Calculate ^Hrxn for the reaction on the right

Calculate ^Hrxn For The Reaction On The Right

Answers

Answer 1

As a result, the reaction's enthalpy change is +1340 kJ/mol.

From kJ mol, how do you compute enthalpy change?

The standard enthalpy change of formation is calculated by subtracting the sum of the standard enthalpies of formation of the reactants and products from the total of the standard enthalpies of formation of the reactants. as well as the usual numbers for the enthalpy of formation: Hfo[A] = 433 KJ/mol. Hfo[B] equals -256 KJ/mol.

To calculate the enthalpy change for the given reaction, we can use Hess's Law and add the enthalpy changes for the two given reactions:

Reaction 1: Ethane gas + Oxygen gas → Carbon dioxide gas + Water vapor; Heat of reaction = -3120 kJ/mol

Reaction 2: Methane gas + Oxygen gas → Carbon dioxide gas + Water vapor; Heat of reaction = -890 kJ/mol

Multiplying Reaction 2 by 2 to balance the oxygen, we get:

2 Methane gas + 4 Oxygen gas → 2 Carbon dioxide gas + 4 Water vapor; Heat of reaction = -1780 kJ/mol

Now, we can reverse Reaction 1 and multiply by 1/2 to get the desired reaction:

1/2 (4 Carbon dioxide gas + 6 Water vapor → 2 Ethane gas + 7 Oxygen gas); Heat of reaction = +3120 kJ/mol

Adding the enthalpy changes for the two reactions, we get:

Heat of reaction for the given reaction = Heat of Reaction 2 x 2 + Heat of Reaction 3

Heat of reaction = -1780 kJ/mol + 3120 kJ/mol

Heat of reaction = +1340 kJ/mol

To know more about reaction's visit:-

https://brainly.com/question/28984750

#SPJ1


Related Questions

If ΔH is greater than zero, and ΔS is less than zero, the process is always

Answers

If ΔH is greater than zero, and ΔS is less than zero, the process is always non-spontaneous at low temperatures

This is because ΔG = ΔH - TΔS, and if ΔH is positive and ΔS is negative, then ΔG will always be positive at low temperatures, indicating a non-spontaneous process. However, at high temperatures, the positive ΔS term will become more significant and may overcome the positive ΔH term, resulting in a spontaneous process.
Hi! If ΔH is greater than zero and ΔS is less than zero, the process is always non-spontaneous .A nonspontaneous reaction is a reaction that does not favor the formation of products at the given set of conditions. In order for a reaction to be nonspontaneous, it must be endothermic, accompanied by a decrease in entropy, or both.

To know more about non-spontaneous please click:-

https://brainly.com/question/17254145

#SPJ11

At low temperatures, the process is always non-spontaneous if H is more than zero and S is less than zero.

This is because ΔG = ΔH - TΔS, and if ΔH is positive and ΔS is negative, then ΔG will always be positive at low temperatures, indicating a non-spontaneous process. However, at high temperatures, the positive ΔS term will become more significant and may overcome the positive ΔH term, resulting in a spontaneous process.

Hi! If ΔH is greater than zero and ΔS is less than zero, the process is always non-spontaneous .A nonspontaneous reaction is a reaction that does not favor the formation of products at the given set of conditions. In order for a reaction to be nonspontaneous, it must be endothermic, accompanied by a decrease in entropy, or both.

To know more about non-spontaneous please click:-

brainly.com/question/17254145

#SPJ4

Heating gas to create plasma can yield
A. neutrons
B. free electrons
C. molecules
D. elements

Answers

B. Heating gas to create plasma can yield free electrons.

Plasma is a state of matter similar to gas but with some important differences, including the presence of free electrons and positively charged ions. When a gas is heated to high temperatures, the thermal energy can ionize some of the gas particles, stripping away one or more of their electrons and creating free electrons and positively charged ions. This ionized gas is referred to as a plasma
Answer: B) free electrons

39. Assume a class named Bird exists. Write the header for a member function that overloads the = operator for that class.

Answers

The header for a member function that overloads the = operator for the Bird class would be:
Bird& operator=(const Bird& other);

Explanation -  Here's the header for a member function that overloads the = operator for the class Bird:
```cpp
Bird& operator=(const Bird& other);```
This header declares a member function that takes a reference to a constant Bird object named 'other' and returns a reference to a Bird object. The purpose of this function is to define how the assignment operator (=) should work when used with objects of the Bird class.

To learn more about assignment operator -

brainly.com/question/14308529

#SPJ11

if the ph of the solution in the above problem is adjusted to 3.86 by the addition of concentrated naoh, what will be the concentration of lactate and lactic acid at equilibrium?

Answers

The concentrations of lactate and lactic acid at equilibrium, in terms of the initial concentration of lactic acid and the pH of the solution after the addition of NaOH.

To answer this question, we need to use the Henderson-Hasselbalch equation, which relates the pH of a solution to the ratio of the concentrations of a weak acid and its conjugate base. The equation is:

pH = pKa + log([A-]/[HA])

where pH is the solution's pH, pKa is the acid dissociation constant of the weak acid, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the weak acid.

In this case, the weak acid is lactic acid (HC3H5O3) and its conjugate base is lactate (C3H5O3-). The pKa of lactic acid is 3.86, which is also the pH of the solution after the addition of concentrated NaOH.

Therefore, we can rearrange the Henderson-Hasselbalch equation to solve for the concentration of lactate and lactic acid at equilibrium:

[A-]/[HA] = 10^(pH - pKa)

[A-]/[HA] = 10^(3.86 - 3.86)

[A-]/[HA] = 1

This means that at equilibrium, the concentration of lactate is equal to the concentration of lactic acid. However, we still need to know the total concentration of lactate and lactic acid in the solution in order to calculate their individual concentrations.

We can use the fact that lactic acid is a monoprotic acid (meaning it donates one proton in its reaction with water) to set up an equilibrium expression for its dissociation:

HC3H5O3 ⇌ C3H5O3- + H+

The equilibrium constant for this reaction is Ka = [C3H5O3-][H+]/[HC3H5O3]. At equilibrium, the total concentration of lactate and lactic acid is equal to the initial concentration of lactic acid, since the addition of NaOH does not affect the total number of moles of the weak acid.

Let's call the total concentration of lactate and lactic acid [HA]total. Then we have:

Ka = [C3H5O3-][H+]/[HC3H5O3] = x^2/([HA]total - x)

where x is the concentration of H+ (which is also equal to the concentration of lactate). We can assume that x is small compared to [HA]total, since lactic acid is a weak acid with a low dissociation constant. Therefore, we can approximate [HA]total - x as [HA]total.

Solving for x, we get:

x = sqrt(Ka[HA]total)

Plugging in the values, we get:

x = sqrt(1.38e-4 M * [HC3H5O3]initial)

where [HC3H5O3]initial is the initial concentration of lactic acid before the addition of NaOH. Note that we need to know [HC3H5O3]initial in order to calculate x, since we are assuming that the total concentration of lactate and lactic acid is equal to [HC3H5O3]initial.

Finally, we can calculate the concentrations of lactate and lactic acid at equilibrium:

[C3H5O3-] = x = sqrt(1.38e-4 M * [HC3H5O3]initial)

[HC3H5O3] = [HA]total - x = [HC3H5O3]initial - sqrt(1.38e-4 M * [HC3H5O3]initial)

These expressions give the concentrations of lactate and lactic acid at equilibrium, in terms of the initial concentration of lactic acid and the pH of the solution after the addition of NaOH.

Visit here to learn more about monoprotic acid  : https://brainly.com/question/30430366
#SPJ11

Calculate the number of moles of cesium in 50.0 g of cesium.A) 0.376 mol B) 0.357 mol C) 2.66 mol D) 2.80 mol E) 0.0200 mol

Answers

Answer:C

Explanation:it is C.

What conditions are required for baking soda and baking powder to react and give off CO2

Answers

the conditions required for these leavening agents to react and give off CO2 are the presence of an acidic ingredient (for baking soda) or a liquid and heat (for baking powder).

To answer your question, the conditions required for baking soda and baking powder to react and give off CO2 are as follows:
1. Baking Soda: Baking soda (sodium bicarbonate) requires an acidic ingredient to react. When combined with an acid like vinegar, lemon juice, or yogurt, a chemical reaction occurs, producing carbon dioxide (CO2) gas. This reaction helps in leavening and providing a fluffy texture to baked goods.
2. Baking Powder: Baking powder is a combination of baking soda, an acid, and a filler like cornstarch. It is a complete leavening agent on its own. The reaction occurs in two stages - when it comes in contact with a liquid, and when it's heated. The liquid activates the acid, which then reacts with the baking soda to produce CO2 gas. Heating further accelerates this process, causing the dough or batter to rise.
In summary, the conditions required for these leavening agents to react and give off CO2 are the presence of an acidic ingredient (for baking soda) or a liquid and heat (for baking powder).

Learn more about baking soda here

https://brainly.com/question/29771586

#SPJ11

word equation solid siliver chloride (AgCI) and an aqueous solition of nitric acid (HNO3) are produced when a solution of silver nitrate (AgNO3) is reacted with a solution of hydrochloric acid (HCI)

Answers

The word equation for the reaction between silver nitrate (AgNO3) and hydrochloric acid (HCl) to produce solid silver chloride (AgCl) and an aqueous solution of nitric acid (HNO3) is:

AgNO3(aq) + HCl(aq) → AgCl(s) + HNO3(aq)

In this reaction, the silver ion (Ag+) from the silver nitrate solution (AgNO3) combines with the chloride ion (Cl-) from the hydrochloric acid solution (HCl) to form solid silver chloride (AgCl), which precipitates out of the solution. The nitrate ion (NO3-) from the silver nitrate solution combines with the hydrogen ion (H+) from the hydrochloric acid solution to form nitric acid (HNO3), which remains in solution.

The Wittig reaction involves the generation of an ylide intermediate. What is an ylide?

Answers

An ylide is a molecule that contains both a negatively charged carbon atom and a positively charged heteroatom, such as nitrogen or phosphorus.

In the context of the Wittig reaction, the ylide intermediate is formed by the reaction between a phosphonium salt and a strong base, resulting in the expulsion of a leaving group and the formation of a new carbon-carbon double bond. The ylide intermediate is then able to react with an aldehyde or ketone to form an alkene product. This ylide intermediate then reacts with a carbonyl compound, such as an aldehyde or ketone, to form a new carbon-carbon double bond, producing an alkene as the final product.

learn more about phosphorus Refer: https://brainly.com/question/4622631

#SPJ11

Amino acids that are usually positive, i.e. Protonated, at physiological pH

Answers

There are several amino acids that are usually positive, or protonated, at physiological pH, which is around 7.4. These include histidine, lysine, and arginine.

Histidine has a side chain with a pKa of approximately 6.0, which means that at physiological pH, about half of the histidine molecules will be protonated and carry a positive charge. Lysine and arginine have side chains with even higher pKa values, around 10.8 and 12.5, respectively. As a result, almost all of the lysine and arginine molecules in a physiological environment will be protonated and positively charged. These positively charged amino acids play important roles in protein structure and function, as well as in enzyme catalysis and ion transport across cell membranes.
Amino acids that are usually positive or protonated at physiological pH (around 7.4) are lysine, arginine, and histidine. These amino acids contain basic side chains which can accept protons, making them positively charged under physiological conditions.

Visit here to learn more about amino acids brainly.com/question/28409615

#SPJ11

A sample of brass contains 3.56 g of copper, Cu. How many moles of copper does the sample contain? The atomic mass of copper is 63.546 g/mol.
a) 226 moles
b) 0.0560 moles
c) 17.9 moles
d) 67.1 moles

Answers

To find the number of moles of copper in the brass sample, we need to use the given mass of copper and the atomic mass of copper:

moles of copper = mass of copper / atomic mass of copper

Substituting the values given in the question, we get:

moles of copper = 3.56 g / 63.546 g/mol
moles of copper = 0.056 moles

Therefore, the answer is option b) 0.0560 moles.

To determine the number of moles of copper in the sample, use the given mass and atomic mass of copper.

Given mass of copper = 3.56 g
Atomic mass of copper = 63.546 g/mol

Moles of copper = (Given mass of copper) / (Atomic mass of copper)
Moles of copper = 3.56 g / 63.546 g/mol

Moles of copper ≈ 0.0560 moles

Your answer: b) 0.0560 moles

Visit here to learn more about  atomic mass : https://brainly.com/question/17067547
#SPJ11

To find the number of moles of copper in the sample, we will use the mass of copper and its atomic mass. Your question is: A sample of brass contains 3.56 g of copper, Cu. How many moles of copper does the sample contain? The atomic mass of copper is 63.546 g/mol.

Step 1: Write down the given information.
Mass of copper (Cu) = 3.56 g
Atomic mass of copper (Cu) = 63.546 g/mol

Step 2: Calculate the moles of copper.
To find the moles, divide the mass of copper by its atomic mass:
moles of Cu = mass of Cu / atomic mass of Cu

Step 3: Plug in the values and solve.
moles of Cu = 3.56 g / 63.546 g/mol ≈ 0.0560 moles

Your answer is (b) 0.0560 moles.

To know more about number of moles of copper :

https://brainly.com/question/24104441

#SPJ11

2. A(n) blank must be created before the scientific method can be used?​

Answers

A research question or problem statement must be created before the scientific method can be used.

What is research?

This is the starting point of the scientific process, as it identifies the specific issue or phenomenon to be investigated. Once the research question or problem statement has been formulated, the researcher can develop a hypothesis and design an experiment or research study to test the hypothesis. The scientific method is a systematic approach to answering questions or solving problems through observation, experimentation, and analysis of data. It provides a framework for conducting scientific research in a structured and rigorous manner.

What is hypothesis ?

A hypothesis is a proposed explanation or prediction for a phenomenon or an observed relationship between variables that is based on limited evidence or prior knowledge. It is an educated and testable prediction or explanation about a particular phenomenon. A hypothesis is often used as a basis for designing experiments or conducting research studies to determine whether the predictions or explanations are supported or not. A hypothesis should be clear, specific, and testable to allow for scientific investigation and evaluation. In scientific research, a hypothesis is an essential element of the scientific method, providing a framework for formulating a research question, designing an experiment, and analyzing data.

To know more about hypothesis, visit:

https://brainly.com/question/13025783

#SPJ1

the role of cytotoxic t cells is to attack _____. specific viruses and bacteria proteins circulating in the body fluids antibodies body cells that have been infected

Answers

The role of cytotoxic T cells is to attack body cells that have been infected with specific viruses and bacteria, in order to prevent the spread of infection.

These T cells are able to recognize and target cells that display fragments of the virus or bacteria on their surface, and then release toxic substances that destroy the infected cells. This helps to limit the damage caused by the invading pathogen and also triggers the production of antibodies to help clear the infection.

The role of cytotoxic T cells is to attack body cells that have been infected by specific viruses and bacteria. They play a crucial role in the immune response by eliminating harmful pathogens and protecting the body.


To learn more about cytotoxic click here

brainly.com/question/29740554

#SPJ11

In the synthesis of butyl acetate, you do not use an excess of a starting material since it would be difficult to separate the product from the excess starting material by simple distillation. Why?

Answers

An excess of a beginning substance, such as butanol or acetic acid, is not employed in the production of butyl acetate because it would be challenging to separate the result from the excess starting substance using just simple distillation.

This is because it is difficult to separate butanol and acetic acid effectively using simple distillation because both substances have boiling values that are close to those of butyl acetate.

A liquid combination is heated to vaporize the more volatile component, which is subsequently condensed to collect the purified component. This is known as simple distillation. However, if there is too much starting material, the product and starting material's boiling temperatures may coincide, causing them to co-distill and making it challenging to get a pure product.

In the case of butyl acetate synthesis, using too much starting material would cause butanol and acetic acid to co-distill with butyl acetate. This would result in a mixture of products that would need additional purification steps, like fractional distillation or additional chemical treatments, to separate and obtain pure butyl acetate.

It is feasible to obtain a larger yield of pure butyl acetate with fewer purification steps by carefully managing the reaction's stoichiometry and utilizing only the necessary amount of starting material, which makes the synthesis procedure more effective and affordable.

To know more about  butyl acetate

https://brainly.com/question/30330124

#SPJ4

both low explosives and high explosives will typically create a crater in the spot where the bomb detonates. true or false

Answers

False. While both low explosives and high explosives release energy upon detonation, high explosives generally create a crater due to their faster and more violent energy release. Low explosives, on the other hand, burn at a slower rate and typically do not produce a crater.

An explosive event that occurs at, immediately above, or below the surface can cause material to be ejected from the ground's surface, creating an explosion crater.

An explosive event causes material from the ground to be displaced and ejected, creating a crater. Usually, it has a bowl-like shape. Three processes—high-pressure gas, shock waves—are in charge of making the crater:

-Ground deformation caused by plasticity.

-Ejecta, or material that is thrown up by an explosion, from the ground.

-The ground's surface spalling.

Visit here to learn more about energy  : brainly.com/question/11399976
#SPJ11

Yes, both low explosives and high explosives have the ability to create a crater in the spot where the bomb detonates. This is because when explosives are detonated, they rapidly release large amounts of energy, which generates a high-pressure shock wave.

This shock wave then travels outward from the point of detonation, causing the surrounding ground to be displaced and ejected, resulting in a crater. However, the size and depth of the crater will depend on the type and amount of explosives used, as well as the nature of the surrounding soil and terrain. High explosives, which typically contain a higher percentage of energetic materials, are generally more powerful and capable of creating larger and deeper craters compared to low explosives.

To know more about low explosives and high explosives:

https://brainly.com/question/31544631

#SPJ11

PLEASE ANSWER!!!! 40 POINTS!!!!!!!
From previous steps, we know 2.0 mol P4O10 can form 8.0 mol H3PO4 and 8.0 mol H2O can form 5.3 mol H3PO4.

How many moles of H3PO4 can form during the reaction?

mol H3PO4

Answers

Explanation and Answer:

We need to determine the limiting reagent to find out how many moles of H3PO4 can form during the reaction.

From the given information, we know that 2.0 mol of P4O10 can form 8.0 mol of H3PO4. This means that the molar ratio of P4O10 to H3PO4 is 2:8, or 1:4.

Similarly, we know that 8.0 mol of H2O can form 5.3 mol of H3PO4. This means that the molar ratio of H2O to H3PO4 is 8:5.3, or approximately 1.51:1.

To determine the limiting reagent, we need to compare the amount of H3PO4 that can be produced from each reactant.

For P4O10:

Molar ratio of P4O10 to H3PO4 = 1:4

Therefore, 2.0 mol P4O10 can produce 8.0 mol H3PO4

For H2O:

Molar ratio of H2O to H3PO4 = 1.51:1

Therefore, (8.0 mol H2O) x (1 mol H3PO4/1.51 mol H2O) = 5.3 mol H3PO4 can be produced from 8.0 mol H2O

Since we can produce less H3PO4 from H2O than from P4O10, H2O is the limiting reagent.

Therefore, the maximum amount of H3PO4 that can be produced is 5.3 mol.

4) What test (or method of checking) indicates that the bore of the spotting capillary is small enough to ensure being able to spot small enough spots of sample on the spotting line? 5) Why would water not be used to elute a column (besides it polarity) in column chromatography?

Answers

4) One way to check if the bore of a spotting capillary is small enough to ensure the ability to spot small enough spots of sample on the spotting line is to use a visualization reagent such as iodine or ninhydrin.

5) Water is not commonly used as an eluent in column chromatography for several reasons. One reason is that water is a highly polar solvent, which can lead to poor resolution of nonpolar compounds.

4. A small amount of the visualization reagent is applied to the spotting line, and the spotting capillary is then used to spot a small amount of the sample solution onto the same line. If the bore of the capillary is small enough, a clearly visible, small spot will form on the line. If the bore of the capillary is too large, the spot will be too large and diffuse.

5. In addition, water is a poor eluent for some types of stationary phases, such as reverse-phase chromatography, where hydrophobic interactions between the sample and the stationary phase are important for separation.

Water can also cause irreversible damage to some types of stationary phases, such as silica gel, by hydrolyzing the surface siloxane groups and altering the surface chemistry of the column. Finally, water can interfere with certain detection methods, such as UV spectroscopy, by causing high background absorbance.

As a result, organic solvents such as methanol, acetonitrile, or a mixture of them are commonly used as eluents in column chromatography.

For more question on capillary click on

https://brainly.com/question/23512406

#SPJ11

imagine a balloon that you blow up to a full size. what do you expect to happen if you suspend the balloon over a bunsen burner? assume that the pressure does not change significantly. group of answer choices stay exactly the same size as before decrease significantly in size increase significantly in size until it bursts one cannot say unless the composition of the gas is known.

Answers

If the pressure remains constant and the composition of the gas in the balloon is not known, the balloon is suspended over a Bunsen burner.

However, in general, when a balloon is exposed to heat, the gas molecules inside the balloon will begin to move faster and collide more frequently, causing the pressure inside the balloon to increase. This increase in pressure can cause the balloon to expand or burst if the material is not strong enough to withstand the pressure.

Therefore, it is possible that the balloon may increase significantly in size until it bursts if it is made of a material that cannot withstand the increased pressure caused by the heat.

To learn more about Bunsen burner click here

brainly.com/question/743920

#SPJ11

The rotating element in a centrifugal pump is commonly called the?
a. Impeller
b. Rotor
c. Volute
d. Stator

Answers

The rotating element in a centrifugal pump is commonly called the impeller.

An impeller is a rotating component of a centrifugal pump that helps to increase the velocity and pressure of a fluid as it passes through the pump. It consists of a series of curved blades that are arranged in a circular pattern around a central shaft.

When the impeller rotates, the blades create a centrifugal force that causes the fluid to move outward from the center of the impeller. This increased velocity and pressure of the fluid allow it to be pumped to a higher elevation or over a longer distance.

Impellers come in a variety of designs, including closed, semi-open, and open. Closed impellers are used for fluids with low levels of impurities, while open impellers are better suited for fluids with higher levels of impurities.

Impellers are commonly used in various industries such as oil and gas, water treatment, and chemical processing, to pump fluids in large quantities.

Find out more about impeller

brainly.com/question/31064982

#SPJ11

Part of the recrystallization process is the preparation and filtration of a supersaturated solution containing the desired end product. The following are steps for the preparation of a supersaturated solution; arrange them in the correct order.

Answers

To prepare a supersaturated solution, the following steps should be arranged in the correct order:

Dissolve the solute in a suitable solvent: The solute, typically a solid, is added to the solvent and stirred or heated to facilitate dissolution.

Heat the solution: Applying heat increases the solubility of the solute in the solvent, allowing more solute to dissolve.

Filter the solution: This step involves removing any insoluble impurities or undissolved particles from the solution by passing it through a filter paper or other filtration medium.

Cool the solution slowly: The supersaturation is achieved by cooling the solution slowly, allowing the excess solute to remain dissolved even though it would normally exceed the solubility limit at lower temperatures.

Seed the solution: Introducing a small crystal or seed of the solute into the cooled solution provides a starting point for crystal growth and encourages the formation of the desired end product.

Hence, by following these steps in the correct order (1, 2, 3, 4, 5), a supersaturated solution can be prepared for the recrystallization process.

Learn more about recrystallization here:

https://brainly.com/question/32928097

#SPJ 12

How much warmer are average summer temperatures in the UHI?

Answers

The magnitude of the urban heat island (UHI) effect on summer temperatures can vary depending on factors such as the size of the urban area, the surrounding landscape, and local weather conditions. However, studies have shown that the UHI effect can lead to temperatures in urban areas that are 1-3°C (1.8-5.4°F) warmer on average during the summer compared to nearby rural areas.

In some cases, the temperature difference between urban and rural areas can be as much as 10°C (18°F) during heatwaves.

The urban heat island effect is a phenomenon that occurs in built-up areas where there is a high concentration of buildings, roads, and other structures made of materials that absorb and re-radiate heat.

During the day, the sun's rays heat up these surfaces, which in turn release heat into the surrounding air. This causes urban areas to be warmer on average than surrounding rural areas.

For more question on urban heat island click on

https://brainly.com/question/23712495

#SPJ11

Which element has the greatest second ionization energy?
(A) Fe
(B Na
(C) Mg
(D) AI
(E) P

Answers

The element with the greatest second ionization energy among the given options is (B) Na (Sodium).

To understand this, let's first define the terms:
1. Element: A substance consisting of atoms with the same atomic number (number of protons in the nucleus).
2. Greatest: Refers to the largest value among the given options.
3. Second Ionization Energy: The energy required to remove a second electron from an atom after one electron has already been removed.
In the periodic table, ionization energy increases from left to right across a period and decreases from top to bottom within a group. Sodium (Na) is in Group 1 and has a higher second ionization energy than the other elements listed, which are in Groups 2 and 13-15. This is because removing a second electron from sodium requires breaking into a more stable, lower energy level (core electrons), while the other elements still have valence electrons to lose before reaching that point.

To learn more about ionization energy click here https://brainly.com/question/28385102

#SPJ11

define solubility .Explain general principle of solubility

Answers

The word Solubility means the number of grams of the solute dissolved in 100g of solvent to prepare a saturated solution at a particular temperature.

Here, are few general principles of Solubility mentioned below :

Polar substances are soluble in polar solvents. Ionic solids and polar covalent compounds are soluble in water, e.g,  KCL, [tex]Na_{2}CO_{3}[/tex] , Sugar and alcohol are soluble in water.

Non Polar substances are soluble in water. Non Polar covalent compounds are not soluble in water such as ether, benzene and petrol are insoluble in water.  

To learn more about Solubility: https://brainly.com/question/318077

some of the water that soaks into the ground from the surface does not travel far because it is held by molecular attraction as a surface film on soil particles. this near-surface zone is called the zone of

Answers

The near-surface zone that is formed when water soaks into the ground and is held by molecular attraction as a surface film on soil particles is called the zone of saturation.

This zone is characterized by high soil moisture content and a high concentration of dissolved minerals, which are held in solution by the water molecules. The water in the zone of saturation is also important for sustaining plant growth and providing a habitat for a variety of microorganisms. The near-surface zone where water soaks into the ground and is held by molecular attraction as a surface film on soil particles is called the "zone of capillarity" or "capillary fringe." This zone occurs just above the water table, and the water is retained by the soil due to molecular forces and surface tension.

learn more about surface here.

https://brainly.com/question/15020755

#SPJ11

Perform the following calculations. 20 g of common salt (NaCl) is dissolved in water to
make 1.0 L (1000g) saline solution. Calculate the concentration of the solution in
a) Grams per liter

b) Molarity

c) Part per million (ppm)

d) Percentage composition

Answers

Answer:

Explanation:

A) The concentration = The mass of the solute/the total volume

                                   =m/v

                                   = 20g/1L

                                 

B) The concentration = n/v

                                  first we have to find the number of moles in 20g of NaCl

n=m/M

n=20mol/58.5

1000cm^3=1000ml

1000cm^3=1dm^3

C=n/v

  = 20/58.5

   = 0.341[tex]moldm^{-3}[/tex]

c) 20g*10^6/1000g

=20000ppm

d)20*100/1000 = 2%

You are using an azeotropic distillation for this experiment. What are the specific components of this azeotrope?

Answers

In azeotropic distillation, an azeotrope is formed between two or more components with similar boiling points. An azeotrope is a mixture of components that exhibits a constant boiling point and vapor-liquid composition, making it challenging to separate the components using traditional distillation techniques.



The specific components of an azeotrope depend on the particular mixture you are working with. Commonly studied azeotropes include water-ethanol, water-isopropanol, and water-hydrochloric acid. In the water-ethanol azeotrope, for example, the components are water and ethanol, with an azeotropic composition of approximately 95% ethanol and 5% water by volume.

Azeotropic distillation is used to overcome the limitation of traditional distillation methods. By adding a third component, called an entrainer, the azeotrope can be broken, allowing for the separation of the original components. The entrainer's choice is crucial, as it must selectively form an azeotrope with one of the original components without forming a new azeotrope with the other component.

The specific components of an azeotrope vary based on the mixture being studied, but they typically consist of two or more substances that form a constant boiling mixture. Azeotropic distillation helps to separate these components by adding an entrainer to break the azeotrope.

to learn more about azeotrope

https://brainly.com/question/6056127

#SPJ11

which sentence is correct?
sound cant go through air,
stone, vacuum , water

Answers

Answer:

sound can not travel through stone

What statement can be made about all the intermediates in an acid catalyzed rxn?

Answers

All intermediates in an acid-catalyzed reaction are positively charged species that are formed due to protonation by the acid catalyst. These intermediates play a crucial role in the reaction mechanism, and their reactivity and stability determine the final outcome of the reaction.

In an acid-catalyzed reaction, intermediates are formed during the reaction. These intermediates are short-lived and highly reactive species that play a crucial role in the reaction mechanism. One statement that can be made about all the intermediates in an acid-catalyzed reaction is that they are positively charged species.

The acid catalyst protonates the reactant molecules, creating positively charged intermediates. These intermediates are stabilized by the solvent, and they can react with other reactants or reagents to form the final product.

The intermediates in an acid-catalyzed reaction are usually carbocations, which are highly reactive and unstable. They can undergo various reactions such as hydride shifts or elimination to form more stable products.

To learn more about acid-catalyzed :

https://brainly.com/question/17157012

#SPJ11

The maximum theoretical suction life of a centrifugal pump at sea level is approximately?
a) 15 feet
b) 20 feet
c) 34 feet
d) 40 feet

Answers

The maximum theoretical suction life of a centrifugal pump at sea level is approximately a) 15 feet

What is the hypothetical pump's suction lift at mean sea level?

The maximum height that any centrifugal pump may theoretically raise water is 10.33 metres above sea level. Suction lift is the vertical distance on the suction side of the pump between the pump impeller and the liquid surface if the liquid is below the pump datum.

The hoover is created by the ground-level pump, which can theoretically raise a maximum of roughly 30 feet (34 feet if a flawless hoover could be created).

learn more about centrifugal pump

https://brainly.com/question/13427593

#SPJ1

Question 36 Marks: 1 The backwash rate for both conventional, rapid and high rate sand filters isChoose one answer. a. 5 gpm/ft2 b. 10 gpm/ft2 c. 15 gpm/ft2 d. 50 gpm/ft2

Answers

The backwash rate for both conventional, rapid and high rate sand filters is typically 10 gpm/ft2.

This rate is used to remove accumulated particles and debris from the filter bed during the backwashing process. Backwashing is a critical process in the operation of sand filters as it helps to maintain the filter bed's efficiency and prolongs the life of the filter. During backwashing, water is forced through the filter bed in the opposite direction to the flow of water during filtration. This flow reversal dislodges and flushes out trapped particles and debris from the filter bed, which is then carried away by the backwash water. The backwash rate of 10 gpm/ft2 is the industry standard and ensures effective cleaning of the filter bed while preventing damage to the filter media.

Learn more about backwash here:

https://brainly.com/question/29637205

#SPJ11

A covalent bond in which one atom contributes both bonding electrons
(a.structural formula, b.Single covalent bond, c.polyatomic ion, d.bond dissociation energy, e.coordinate covalent bond)"

Answers

A coordinate covalent bond is a covalent bond in which an atom shares two bonded electrons. So, option (e) is correct choice for answer here.

Atoms are brought together by their electrons to form molecules. Electrons can bond (or bind) atoms together in two main ways. Covalent bond is a way in which two atoms can come together.

A covalent bond is an attractive force that holds two atoms that share their valence electrons together. Covalent bonds are formed only by non-metal atoms. For example, in water (H₂O), each hydrogen (H) and oxygen (O) share a pair of electrons, forming a molecule with two hydrogen atoms, one of which is bonded to an oxygen atom. This is a single bond where there are two electrons in the pair shared by the same atom, called a covalent bond. Therefore, option (e) defines the problem.

For more information about covalent bond, refer:

https://brainly.com/question/29630777

#SPJ4

Other Questions
The ghost then describes how he was killed. Give as much detail as you can. Linneaus decided to use Latin for scientific names because _____________________________________________________________________________________ each eye sees a different image. the difference is greater for objects that are close and smaller for objects that are far away. this difference is called (3 points) Calvin has a gift card which he is using to buy candy (x), and he has been tracking how much money (y) he spends. He noted that after buying 4 pieces of candy (in all) he has $28.00 left on his card and then after buying 10 pieces of candy (in all) he has $25.00 left on his card. Write the equation of the line that represents his spending on candy True or FalseTXVs used in air conditioning units and heat pumps are interchangeable as long as they are the same size and for the same refrigerant. Explain the studies by Tolman & Honzik (1930) & how they challenged the notion that there was not a cognitive component to learning About ________ percent of all new product ideas come from consumers. a.10 b.28 c.55 d.70 T/F: Communication, teamwork and consistency are all important elements in handling family finances. Drag the tiles to the correct boxes to complete the pairs.Match the task name/heading to its description while creating a digital portfolio. 2023 Edmentum. All rights reserved.Maintain a portfolio checklist.Identify the portfolio goal.Organize the portfolio.Add supporting documents.Include certificates and a rsum.Keep a checklist ready to track items.Know the purpose behind making a pa portfolioSelect an order to present your portfolio. An ALF with 17 or more beds must have a functioning what? what is the correct term for organisms that consume other organisms in order to gain matter and nutrients? why do you think Aitchison chose to repeat this phrase? Help Please! Will Mark As Brainliest! What would be the appropriate hypotheses for a research company who wants to see if there is a difference in the amount of vitamin D in a brand name multi-vitamin and generic brand multivitamin Jefferson believed that large estates should be divided as a way to diminish the - of wealth in the early republic Question 74A hydraulic ram is used to elevate a quantity of water to a higher elevation. Rams are powered bya. Windb. Electricityc. Waterd. heat help what do i put in the box Why did Mandela focus his attention on Rugby? how women and men aren't treated equally speech for a writing and listening test a terminally ill patient in pain asks the nurse to administer enough pain medication to end the suffering forever. what is the best response by the nurse?