Calculate the molarity when 345.0g of Na2SO4, is dissolved to make a 1.650L. solution. (include units and round to 4 sig figs)

Answers

Answer 1

Answer:

Therefore, the molarity of the solution is 1.471 M (molar)

Explanation:

To calculate the molarity of a solution, we need to know the moles of solute (Na2SO4) and the volume of the solution (in liters).

First, let's calculate the moles of Na2SO4:

molar mass of Na2SO4 = 2(22.99 g/mol) + 1(32.06 g/mol) + 4(16.00 g/mol) = 142.04 g/mol

moles of Na2SO4 = (mass of Na2SO4) / (molar mass of Na2SO4)

moles of Na2SO4 = 345.0 g / 142.04 g/mol

moles of Na2SO4 = 2.430 mol

Next, let's calculate the molarity of the solution:

Molarity = (moles of solute) / (volume of solution in liters)

Molarity = 2.430 mol / 1.650 L

Molarity = 1.471 M

Therefore, the molarity of the solution is 1.471 M (molar)


Related Questions

Use formal charge to choose the best Lewis structure for CH3SOCH3. Which pair of atoms forms the most polar bond?
a. P and F
b. Si and F
c. P and Cl
d. Si and Cl

Answers

To choose the best Lewis structure for CH3SOCH3 using formal charge, we need to first draw all possible Lewis structures for the molecule. After drawing all possible structures, we can compare the formal charges of each atom in each structure to determine which one is the best.

For CH3SOCH3, there are two possible Lewis structures:

Structure 1:
O=S-CH3
  |
 CH3

Structure 2:
O-CH3
 |
S=O
 |
CH3

To calculate formal charge, we use the formula:
Formal charge = valence electrons - nonbonding electrons - 1/2 bonding electrons

For example, for the S atom in Structure 1:
Formal charge = 6 valence electrons - 4 nonbonding electrons - 4 bonding electrons/2
= 0

Comparing the formal charges of all atoms in both structures, we can see that Structure 1 has formal charges closer to zero for all atoms, making it the best Lewis structure for CH3SOCH3.

To determine which pair of atoms forms the most polar bond, we need to consider the electronegativity difference between the atoms in each pair. The greater the electronegativity difference, the more polar the bond.

Using the Pauling electronegativity values, we can compare the electronegativity difference between each pair:

a. P and F: 3.0 - 2.1 = 0.9
b. Si and F: 4.0 - 1.9 = 2.1
c. P and Cl: 3.0 - 3.0 = 0
d. Si and Cl: 3.0 - 1.9 = 1.1

Therefore, the pair of atoms that forms the most polar bond is b. Si and F.

To know more about Lewis structures :

https://brainly.com/question/20300458

#SPJ11

excluding any minor by-products, how many alkene products are produced in the acid-catalyzed dehydration of 2-methylcyclohexanol? enter your answer as digits only.

Answers

The number of alkene products produced in the acid-catalyzed dehydration of 2-methyl cyclohexanol is 1.

To determine how many alkene products are produced in the acid-catalyzed dehydration of 2-methyl cyclohexanol, we need to consider the possible products formed due to the elimination reaction.

1. In this reaction, a proton is removed from the alcohol group, and a nearby hydrogen is also removed, forming a double bond (alkene).
2. The most stable alkene product will be the major product, while others will be minor products.

For 2-methyl cyclohexanol, there are two possible alkene products: 1-methyl cyclohexene and 3-methyl cyclohexene. However, 1-methyl cyclohexene is the more stable product due to its greater number of hyperconjugated structures. Since we are excluding minor by-products, there is only 1 major alkene product produced in the acid-catalyzed dehydration of 2-methyl cyclohexanol.

Thus the answer is 1.

Learn more about acid-catalyzed dehydration: https://brainly.com/question/31474198

#SPJ11

an experiment shows that a 244 ml gas sample has a mass of 0.431 g at a pressure of 755 mmhg and a temperature of 38 ∘c. part a what is the molar mass of the gas?

Answers

Therefore, the molar mass of the gas is 36.8 g/mol.

To find the molar mass of the gas, we can use the ideal gas law: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. We can rearrange this equation to solve for the number of moles:

n = PV/RT

Plugging in the given values, we get:

n = (755 mmHg)(0.244 L)/(0.0821 L atm/mol K)(311 K)

Simplifying this expression, we get:

n = 0.0117 mol

Next, we can use the definition of molar mass (mass/moles) to find the molar mass of the gas:

molar mass = mass/ moles

Plugging in the given values, we get:

molar mass = 0.431 g/0.0117 mol

Simplifying this expression, we get:

molar mass = 36.8 g/mol

Therefore, the molar mass of the gas is 36.8 g/mol.

Visit here to learn more about molar mass  : https://brainly.com/question/12127540
#SPJ11

A protein with a molecular weight of M prot 32,000 and the specific volume of the protein is Vprot = 0.75 ml/g. What is the translational diffusion coefficient consistent with the Stokes radius obtained from the previous question?

Answers

The translational diffusion coefficient (D) of a protein with a molecular weight (M_prot) of 32,000 and specific volume (V_prot) of 0.75 ml/g is 1.73 x 10⁻⁷ cm²/s, consistent with the Stokes radius calculated previously.


1. Calculate the protein's volume (V) using M_prot and V_prot: V = M_prot x V_prot = 32,000 x 0.75 ml/g = 24,000 ml.


2. Convert V to cm³: V = 24,000 ml x (1 cm³/1 ml) = 24,000 cm³.


3. Calculate the protein's radius (r) using the formula for the volume of a sphere: V = 4/3πr³. Solve for r: r ≈ 17.8 Å.


4. Calculate the viscosity (η) of the solvent (water) at 20°C: η ≈ 1.002 x 10⁻² g/cm•s.


5. Calculate the Boltzmann constant (k_B) at room temperature: k_B = 1.38 x 10⁻²³ J/K.


6. Convert the temperature (T) to Kelvin: T = 20°C + 273.15 = 293.15 K.


7. Calculate the translational diffusion coefficient (D) using the Stokes-Einstein equation: D = k_BT / 6πηr. Plug in the values: D ≈ 1.73 x 10⁻⁷ cm²/s.

To know more about Boltzmann constant click on below link:

https://brainly.com/question/30639301#

#SPJ11

elect the compound that will react the slowest upon nitration. If images/letters are not displaying correctly, try maximizing your screen. Br A B с D O A B o о c o D

Answers

The compound that will react the slowest upon nitration is compound B because it already has a nitro group attached to it, making it less reactive towards further nitration.


Based on the given information, I assume you are asking about nitration of aromatic compounds. The speed of nitration is determined by the nature of the substituent on the aromatic ring. Electron-donating groups (EDGs) activate the ring and increase the reaction rate, while electron-withdrawing groups (EWGs) deactivate the ring and decrease the reaction rate.

Given the choices:
A) Aromatic compound with Br
B) Aromatic compound with A
C) Aromatic compound with B
D) Aromatic compound with O

Unfortunately, I am unable to see the specific substituents in choices A, B, and C. However, I can provide you with guidance on how to select the correct compound.

To determine the compound that will react the slowest upon nitration, look for the compound with the strongest electron-withdrawing group (EWG). The stronger the EWG, the more it will deactivate the aromatic ring and slow down the nitration reaction.

Compare the substituents in choices A, B, and C, and choose the one with the strongest EWG for the slowest nitration reaction.

maximizing your screen. Br A B с D O A B o о c o D

Learn more about  nitration reaction here:

https://brainly.com/question/14637486

#SPJ11

Propose structures for the intermediate and the alkene produced in steps 1 & 2 when the following compound undergoes Hofmann elimination:Amines are converted into alkenes by a two-step process called the Hofmann elimination. SN2 reaction of the amine with an excess of CH3I in the first step yields an intermediate that undergoes E2 reaction when treated with silver oxide as a base. Pentylamine, for example, yields 1-pentene 1.

Answers

The intermediate formed during the Hofmann elimination of pentylamine is C_{5}H_{11}N(CH_3)3I, and the alkene produced is 1-pentene (C_{5}H_{10}).


For a generic amine undergoing Hofmann elimination, the two steps involved are:
Step 1: Formation of the intermediate
In this step, the amine reacts with an excess of CH_{3}I via an SN_{2} reaction. The lone pair of electrons on the nitrogen in the amine attacks the carbon in CH_{3}I, leading to the formation of a positively charged nitrogen in the intermediate, called a quaternary ammonium salt.
Step 2: Formation of the alkene
In this step, the intermediate formed in step 1 undergoes an E_{2} elimination reaction when treated with silver oxide (Ag_{2}O) as a base. This leads to the removal of a proton from a carbon adjacent to the nitrogen, and the breaking of the carbon-nitrogen bond, producing the alkene.
Now, let's apply this process to pentylamine as an example:
Step 1: Formation of the intermediate
Pentylamine (C_{5}H_{11}NH_{2}) reacts with an excess of CH_{3}I, resulting in the formation of a quaternary ammonium salt. The structure of this intermediate is C_{5}H_{11}N(CH_3)3I, with a positively charged nitrogen bonded to three methyl (CH_{3}) groups and a pentyl (C_{5}H_{11}) group.
Step 2: Formation of 1-pentene
The intermediate from step 1 undergoes an E_{2} elimination reaction when treated with silver oxide. A proton is removed from the carbon adjacent to the positively charged nitrogen, and the carbon-nitrogen bond is broken. This results in the formation of 1-pentene (C_{5}H_{10}) as the final product.
In summary, the intermediate formed during the Hofmann elimination of pentylamine is C_{5}H_{11}N(CH_3)3I, and the alkene produced is 1-pentene (C_{5}H_{10}).

learn more about 1-pentene Refer: https://brainly.com/question/15397834

#SPJ11

Calculate the volume percent of solute in the following solutions. 22.5 mL of methyl alcohol in enough water to give 533 mL of solution. 65.3 mL of ethylene glycol in enough water to give 249 mL of solution.

Answers

The volume percent of methyl alcohol in the first solution is 4.22%. The volume percent of ethylene glycol in the second solution is 26.21%.

For the first solution, we have 22.5 mL of methyl alcohol and 533 mL of solution.

To calculate the volume percent of methyl alcohol, we need to divide the volume of methyl alcohol by the total volume

of the solution and then multiply by 100:

Volume percent of methyl alcohol = (22.5 mL / 533 mL) * 100% = 4.22%

For the second solution, we have 65.3 mL of ethylene glycol and 249 mL of solution.

Using the same formula as before, we can calculate the volume percent of ethylene glycol:

Volume percent of ethylene glycol = (65.3 mL / 249 mL) * 100% = 26.21%

To learn more about methyl alcohol click here https://brainly.com/question/28889113

#SPJ11

which one of the following pairs contains isoelectronic species? group of answer choices cr3 , v3 ca2 , cl- br-, cl- ca2 , br-

Answers

The pair that contains isoelectronic species is ca2 and br-. Both ions have the same number of electrons, which is 18.


Isoelectronic species are chemical species that have the same number of electrons or the same electronic structure. Among the given pairs, the isoelectronic species are:
Ca2+ and Br-
1. Ca2+: Calcium has an atomic number of 20, so it has 20 electrons in its neutral state. When it loses 2 electrons to form the Ca2+ ion, it has 18 electrons.
2. Br-: Bromine has an atomic number of 35, so it has 35 electrons in its neutral state. When it gains 1 electron to form the Br- ion, it also has 18 electrons.
Both Ca2+ and Br- have the same number of electrons (18), which makes them isoelectronic species.

Learn more about isoelectronic here

https://brainly.com/question/6807313

#SPJ11

consider this aqueous reaction. hno3(aq) ba(oh)2(aq)⟶ what is the formula for the salt that forms?

Answers

The formula for the salt that forms in this aqueous reaction is Ba(NO₃)₂.

What is the formula for the salt

When HNO₃(aq) and Ba(OH)₂(aq) are mixed together, they undergo a double displacement reaction

This means that the positive ions (H⁺ and Ba₂⁺) and negative ions (NO₃⁻ and OH⁻) in the reactants swap partners to form new compounds.

In this case, the H⁺ and OH⁻ combine to form water (H₂O), which is a neutral compound and does not participate further in the reaction.

The remaining ions, Ba₂⁺ and NO₃⁻ ), combine to form the salt Ba(NO₃)₂.

Learn more about aqueous reaction at

https://brainly.com/question/14671482

#SPJ11

the ph of a 9.05x10-2 m solution of b(aq) is 11.706. calculate the kb

Answers

The Kb of the solution is 6.11 x 10^-6.

Write the balanced chemical equation for the reaction of B(aq) with water.

B(aq) + H2O(l) ⇌ BH+(aq) + OH-(aq)

Write the expression for the Kb of the reaction.

Kb = [BH+][OH-]/[B(aq)]

Calculate the concentration of OH- in the solution using the pH.

pH = 11.706

[OH-] = 10^(-pH) = 2.28 × 10^(-12) M

Calculate the concentration of BH+ using the charge balance equation.

[BH+] = [OH-] - [H+]

Assuming [H+] is negligible in comparison to [OH-], [BH+] ≈ [OH-]

[BH+] = 2.28 × 10^(-12) M

Calculate the concentration of B(aq).

[B(aq)] = 9.05 × 10^(-2) M

Calculate the Kb of the solution.

Kb = [BH+][OH-]/[B(aq)] = (2.28 × 10^(-12) M)(2.28 × 10^(-12) M)/(9.05 × 10^(-2) M) = 6.11 × 10^(-6)

Therefore, the Kb of the 9.05 × 10^(-2) M solution of B(aq) is 6.11 × 10^(-6).

For more questions like Concentration click the link below:

https://brainly.com/question/10725862

#SPJ11

What is the energy in joules of a mole of photons associated with visible light of wavelength 486 nm? (c= 3.00 x 108 m/s, h=6.63 * 10-34 J·s; NA = 6.022 1023 moles-1Multiple Choice A 2.46 10-4 b. 6.46 x 10-25, c. 12.4 kJ 6.46 d. 10-16 246 kJ

Answers

The correct option is A) 2.46 x 10^-4. To find the energy in joules of a mole of photons associated with visible light of wavelength 486 nm, we can use the formula E=hc/λ, where E is energy, h is Planck's constant, c is the speed of light, λ is the wavelength.

First, we need to convert the wavelength from nanometers to meters, so we have λ = 486 nm * (1 m / 10^9 nm) = 4.86 x 10^-7 m. Then, we can plug in the values for h, c, and λ:

E = (6.63 x 10^-34 J·s) * (3.00 x 10^8 m/s) / (4.86 x 10^-7 m)
E = 4.08 x 10^-19 J

This is the energy of one photon with a wavelength of 486 nm. To find the energy in joules of a mole of photons, we need to multiply by Avogadro's number (NA = 6.022 x 10^23 mol^-1):

E = (4.08 x 10^-19 J/photon) * (6.022 x 10^23 photons/mol)
E = 2.46 x 10^5 J/mol

This is a relatively large amount of energy, which is why visible light can have effects on chemical reactions and biological processes.

To know more about Planck's constant refer here:

https://brainly.com/question/27389304#

#SPJ11

would radon or oxygen exert greater partial pressureA) the pressure that the radon would exert in the bsence of the oxygen B) The percentage of the total pressure of the mixture that is contributed by radon C) equal to the total pressure divided by radon's molar mass D) equal to the total pressure divided by the number of radon atoms present

Answers

Oxygen would exert greater partial pressure than radon. This is because partial pressure is directly proportional to the concentration of the gas in a mixture and oxygen is much more abundant in the atmosphere than radon.

Additionally, radon is a noble gas, meaning it is very unreactive and does not participate in many chemical reactions, while oxygen is highly reactive and involved in many biological and chemical processes. Therefore, even though radon is denser than oxygen, its contribution to the total pressure of a mixture would be much lower than that of oxygen.

Learn more about chemical here:

https://brainly.com/question/29240183

#SPJ11

The original synthesis by Silverman involved Michael addition of nitromethane to an α ,β-unsaturated ester followed b reduction of the nitro group to an amine as shown below: This gave a racemic mixture of Lyrica, what is the structure of the α ,β-unsaturated ester in order to produce Lyrica?

Answers

To synthesize Lyrica, the structure of the α,β-unsaturated ester involved in the original synthesis by Silverman is required.


The α,β-unsaturated ester needed to produce Lyrica (Pregabalin) through Silverman's original synthesis is methyl (E)-3-(3-methyl-5-isoxazolecarbonyl)acrylate.

This ester undergoes a Michael addition with nitromethane, followed by a reduction of the nitro group to an amine, resulting in a racemic mixture of Lyrica.

To know more about α,β-unsaturated ester here

https://brainly.com/question/30173984

#SPJ11

calculate the molarity of a 20.0% by mass bacl2 solution. the density of the solution is 1.203 g/ml.

Answers

The molarity of the 20.0% by mass BaCl2 solution is 1.155 M. To calculate the molarity of the 20.0% by mass BaCl2 solution, we first need to determine the mass of BaCl2 in 1 litre of the solution.

Assuming we have 1 litre of the solution, the mass of the solution would be:

mass = density x volume = 1.203 g/ml x 1000 ml = 1203 g

Since the solution is 20.0% by mass BaCl2, the mass of BaCl2 in 1 litre of the solution would be:

mass of BaCl2 = 20.0% x 1203 g = 240.6 g

The molar mass of BaCl2 is 208.23 g/mol.

We can use this to calculate the number of moles of BaCl2 in the solution:

moles of BaCl2 = mass of BaCl2 / molar mass of BaCl2 which is

240.6 g / 208.23 g/mol = 1.155 mol

Finally, we can calculate the molarity of the solution:

molarity = moles of solute/litres of solution

molarity=  1.155 mol / 1 L = 1.155 M

Therefore, the molarity of the 20.0% by mass BaCl2 solution is 1.155 M.

To know more about Morality visit:

https://brainly.com/question/8732513

#SPJ11

Which sample produced the higher amount of radiation? O The sample with an activity of 8 kBq O The sample with an activity of 17 mCi

Answers

The sample with an activity of 17 mCi (629,000,000 Bq) produced a higher amount of radiation than the sample with an activity of 8 kBq (8,000 Bq).

To determine which sample produced the higher amount of radiation, we'll need to compare the activities of the two samples:

1. The sample with an activity of 8 kBq (kilo-Becquerels)
2. The sample with an activity of 17 mCi (milli-Curies)

First, let's convert both activities to a common unit, Becquerels (Bq).

1 kBq = 1,000 Bq
1 Ci = 37,000,000,000 Bq (37 billion Bq)
1 mCi = 0.001 Ci

Now, let's convert the activities:
- Sample 1: 8 kBq = 8,000 Bq
- Sample 2: 17 mCi = 17 * 0.001 Ci = 0.017 Ci = 0.017 * 37,000,000,000 Bq = 629,000,000 Bq

Comparing the activities, we find that the sample with an activity of 17 mCi (629,000,000 Bq) produced a higher amount of radiation than the sample with an activity of 8 kBq (8,000 Bq).

Learn more about radiation at  brainly.com/question/13934832

#SPJ11

File that is temporarily stored on your computer. Save #1 SYNTHESIS OF FLUORESCEIN a. Propose a mechanism (curvy arrows) to show the conversion of the quinoid form to the lactone form НО, OH HOOH А НО. Zwitterionic Tautomer Yellow Lactone Tautomer Colorless Quinoid Tautomer Brick red

Answers

The file that is temporarily stored on your computer is called a cache. As for the question about the synthesis of fluorescein, the conversion from the quinoid form to the lactone form can occur through a tautomerization process.

The mutation that results from a tautomeric shift ALWAYS converts a purine to a purine or a pyrimidine to a pyrimidine. A point mutation could result from a tautomeric shift in Computer.

Any change to the nucleotide sequence of an individual's genome is referred to as a mutation.

It is possible to characterize a tautomeric shift as a transient modification of the nucleotide base structure

The mechanism involves the transfer of a proton and rearrangement of electrons to form a zwitterionic tautomer, which can then undergo a cyclization reaction to form the yellow lactone tautomer. The quinoid tautomer, which is colorless, can also be converted to the brick red form through further oxidation.

Learn more about tautomeric shift here

https://brainly.com/question/25880668

#SPJ11

Which of the following reagents react readily with bromobenzene ?
(a) NaNH₂ / NH₃ at -33°C
(b) (CH₃)₂NH at. 25°C
(c) CH₃CH₂ONa at. 25°C
(d) NaCN/DMSO at. 25°C

Answers

The reagent that reacts readily with bromobenzene is (CH₃)₂NH at 25°C.

So the correct answer is B.

This is because (CH₃)₂NH is a strong nucleophile and can easily attack the electrophilic carbon of the bromobenzene to form a new bond. The other reagents listed may not be as effective in reacting with the bromobenzene under the given conditions.

For example, (a) NaNH₂/NH₃ at -33°C is a strong base and may not react as readily at such a low temperature. (c) CH₃CH₂ONa at 25°C may also not react as readily as (b) because it is a weaker nucleophile. (d) NaCN/DMSO at 25°C is a good nucleophile but may not be as effective in reacting with bromobenzene as (b) (CH₃)₂NH because DMSO is a polar aprotic solvent, which may not provide the optimal environment for the reaction to occur.

Learn more about reagents at https://brainly.com/question/26905271

#SPJ11

calculate the molar solubility of barium fluoride in 0.25 m naf at 25°c. ksp for barium fluoride at 25°c is 1.7 × 10-6.

Answers

The molar solubility of barium fluoride in 0.25 M NaF at 25°C is 1.1 × 10^-3 M.

The solubility of barium fluoride (BaF2) in water at 25°C is given by the Ksp expression:

Ksp = [Ba2+][F-]^2

At equilibrium, the concentration of Ba2+ and F- ions in the solution are in equilibrium with the solid BaF2.

However, in the presence of sodium fluoride (NaF), the equilibrium is shifted to the left due to the common ion effect. This means that the concentration of fluoride ions (F-) in the solution is already high due to the presence of NaF, which reduces the solubility of BaF2.

The reaction between BaF2 and NaF can be written as:

BaF2 (s) ⇌ Ba2+ (aq) + 2F- (aq)

Let's assume that the molar solubility of BaF2 in the presence of NaF is x M. Then, the concentration of Ba2+ and F- ions in the solution will be x M and 2x M, respectively, based on the stoichiometry of the dissociation reaction.

The concentration of F- ions in the solution due to NaF is 0.25 M (the concentration of NaF). Therefore, the total concentration of F- ions in the solution will be 2x + 0.25 M.

Using the Ksp expression, we can write:

Ksp = [Ba2+][F-]^2

1.7 × 10^-6 = x(2x + 0.25)^2

Solving for x, we get:

x = 1.1 × 10^-3 M

Therefore, the molar solubility of BaF2 in 0.25 M NaF at 25°C is 1.1 × 10^-3 M.

Know more about molar solubility here: https://brainly.com/question/28170449

#SPJ4

Calculate the pH of the buffer that results from mixing 52.2 mL of a 0.469 M solution of HCHO2 and 15.6 mL of a 0.509 M solution of NaCHO2. The Ka value for HCHO2 is 1.8×10−4.

Answers

[tex]pH = pKa + log([A-]/[HA]) = 3.79[/tex]  Is  the pH of the buffer that results from mixing 52.2 mL of a 0.469 M solution of [tex]HCHO2[/tex] and 15.6 mL of a 0.509 M solution of [tex]NaCHO2[/tex] . The Ka value for HCHO2 is [tex]1.8×10−4.[/tex]

First, calculate the moles of HCHO2 and NaCHO2:

moles [tex]HCHO2 = (52.2 mL / 1000 mL/L) * 0.469 mol/L = 0.0245[/tex]  mol

moles [tex]NaCHO2 = (15.6 mL / 1000 mL/L) * 0.509 mol/L = 0.00794 mol[/tex]

Next, calculate the moles of the resulting buffer solution:

moles buffer = moles[tex]HCHO2 + moles NaCHO2 = 0.0324 mol[/tex]

Then, calculate the concentrations of [tex]HCHO2 and CHO2-[/tex] in the buffer solution:

[tex][HA] = moles HCHO2 /[/tex]  total buffer volume = 0.0245 mol / 0.068 mL = 0.360 M

[A-] = moles NaCHO2 / total buffer volume = 0.00794 mol / 0.068 mL = 0.117 M

Finally, use the Henderson-Hasselbalch equation to calculate the pH:

[tex]pH = pKa + log([A-]/[HA]) = -log(1.8×10^-4) + log(0.117/0.360) = 3.79.[/tex]

learn more about pH here:

https://brainly.com/question/15289741

#SPJ11

assign oxidation numbers to each atom in rh(c2o4)2

Answers

The oxidation numbers for each atom in Rh(C2O4)2 are: Rh = +4(each), C = +2 (each), and O = -2 (each).

Assign oxidation numbers to each atom in Rh(C2O4)2:

1. Identify the oxidation numbers of the known atoms: In this compound, we know that the oxidation number of oxygen (O) is always -2 (except in peroxides).

2. Analyze the oxalate ion (C2O4)^2-: Since there are two oxygen atoms (each with an oxidation number of -2), their combined oxidation number is -4.

To balance the charge of the ion, the two carbon atoms must have a combined oxidation number of +4. Each carbon atom, therefore, has an oxidation number of +2.

3. Determine the oxidation number of Rh: In the compound Rh(C2O4)2, there are two oxalate ions, each with a charge of -2, resulting in a total negative charge of -4. To balance this charge, the oxidation number of Rh must be +4.

In summary, the oxidation numbers for each atom in Rh(C2O4)2 are: Rh = +4, C = +2 (each), and O = -2 (each).

To know more about oxidation number:

https://brainly.com/question/30770473

#SPJ11

An acetoacetic ester synthesis of a ketone proceeds by alkylation of the enolate of the acetoacetic ester followed by ester hydrolysis and decarboxylation of the B-ketoacid Which of the following methyl ketones is difficult to prepare by this method? A: CH;CCHzC(CHs)a B. CH;CCH CHzPh C CH,CCH CHZCH-CHz CH;CCH(CHzPhlz

Answers

CH₃C(O)CH₂C₆H₅, which would be difficult to prepare by the acetoacetic ester synthesis.(B)

The acetoacetic ester synthesis is a synthetic method used to prepare ketones by alkylation of the enolate of acetoacetic ester, followed by hydrolysis and decarboxylation of the resulting β-ketoacid. The ease of preparation of a specific methyl ketone by this method depends on the stability of the β-ketoacid intermediate formed during the reaction.

In general, β-ketoacids with electron-withdrawing substituents are more stable and easier to prepare by this method than β-ketoacids with electron-donating substituents. This is because electron-withdrawing groups stabilize the negative charge on the β-carbon of the ketoacid, making it less prone to undergo decarboxylation.

Among the given options, option B CH₃C(O)CH₂C₆H₅ with a phenyl group attached to the β-carbon of the ketoacid, would be difficult to prepare by this method. This is because the electron-donating nature of the phenyl group destabilizes the negative charge on the β-carbon of the ketoacid, making it more prone to undergo decarboxylation. This results in a lower yield of the desired methyl ketone.

In contrast, options A and C have electron-withdrawing substituents on the β-carbon, making them more stable and easier to prepare by this method.

To know more about decarboxylation click on below link:

https://brainly.com/question/31608857#

#SPJ11

Determine the pH of each of the following two-component solutions.
1)4.5×10−2 M KOH and 2.5×10−2 M Ba(OH)2
2)0.265 M NH4NO3 and 0.102 M HCN
3)7.5×10−2 M RbOH and 0.120 M NaCl
4)9.2×10−2 M HClO4 and 2.2×10−2 M KOH
5)0.115 M NaClO and 5.50×10−2 M KI

Answers

The pH of the first solution is 12.98. The pH of the second solution is 3.3. The pH of third solution is 12.88. The HClO4 will dissociate in water to form H.

Which pH is the lowest?

The highest acidic value on the scale is zero, and the least is fourteen. (the most basic). According to the pH scale above, pure water has a pH level of 7. This value is regarded as neutral because it neither exhibits acidity nor basicity.

The concentration of hydroxide ions in the solution must first be determined in order to determine the pH of the solution. Finding the overall concentration of hydroxide ions in the solution is necessary since we have two sources of hydroxide ions:

[OH-] = [KOH] + 2[Ba(OH)²]

= 4.5×10⁻² M + 2(2.5×10⁻²M)

= 9.5×10⁻² M

We can now determine the solution's pOH:

pOH = -log[OH⁻]

= -log(9.5×10⁻²)

= 1.02

Finally, the following equation can be used to determine the solution's pH:

pH + pOH = 14

pH = 14 - pOH

= 14 - 1.02

= 12.98

To know more about solution visit:-

https://brainly.com/question/23857908

#SPJ1

The pH of the first solution is 12.98. The pH of the second solution is 3.3. The pH of third solution is 12.88. The HClO4 will dissociate in water to form H.

Which pH is the lowest?

The highest acidic value on the scale is zero, and the least is fourteen. (the most basic). According to the pH scale above, pure water has a pH level of 7. This value is regarded as neutral because it neither exhibits acidity nor basicity.

The concentration of hydroxide ions in the solution must first be determined in order to determine the pH of the solution. Finding the overall concentration of hydroxide ions in the solution is necessary since we have two sources of hydroxide ions:

[OH-] = [KOH] + 2[Ba(OH)²]

= 4.5×10⁻² M + 2(2.5×10⁻²M)

= 9.5×10⁻² M

We can now determine the solution's pOH:

pOH = -log[OH⁻]

= -log(9.5×10⁻²)

= 1.02

Finally, the following equation can be used to determine the solution's pH:

pH + pOH = 14

pH = 14 - pOH

= 14 - 1.02

= 12.98

To know more about solution visit:-

https://brainly.com/question/23857908

#SPJ1

Two tins with tight- fitting lids, one painted black and the other white, are taken. Holes are made in the lids to hold thermometers. Equal quantity of boiling water is poured into each tin. The temperatures at various times are noted.
Problem:
Hypothesis:

Answers

The possible problem and hypothesis would be:

Problem : Does the color of the tin affect the rate of cooling of boiling water inside?Hypothesis : The black tin will absorb more heat from the boiling water than the white tin, causing its temperature to rise faster and reach a higher final temperature."

How to find the problem and hypothesis ?

To find the problem and hypothesis, you should first identify the purpose or objective of the experiment or study. The problem is the question or issue that the experiment or study aims to address or solve. The hypothesis is a tentative explanation or prediction for the problem or question.

In the given scenario, the purpose of the experiment is to compare the temperatures inside tins painted black and white when filled with equal quantities of boiling water.

Find out more on hypothesis at https://brainly.com/question/13075121

#SPJ1

What is the ph of 0.21 M acetic acid to 1.00 L of which 1.43 g of sodium acetate, NaCH3CO2, has been added? (K, for acetic acid is 1.8 x 10^-5)pH =

Answers

To find the pH of the solution, we first need to calculate the concentration of acetate ions in the solution after the addition of sodium acetate.

We can start by calculating the number of moles of sodium acetate added:
1.43 g NaCH3CO2 x (1 mol NaCH3CO2 / 82.03 g NaCH3CO2) = 0.0174 mol NaCH3CO2
Since sodium acetate fully dissociates in water, we know that the number of moles of acetate ions in the solution is also 0.0174 mol.
Next, we need to calculate the new concentration of acetic acid in the solution. We can use the equation for the ionization of acetic acid:
CH3CO2H ⇌ CH3CO2- + H+
Ka = [CH3CO2-][H+] / [CH3CO2H]
At equilibrium, the concentration of acetic acid will be reduced by the amount of acetate ions that were added, so:
[CH3CO2H] = 0.21 M - 0.0174 M = 0.1926 M
We can now use the equilibrium equation and the given Ka value to solve for the concentration of H+ ions, and thus the pH:
1.8 x 10^-5 = (0.0174 M)(x) / (0.1926 M)
x = 1.576 x 10^-4 M
pH = -log[H+] = -log(1.576 x 10^-4) = 3.804
Therefore, the pH of the solution is approximately 3.804.

To learn more about sodium acetate visit;

https://brainly.com/question/12924347

#SPJ11

Given:Concentration of weak acid solution = 0.19 M, of the solution at = 4.52The concentration of hydronium ion in solution can be calculated fromas:So, the equilibrium concentration of hydronium ion in the solution is.

Answers

the equilibrium concentration of hydronium ion in the solution is 3.01 x 10⁻⁵ M.

To calculate the equilibrium concentration of hydronium ion in the solution, we need to use the equation for the dissociation of a weak acid:

HA + H₂O ⇌ H₃O⁺ + A⁻

The equilibrium constant expression for this reaction is:

Ka = [H₃O⁺][A⁻]/[HA]

Since we know the concentration of the weak acid solution (0.19 M) and the pH of the solution (4.52), we can use the pH to calculate the concentration of hydronium ion:

pH = -log[H₃O⁺]

4.52 = -log[H₃O⁺]

[H₃O⁺] = 10⁻⁴°⁵²

[H₃O⁺] = 3.01 x 10⁻⁵ M

Now, we can use the equilibrium constant expression to calculate the concentration of A-:

Ka = [H₃O⁺][A⁻]/[HA]

1.8 x 10⁻⁵= (3.01 x 10⁻⁵)([A⁻])/0.19

[A⁻] = (1.8 x 10⁻⁵)(0.19)/(3.01 x 10⁻⁵)

[A⁻] = 1.13 x 10⁻⁴ M

Therefore, the equilibrium concentration of hydronium ion in the solution is 3.01 x 10⁻⁵ M.

To learn more about concentration https://brainly.com/question/17206790

#SPJ11

at 25 ∘c , the osmotic pressure of a solution of the salt xy is 45.6 torr . what is the solubility product of xy at 25 ∘c ?

Answers

The solubility product of XY at 25 ∘C is 3.58 × 10⁻⁶.

The relationship between osmotic pressure and solute concentration for a solution is given by the equation;

π = MRT

where π will be the osmotic pressure, M will be the molar concentration of the solute, R will be the gas constant, and T is the temperature in Kelvin.

To find the solubility product of the salt XY, we need to first calculate its molar concentration from the given osmotic pressure. We can rearrange the above equation to solve for M

M = π / RT

Substituting the given values, we get;

M = 45.6 torr / (0.082 L·atm/mol·K × 298 K) = 0.00189 M

Now, we can write the solubility product expression for XY as:

Ksp = [X⁺][Y⁻]

Assuming that XY dissociates completely in water, the molar solubility of XY is equal to the concentration of X⁺ and Y⁻ ions:

[X⁺] = [Y⁻] = 0.00189 M

Substituting these values into the solubility product expression, we get:

Ksp = (0.00189 M)(0.00189 M) = 3.58 × 10⁻⁶

Therefore, the solubility product of XY at 25 ∘C is 3.58 × 10⁻⁶. The units for Ksp depend on the stoichiometry of the reaction, but for the given expression, the units would be (M)².

To know more about solubility product here

https://brainly.com/question/857770

#SPJ4

12 write the brønsted acid equation for ch3cooh(aq).

Answers

The Brønsted acid equation for CH3COOH(aq) can be written as follows: CH3COOH(aq) + H2O(l) ⇌ CH3COO-(aq) + H3O+(aq)

In this equation, CH3COOH(aq) is the acid and H2O(l) is the base. When the acid donates a proton to the base, it forms the conjugate base CH3COO-(aq) and the conjugate acid H3O+(aq). The reaction can also proceed in the reverse direction, with the conjugate base acting as an acid and the conjugate acid acting as a base.

It is important to note that the strength of an acid is determined by its ability to donate a proton, or H+. Acids that readily donate a proton are considered strong acids, while acids that donate a proton less readily are considered weak acids. In the case of CH3COOH(aq), it is a weak acid as it only partially dissociates in water, meaning that only a small percentage of the molecules donate a proton. The Brønsted acid equation for CH3COOH(aq) can be written as follows: CH3COOH(aq) + H2O(l) ⇌ CH3COO-(aq) + H3O+(aq).

Learn more about strong acids at:

https://brainly.com/question/12811944

#SPJ11

Choose a Grignard reagent and a ketone that can be used to produce each of the following compounds.
A) 3-methyl-3-pentanol
B) 1-ethylcyclohexanol
C) triphenylmethanol
D) 5-phenyl-5-nonanol

Answers

the Grignard reagent reacts with the chosen ketone through a nucleophilic addition reaction to produce the desired alcohol.

A) 3-methyl-3-pentanol:
Grignard reagent: Ethylmagnesium bromide (CH3CH2MgBr)
Ketone: 2-butanone (CH3CH2COCH3)

B) 1-ethyl cyclohexanol:
Grignard reagent: Ethylmagnesium bromide (CH3CH2MgBr)
Ketone: Cyclohexanone (C6H10O)

C) triphenylmethanol:
Grignard reagent: Phenylmagnesium bromide (C6H5MgBr)
Ketone: Benzophenone (C6H5CO-C6H5)

D) 5-phenyl-5-nonanol:
Grignard reagent: Phenylmagnesium bromide (C6H5MgBr)
Ketone: 5-nonanone (CH3(CH2)4CO(CH2)3CH3)

In each case, the Grignard reagent reacts with the chosen ketone through a nucleophilic addition reaction to produce the desired alcohol.

Learn more about Grignard reagents at  brainly.com/question/30144052

#SPJ11

A buffer is created by combining 160.0 mL of 0.25 M HCHO2 with 80.0 mL of 0.25 M NaOH. Determine pH of the buffer.

Answers

The pH of the buffer is about 3.45.

What does pH 7.35 mean?

An acidemia is defined as a pH value below 7.35 and an alkalemia as one above 7.45. The human body includes compensatory mechanisms because it is essential to keep the pH level in the specified small range.

Moles of Formic acid= 0.25 mol/L x 0.160 L = 0.04 mol

Moles of NaCHO2 = 0.25 mol/L x 0.080 L = 0.02 mol

pH = pKa + log([Formate]/[Formic acid])

where [Formate] is the molar concentration of the sodium formate and [Formic acid] is the molar concentration of the formic acid.

Substituting the values, we get:

pH = 3.75 + log([0.02 mol]/[0.04 mol])

pH = 3.75 - log 2

pH = 3.75 - 0.301 = 3.449

To know more about pH visit:-

https://brainly.com/question/491373

#SPJ1

Calculate the pKa value of Phosphoric Acid H3PO4 Ka = 6.3*10^-3

Answers

The pKa value of Phosphoric Acid H3PO4 is approximately 2.20. The pKa value of Phosphoric Acid H3PO4 can be calculated using the formula pKa = -log(Ka), where Ka is the acid dissociation constant.

To calculate the pKa value of Phosphoric Acid (H3PO4), you will need to use the given Ka value. The pKa value can be found using the following formula:
pKa = -log10(Ka)
Given that Ka = 6.3 * 10^-3, you can calculate the pKa as follows:
pKa = -log10(6.3 * 10^-3)
pKa ≈ 2.20
Therefore, the pKa value of Phosphoric Acid (H3PO4) is approximately 2.20.

Given that the Ka of Phosphoric Acid is 6.3*10^-3, we can plug this value into the formula to get:
pKa = -log(6.3*10^-3)
Using a calculator, we get:
pKa = 2.20
Therefore, the pKa value of Phosphoric Acid H3PO4 is approximately 2.20.

Learn more about  Phosphoric Acid here: brainly.com/question/3700851

#SPJ11

Other Questions
where in the campaign creation process do you specify creative? If other factors are held constant, both the mean and standard deviation for the binomial distribution increase as the sample size increases. True or false? What is neccesary to clean vent hood filter what is the speed of a 10 g bullet that, when fired into a 12 kg stationary wood block, causes the block to slide 4.2 cm across a wood table? assume that k = 0.20. help!write an equation in point slope form Parker runs the net start svsvc command at a Command Prompt to scan volume errors. He finds a corrupted spot on a volume. How can Parker directly go to the corrupted spot identified by the Spot Verifier service? a) By using the /r option with the chkdsk command b) By using the /spotfix option with the chkdsk command c) By using the /c option with the chkdsk command d) By using the /x option with the chkdsk command Let r(t) = ti+t^2j + 2tk The tangential component of acceleration is a. aT = 2/t^2+5 b. aT = 4/t^2+5 c. aT = 4t/4t^2+5 d. aT = 2t/4t^2+5 e. aT=t/4t^2 +5 A piece of manufacturing equipment has annual maintenance and operations costs of $18,000 and requires a $90,000 overhaul every 5 years. The EUAC of the equipment at an MARR of 12% is most nearly: $72.000 $36.000 $43.000 $108,000 Answer this math question for ten points lol you are long 12 gold futures contracts with a futures price of $1,279.32 per troy oz. each contract covers 100 troy ounces of gold. What is your profit if the gold price is $1,279 on the expiration date of the futures contract (in $)? + decimals Submit explain why hc--ch is more acidic than ch3ch3, even though the c-h bond in hc-ch has a higher bond dissociation energy than the ch bond in ch3ch3 The following transcript comes from the monumental 1966 case of Miranda vs. the State of Arizona. The result of this case required police officers to inform anyonebeing arrested of his or her rights to an attorney. Read the statement and then answer the question that follows:Now, may I just state what the thrust of our position is, very briefly, before indicating likewise its limits and why we are taking this position? Our contention is thatinsofar as these cases present a constitutional claim that a valid confession cannot be taken unless counsel is present or has been waived, that that claim inconstitutional terms in the constitutional dimension is not sound. In other words, Justice Black's question we would answer in the negative. The Fifth Amendmentcannot, and should not be read as requiring counsel to be present at the time the confession is taken. I will come to my reasons for that very presently. [...]In the Miranda case that's just been argued, there is obviously division of opinion about the characteristics of the defendant about whether the warning which Mr.Justice Fortas' questions were directed to was given at a meaningful stage-what the significance of that warning is, in legal terms. [...]Secondly, may I make it quite clear that we are not saying that new rules about requiring counsel to be present when an investigation is taken-when an interrogationis made or a confesA-sion taken-we are not saying that such rules are necessarily unwise, without merit. We say that these are not matters of constitutionaldimension. But we do not say that they might not be very wise rules to adopt. In fact, we are saying that this whole problem of the assistance of counsel at the pre-arraignment stage can, we think, be more appropriately and perhaps better dealt with in the legislative dimension and in the area of judicial policy, rather than onpurely constitutional terms.In one paragraph of five to eight sentences, evaluate whether the statement is effective in terms of logos. Use evidence from the statement to support youranswer. Use proper spelling and grammar. find the average rate of change of f(x)=2x^2-2 from 2 to 4 A 4.6-m-diameter merry-go-round is initially turning with a 3.9 s period. It slows down and stops in 21 s. Before slowing, what is the speed of a child on the rim? A job order costing system would best fit the needs of a company that makes:a. Shoes and apparel.b. Paint.c. Cement.d. Custom machinery.e. Pencils and erasers. Some trees are planted In rows of 10 Complete the formula to find the total number of trees, t, in r rows Determine whether the data set is a population or a sample. Explain your reasoning. The salary of each baseball player in a league. Choose the correct answer below. A. Sample, because it is a collection of salaries for all baseball players in the league, but there are other sports. B. Population, because it is a subset of all athletes. C. Sample, because it is a collection of salaries for some baseball players in the league. D. Population, because it is a collection of salaries for all baseball players in the league. estimate the freezing point of 200 cm3 of water sweetened by the addition of 2.5 g of sucrose. treat the solution as ideal. Write a function that takes a string as an argument and returns a dictionary whose keys are letters and values are counts of those letters in the string. Ignore case. In the field of pharmaceutical research, quantum computing can be used to speed up the time it takes to bring a new drug to market promote new drugs more informatively lower drug prices create nanocapsules for drug administration