probability that Beth walks is 0.40, and the probability that Beth does both is equal to 0.20. Round your answers to two decimals. Write your answers in the form O.XX! What is the probability that Beth does yoga knowing that she walked? What is the probability that Beth walks knowing that she did yoga? Are the events "Beth does yoga" and "Beth walks" independent events? Are the events "Beth does yoga" and "Beth walks" dependent events?
The probability that Beth does yoga knowing that she walked is 0.50. The probability that Beth walks knowing that she did yoga is 0.27. The events "Beth does yoga" and "Beth walks" are dependent events.
To calculate the probability that Beth does yoga knowing that she walked, we use the formula for conditional probability. The probability of Beth doing yoga given that she walked is equal to the probability of both events occurring (Beth does both) divided by the probability of the given event (Beth walks). In this case, the probability of Beth doing yoga and walking is 0.20, and the probability of Beth walking is 0.40. Therefore, the probability that Beth does yoga knowing that she walked is 0.20/0.40 = 0.50.
Similarly, to calculate the probability that Beth walks knowing that she did yoga, we use the formula for conditional probability. The probability of Beth walking given that she did yoga is equal to the probability of both events occurring (Beth does both) divided by the probability of the given event (Beth does yoga). In this case, the probability of Beth doing yoga and walking is 0.20, and the probability of Beth doing yoga is 0.75. Therefore, the probability that Beth walks knowing that she did yoga is 0.20/0.75 ≈ 0.27.
Since the conditional probabilities are not equal to the individual probabilities of each event, we can conclude that the events "Beth does yoga" and "Beth walks" are dependent events. The occurrence of one event affects the probability of the other event, indicating a dependence between the two activities.
Learn more about probability here: brainly.com/question/13604758
#SPJ11
7. IfQ, and Q2 are orthogonal 1 X matrices, show that the product QO2 is orthogonal.
The product of the two matrices Q₁Q₂ is orthogonal
What i orthogonal matrix?In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. ... {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where QT is the transpose of Q and I is the identity matrix.
It is said to be an orthogonal matrix if its transpose is equal to its inverse matrix, or when the product of a square matrix and its transpose gives an identity matrix of the same order.
If A is an n*n orthogonal matric, then A*A¹ = A¹*A
Therefore A*A¹ = A¹*A = 1
This implies that the product Q₁O₂ is orthogonal.
Learn more about orthogonal matrix on https://brainly.com/question/31053015
#SPJ4
Solve the linear programming problem. What is the maximum value of z ? Maximize Select the correct choice below and fill in any answer boxes present in your z=10x+10y choice. Subject to
6x+6y≥102
14x−11y≥88
x+y≤42
x,y≥0
We get two solutions where x = 22 and y = 20 and x = 42 and
y = 0 with the objective function value being 420.
Here we are given the objective function to be
z=10x+10y
The constraints given are
6x + 6y ≥ 102
14x − 11y ≥ 88
x + y ≤ 42
Now if we plot the points in a graph we will now have to shade the easible region.
Clearly for the constraint 6x + 6y ≥ 102,
the shaded region would be away from the origin.
similarly for the constraint 14x − 11y ≥ 88,
the shaded region will be away from the origin.
and for the last constraint, x + y ≤ 42
this will be similar to the objective function and the shaded region will be towards the origin.
Hence we obtain the blue shaded feasible region.
Marking the corner points as A, B, C and D we get
point coordinates objective function value
A (11,6) 110 + 60 = 170
B (17,0) 170 + 0 = 170
C (22,20) 220 + 200 = 420
D (42,0) 420 + 0 = 420
Hence we get two solutions where x = 22 and y = 20 and x = 42 and
y = 0 with the objective function value being 420.
To learn more about Linear Programming visit
https://brainly.com/question/29405467
#SPJ4
Which of the following functions is graphed below?
Answer:
B:y=|x+2| -3
The graph shows the points throughout the equation
Let S = {a, b, c, d], and let f1: S==>S, f2 : S==>S and f3: S ==> S be the following functions:
f1 = {(a, c), (b, a),(c,d),(d,b)},
f2 = {(a, b), (b, d), (c, d),(d, c)},
f3 = {(a, b), (b, b), (c, b),(d, b)}.
For each of the functions fi, f2, f3, determine whether it is injective, surjective. and/or bijective. In the case of negative answers, provide a suitable reason.
f1 is neither injective nor surjective.
f2 is bijective (both injective and surjective).
f3 is injective, but not surjective.
The given sets and their functions are f1 = {(a, c), (b, a),(c,d),(d,b)}, f2 = {(a, b), (b, d), (c, d),(d, c)}, and f3 = {(a, b), (b, b), (c, b),(d, b)}. To determine whether each function is injective, surjective, and/or bijective, the following terms are to be kept in mind:
- A function is injective if every element in the domain has a unique pre-image in the range.
- A function is surjective if every element in the range has at least one pre-image in the domain.
- A function is bijective if it is both injective and surjective.
Function f1 = {(a, c), (b, a), (c, d), (d, b)} is neither injective nor surjective. This function is not injective since it maps both b and d to a, thus making two elements in the domain map to one element in the range. Similarly, it is not surjective because neither b nor d has a pre-image in the range. For example, no element in the domain maps to b or d.
Function f2 = {(a, b), (b, d), (c, d), (d, c)} is bijective. It is injective since every element in the domain has a unique pre-image in the range. Also, it is surjective since every element in the range has at least one pre-image in the domain.
Function f3 = {(a, b), (b, b), (c, b), (d, b)} is injective and not surjective. This function is injective since every element in the domain has a unique pre-image in the range. However, it is not surjective since only b has a pre-image in the domain. Hence, the negative answer is because the elements in the domain do not have any other pre-image apart from b.
To learn more about injective functions visit : https://brainly.com/question/22472765
#SPJ11
Compare each set of rational numbers.
-1
2
✓ -1.5
1
o
2
-2
-1
-1 is a negative real and rational integer.
2 is a positive real number
[tex] \sqrt{ - 1.5} [/tex]
is an imaginary or nonreal number.
1 is rational
0 is rational
2 rational counting number
-2 is a negative integer
and do is -1
An equation for a quartic function with zeros 4, 5, and 6 that passes through
the point (7, 18) is
Answer:
One example of this can be:
P(x) = (3/2)*(x - 4)*(x - 5)*(x - 5)*(x - 6)
Step-by-step explanation:
A quartic equation is a polynomial of degree 4.
Now, remember that for a polynomial of degree n, with leading coefficient A and zeros {x₁, x₂, ..., xₙ}
The polinomial can be written as:
p(x) = A*(x - x₁)*(x - x₂)*...*(x - xₙ)
In this case we know that we have the zeros 4, 5 and 6.
Notice that this is a polynomial of degree 4 but we have 3 zeros, so one of them may be a double one, i will assume that is the 5.
And we have a leading coefficient that we do not know, let's call it A
Then we can write our polynomial as:
P(x) = A*(x - 4)*(x - 5)*(x - 5)*(x - 6)
Now we know that the polynomial passes through the point (7, 18), then:
P(7) = 18 = A*(7 - 4)*(7 - 5)*(7 - 5)*(7 - 6)
With this equation, we can find the value of A.
18 = A*(7 - 4)*(7 - 5)*(7 - 5)*(7 - 6)
18 = A*12
18/12 = A
(3/2) = A
Then our equation can be:
P(x) = (3/2)*(x - 4)*(x - 5)*(x - 5)*(x - 6)
Can someone help me please
Answer:
2. 55
3. 125
4. 125
Step-by-step explanation:
Solve the system using the substitution method. y = -5x – 13 6x + 6y = -6 please help me NO LINKS!
Answer:
Step-by-step explanation:
y=-5x-13
Since we know the value of y we can substitute it in
6x+6(-5x-13)=-6
6x-30x-78=-6
-24x=72
-x=3
x=-3
Now that we know the value of x we can solve Y
y=-5(-3)-13
y=15-13
y=2
Need help on this one too
Answer:
sin(θ)=4√41/41
cos(θ)=5√41/41
tan(θ)=4/5
cot(θ)=5/4
sec(θ)=√41/5
csc(θ)=√41/4
Step-by-step explanation:
A recent survey of 3,057 individuals asked: "What’s the longest vacation you plan to take this summer?" The following relative frequency distribution summarizes the results. (You may find it useful to reference the z table.)
Response Relative Frequency
A few days 0.21
A few long weekends 0.18
One week 0.36
Two weeks 0.22
a. Construct the 95% confidence interval for the proportion of people who plan to take a one-week vacation this summer. (Round final answers to 3 decimal places.)
b. Construct the 99% confidence interval for the proportion of people who plan to take a one-week vacation this summer. (Round final answers to 3 decimal places.)
c. Which of the two confidence intervals is wider?
multiple choice
95% confidence interval.
99% confidence interval.
A. The 95% self-belief interval for the percentage of humans making plans to take a one-week excursion this summer time is approximately 0.351 to 0.369.
B. The 99% confidence c programming language for the share of people planning to take a one-week vacation this summer time is approximately 0.348 to 0.372.
C. The 99% self-assurance c program language period is wider than the 95% confidence c language.
A. To assemble the 95% confidence c programming language for the percentage of individuals who plan to take a one-week excursion this summer time, we will use the formula for the self-belief c programming language of a proportion:
CI = p ± z * [tex]\sqrt{((p(1 - p)) / n)}[/tex]
in which p is the pattern percentage, z is the z-score corresponding to the preferred self-belief degree, and n is the sample size.
From the given relative frequency distribution, we will see that the proportion of humans planning to take a one-week excursion is 0.36. The pattern size is 3,057.
Using a z-table for a 95% confidence stage, the z-score similar to a two-tailed test is approximately 1.96.
Plugging the values into the formula, we have:
CI = 0.36 ± 1.96 * [tex]\sqrt{((0.36(1 - 0.36)) / 3,057)}[/tex]
Calculating this expression, we get:
CI = 0.36 ± 1.96 *[tex]\sqrt{ (0.2304 / 3,057)}[/tex]
CI = 0.36 ± 1. 96 * 0.00473
CI ≈ 0.36 ± 0.00928
Therefore, the 95% self-belief interval for the percentage of humans making plans to take a one-week excursion this summer time is approximately 0.351 to 0.369.
B. To assemble the 99% self-assurance c programming language, we use the same formula as above however with a unique z-score.
Using a z-table for a 99% self-belief level, the z-rating similar to a two-tailed take a look at is approximately 2.576.
Plugging the values into the formula, we've got:
CI = 0.36 ± 2.576 * [tex]\sqrt{((0.36(1 - 0.36)) / 3,057)}[/tex]
Calculating this expression, we get:
CI = 0.36 ± 2.576 * [tex]\sqrt{(0.2304 / 3,057)}[/tex]
CI = 0.36 ± 2.576 * 0.00473
CI ≈ 0.36 ± 0.01217
Therefore, the 99% confidence c programming language for the share of people planning to take a one-week vacation this summer time is approximately 0.348 to 0.37.
C. The 99% self-assurance c p2rogram language period is wider than the 95% confidence c language. This is because a higher self-belief stage requires a larger margin of mistakes, resulting in a wider range across the factor estimate.
To know more about the confidence interval for the proportion,
https://brainly.com/question/30725305
#SPJ4
students devise an appropriate solution or recommendation to be implemented, carefully explaining the logic behind the proposal by applying any criteria of Malcolm Baldrige, EFQM or Sheikh Khalifa Excellence awards. of khawarizmi college
Students of Khawarizmi College are expected to devise an appropriate solution or recommendation to be implemented by carefully explaining the logic behind the proposal by applying any criteria of Malcolm Baldrige, EFQM, or Sheikh Khalifa Excellence awards.
The Malcolm Baldrige Criteria for Performance Excellence was first established in 1987 as a set of practices and strategies for US businesses. They've since been updated and are currently in their 2019-2020 edition. The criteria have been adopted by several other countries and serve as a framework for organizational excellence. The Baldrige Criteria are broken down into seven categories:
LeadershipStrategyCustomer MeasurementAnalysis, Knowledge ManagementWorkforce OperationsResultsThe EFQM Excellence Model is a non-prescriptive business framework for organizational improvement. The framework is intended to assist organizations in developing a culture of continuous improvement by encouraging self-assessment, learning, and creativity. It is based on nine criteria that are classified into three groups:Enablers: leadership, people, strategy, partnerships, and resources.
Results: people results, customer results, society results, and business results; Finally, the Sheikh Khalifa Excellence Awards (SKEA) are given to organizations in the UAE that have demonstrated a strong commitment to quality and excellence in their performance.
You can learn more about Malcolm Baldrige at: brainly.com/question/31317540
#SPJ11
i’ll give brainliest (worth 15 pts)
Answer:
48
Step-by-step explanation:
( it might be wrong pls dont report me just let me kno y its wrong )
Using the definition of the matrix exponential, calculate et for A = - b) Using the definition of the matrix exponential, calculate et for B = - c) Using the definition of the matrix exponential, A from part (a) and B from part (b), calculate e(A+B)t d) Is it true in general that, for nxn matrices A and B, etBt= eAt = e(A+B) ? Justify your answer.
a) The matrix exponential for matrix A is [tex]e^t[/tex]A = I + tA.
b) The matrix exponential for matrix B is [tex]e^t[/tex]B = I + tB.
c) To calculate [tex]e^{(A+B)t}[/tex], we substitute A and B into the matrix exponential definition and simplify the expression.
d) It is not generally true that [tex]e^t[/tex]B * [tex]e^t[/tex]A = [tex]e^t[/tex]A+B. The exponential of the sum of matrices is not equal to the product of their individual exponentials, unless the matrices commute.
a) For matrix A, the matrix exponential [tex]e^t[/tex]A is calculated as [tex]e^t[/tex]A = I + tA, where I is the identity matrix.
b) For matrix B, the matrix exponential[tex]e^t[/tex]B is calculated as [tex]e^t[/tex]B = I + tB, where I is the identity matrix.
c) To calculate [tex]e^{(A+B)t}[/tex], we substitute A and B into the matrix exponential definition:
[tex]e^{(A+B)t}[/tex] = I + t(A+B).
Expanding the expression further:
[tex]e^{(A+B)t}[/tex] = I + tA + tB.
d) It is not true in general that [tex]e^t[/tex]B * [tex]e^t[/tex]A = [tex]e^t[/tex](A+B). This equality holds only when matrices A and B commute, meaning AB = BA.
In the general case where A and B do not commute, [tex]e^t[/tex]B * [tex]e^t[/tex]A is not equal to [tex]e^t[/tex](A+B). The matrix exponential does not have the property of distributivity over addition, unlike regular exponentiation.
Therefore, the justification for this answer is that matrix exponentials do not follow the same rules as scalar exponentials when it comes to addition and multiplication.
To learn more about matrix visit:
brainly.com/question/32572234
#SPJ11
Hannah had 30 dollars to spend on 3 gifts. She spent 8 7 10 dollars on gift A and 4 2 5 dollars on gift B. How much money did she have left for gift C? Solve
Answer: [tex]\$16\dfrac{9}{10}[/tex]
Step-by-step explanation:
Given
Hannah had 30 dollars
Money spent on gift A
[tex]8\ \dfrac{7}{10}=\dfrac{8\times 10+7}{10}=\dfrac{87}{10}[/tex]
money spent on gift B
[tex]4\ \dfrac{2}{5}=\dfrac{22}{5}[/tex]
Money spent on gift C
[tex]\Rightarrow \text{Total-Money spent on (A+B)}\\\\\Rightarrow 30-\dfrac{87}{10}-\dfrac{22}{5}=30-\dfrac{87}{10}-\dfrac{44}{10}\\\\\Rightarrow \dfrac{300-87-44}{10}=\dfrac{169}{10}\\\\\Rightarrow \$16\ \dfrac{9}{10}[/tex]
Find the volume of the cylinder. Find the volume of a cylinder with the same radius and double the height. Radius = 8, Height = 3.
Answer:
V = 603.19 unit^3
or
V = 192π unit^3
Step-by-step explanation:
V = πr^2 *h
V = π(8)^2 *3
V = 603.19 unit^3
or
V = 192π unit^3
Answer:
603.186^3
Step-by-step explanation:
v = πR2 · h
π8^2 x 3
= 603.186^3
A science quiz has eight multiple choice questions with five choices for each. Find the total number of ways to answer the questions
Answer: 390625
The quiz has 5 choices for each question, so there are 5 ^ 8 ways to answer the quiz questions.
In other words, you can calculate the possible numbers of answers = 5x5x5x5x5x5x5x5 = 390625
A triangle has sides with lengths of 26 yards, 76 yards, and 78 yards. Is it a right triangle?
Options:
Yes
No
Answer:
No
Step-by-step explanation:
a^2 + b^2 = c^2
Since 78 is the largest it will be c.
26^2 + 76^2 = 78^2
676 + 5776 = 6084
6452 does NOT = 6084
Since c^2 is larger it is an obtuse triangle.
Which expression is Equivalent to is m<4?
Answer:
first option
Step-by-step explanation:
The exterior angle of a triangle is equal to the sum of the 2 opposite interior angles.
∠ 4 is an exterior angle of the triangle, then
∠ 4 = ∠ 2 + ∠ 3
The degree of precision of a quadrature formula whose error term is 27" (T) is: 22 5 2 3
The degree of precision of a quadrature formula with an error term of 27" (T) is 2.
To understand why the degree of precision is 2, let's first define what the degree of precision means in the context of quadrature formulas. The degree of precision refers to the highest power of x up to which the formula can integrate exactly. In other words, if a quadrature formula has a degree of precision of 2, it means that the formula can integrate exactly all polynomials of degree 2 or lower.
Now, to determine the degree of precision based on the given error term of 27" (T), we need to consider the approximation error. The error term T represents the maximum absolute difference between the exact integral and the approximate integral obtained using the quadrature formula.
In this case, the error term is given as 27" (T). The presence of the quotation mark (") indicates that the error term is measured in arc seconds. This suggests that the error is related to numerical integration over angles or circular arcs.
Since the error term is specified as 27" (T), we can conclude that the error is proportional to the square of the step size used in the quadrature formula. Therefore, the error term is of the order h^2, where h represents the step size.
Since the error term is of order h^2, it implies that the degree of precision is 2. This means that the quadrature formula can provide an exact result for polynomials of degree 2 or lower.
To know more about quadrature formulas , refer here:
https://brainly.com/question/31475940#
#SPJ11
Please help me due in 3 Hours WILL GIVE BRAINLIST
Answer:
a.) 200
b.) -56
If I typed out all my work, it would be one LONG answer. I’m just going to include the steps in an attachment. Hope it’s accurate & helpful!