Assume that you are interested in the drinking habits of students in college. Based on data collected it was found that the relative frequency of a student drinking once a month is given by P(D)-0.60. a. What is the probability that a student does not drink once a month? b. If we randomly select 2 students at a time and record their drinking habits, what is the sample space corresponding to this experiment? What is the probability corresponding to each outcome in part (b)? c. d. Assuming that 5 students are selected at random, what is the probability that at least one person drinks once a month?

Answers

Answer 1

(a) The probability that a student does not drink once a month= 0.40

(b) The probability corresponding to each outcome would depend on the           given relative  probability

(c) You can calculate the value of this expression to find the probability    that at least one person drinks once a month.

What is the probability that a student does not drink once a month ?

a. The probability that a student does not drink once a month can be calculated as 1 minus the probability that a student drinks once a month, which is given as P(D) = 0.60.

So, P(not D) = 1 - P(D) = 1 - 0.60 = 0.40.

b. If we randomly select 2 students at a time and record their drinking habits, the sample space corresponding to this experiment would consist of all possible combinations of drinking habits for the two students.

Since each student can either drink once a month (D) or not drink once a month (not D), there are four possible outcomes:

Both students drink once a month (D, D)

Both students do not drink once a month (not D, not D)

The first student drinks once a month and the second student does not (D, not D)

The first student does not drink once a month and the second student drinks once a month (not D, D)

The probability corresponding to each outcome would depend on the given relative frequency or probability of a student drinking once a month (P(D)) and the complement of that probability (1 - P(D)).

c. Assuming that 5 students are selected at random, the probability that at least one person drinks once a month can be calculated using the complement rule.

The complement of the event "at least one person drinks once a month" is "none of the 5 students drink once a month" or "all 5 students do not drink once a month".

The probability that one student does not drink once a month is P(not D) = 0.40 (as calculated in part a).

The probability that all 5 students do not drink once a month is [tex](P(not D))^5[/tex], since the events are assumed to be independent.

So, the probability that at least one person drinks once a month is:

P(at least one person drinks once a month) = 1 - P(none of the 5 students drink once a month)

= 1 - [tex](P(not D))^5[/tex]

= 1 - [tex](0.40)^5[/tex] (after substituting the value of P(not D) from part a)

You can calculate the value of this expression to find the probability that at least one person drinks once a month.

Learn more about probabilities

brainly.com/question/30034780

#SPJ11


Related Questions

there are 6 large bags and 4 small bags of stones.Each bags hold the same number of stones as the other bags of the same size .how could you represent the total number of the stones with a polynomial​

Answers

Answer:

Let's represent the number of stones each bag holds by the variable x.

Then the total number of stones in the 6 large bags is 6x, and the total number of stones in the 4 small bags is 4x.

Therefore, the total number of stones can be represented by the polynomial:

6x + 4x = 10x

So the polynomial is 10x, which represents the total number of stones.

Answer:

Step-by-step explanation:

large bags = x

small bags = y

6x + 4y

13. Caleb and his friends went to see a movie at 7:35 p.m. They left at 10:05
How long was the movie?
awas

Answers

Answer:

2 hours 30 mins

Step-by-step explanation:

We Know

Caleb and his friends went to see a movie at 7:35 p.m.

They left at 10:05

How long was the movie?

We Take

10:05 - 7:35 = 2 hours 30 mins

So, the movie is 2 hours 30 mins long.

the binomial theorem states that for any real numbers a and b (a b)n=∑nk=0(nk)an−kbk, for any integer n ≥0 use this theorem to show that for any integer n ≥0m ∑nk=0(−1)k(nk)3n−k2k=1

Answers

Answer:

Step-by-step explanation:

We can use the Binomial Theorem to show this by letting a=3 and b=2 in the formula:

(a+b)^n = ∑(n choose k) a^(n-k) b^k

Substituting the values of a and b, we get:

(3+2)^n = ∑(n choose k) 3^(n-k) 2^k

5^n = ∑(n choose k) 3^(n-k) 2^k

Multiplying both sides by (-1)^n, we get:

(-1)^n 5^n = ∑(n choose k) (-1)^n 3^(n-k) 2^k

(-1)^n 5^n = ∑(n choose k) (-1)^k 3^(n-k) 2^k

Using the property that (n choose k) = (n choose n-k), we can simplify the expression:

(-1)^n 5^n = ∑(n choose n-k) (-1)^(n-k) 3^(k) 2^(n-k)

(-1)^n 5^n = ∑(n choose k) (-1)^(n-k) 3^(k) 2^(n-k)

We recognize the sum on the right-hand side as the expansion of (3-2)^n:

(-1)^n 5^n = (3-2)^n = ∑(n choose k) (-1)^(n-k) 3^(k) 2^(n-k)

Rearranging, we get:

∑(n choose k) (-1)^k 3^(n-k) 2^k = 5^n

Dividing both sides by 5^n, we get:

∑(n choose k) (-1)^k (3/5)^(n-k) (2/5)^k = 1

We recognize the left-hand side as a binomial expansion with coefficients (n choose k) and terms (3/5)^(n-k) and (2/5)^k. Therefore, the sum of these terms must equal 1, by the Binomial Theorem. This verifies the result.

nd the standard form of the equation of the hyperbola with the given characteristics. vertices: (1, −3), (5, −3); passes through the point (−3, 5)

Answers

This is the equation of a hyperbola with center (3, -3), vertices (1, -3) and (5, -3), and passing through the point (-3, 5).

To find the standard form of the equation of the hyperbola, we need to first determine the center of the hyperbola. The center is the midpoint of the line segment connecting the vertices, which is:

((1+5)/2, (-3-3)/2) = (3, -3)

So the center is (3, -3). Next, we need to determine the distance between the center and each vertex, which is called the distance between the center and the foci. The distance between the center and each vertex is 4, so the distance between the foci is:

c = √(a² + b²), where a = 4 and b is the distance between the center and either vertex

b = 3, so c = √(4² + 3²) = 5

Now we have all the information we need to write the standard form of the equation of the hyperbola:

[(x - 3)² / 4²] - [(y + 3)² / 5²] = 1

This is the equation of a hyperbola with center (3, -3), vertices (1, -3) and (5, -3), and passing through the point (-3, 5).

To learn more about hyperbola here:

brainly.com/question/15697124#

#SPJ11

please help i rlly need it! i’ll mark brainliest:)

Answers

Answer:

2x - 6 + 7x + 4 = 90

Step-by-step explanation:

We Know

It is a right angle, meaning 90°

2x - 6 + 7x + 4 must be equal to 90°

So, the answer is 2x - 6 + 7x + 4 = 90

35) If you think the relationship between the LHS variable and a RHS variable is non-linear, what can/should you do?

Answers

If you think the relationship between the LHS (Left Hand Side) variable and a RHS (Right Hand Side) variable is non-linear, you can/should:

1. Transform the variables: Apply transformations, such as logarithmic, exponential, or power transformations, to make the relationship more linear.

2. Use non-linear regression models: Consider using non-linear regression models, like polynomial, exponential, or logistic regression, to better capture the non-linear relationship.

3. Include interaction terms: Add interaction terms between RHS variables to your model to capture the combined effect of two or more variables on the LHS variable.

By following these steps, you can better account for the non-linear relationship between the LHS variable and the RHS variable in your analysis.

learn more about "LHS & RHS":-https://brainly.com/question/28248724

#SPJ11

If a sample contains 12.5% parent, how many half lives ave passed? If the radioactive pair is K-40 and Ar-40, what is the actual age of the sample?

Answers

If a sample contains 12.5% parent, 3 half lives are passed and if the radioactive pair is K-40 and Ar-40,  the actual age of the sample is 3.75 billion years.

If a sample contains 12.5% parent, it means that 3 half-lives have passed. To calculate the actual age of the sample with the radioactive pair K-40 and Ar-40, you need to know the half-life of K-40, which is 1.25 billion years. The actual age of the sample can be found by multiplying the half-life by the number of half-lives passed: 1.25 billion years * 3 = 3.75 billion years. Therefore, the actual age of the sample is 3.75 billion years.

Learn more about : Chemical kinetics - https://brainly.com/question/31498057

#SPJ11

Can you please help me find out what
A’: (_ , _)
B’: (_ , _)
C’: (_ , _)
D’: (_ , _)

is
i’ll give you 50 points if you help me find the answer for it.

Answers

A-(2,-2) B-(4,-2) C-(4,-4) D-(2,-4)

solve using the quadratic formula: 2x^2+3m=77

Answers

Answer:

The whole answer I've written after x needs to be in a square root sign.

x=77-3m/2

The / means a fraction sign

if you're confused lmk I'll explain

Hope it helps! x

If it’s 2x^2 + 3m = 77 it can’t be solved, I’m going to solve it as 2x^2 + 3x = 77

Find the volume of a pyramid with a square base, where the perimeter of the base is 18.2 in and the height of the pyramid is 10.9 in. Round your answer to the nearest tenth of a cubic inch.

Answers

Find the volume of a pyramid with a square base, where the perimeter of the base is 18.2 in and the height of the pyramid is 10.9 in. Round your answer to the nearest tenth of a cubic inch.

The graph shows the height of a tire's air valve y, in inches, above or below the center of the tire, for a given number of seconds, x.
What is the diameter of the tire?

Answers

The diameter of the tire based on the amplitude of the sinusoidal graph of the height of the tire valve, y inches above or below the center of the tire is 20 inches.

What is a sinusoidal function?

A sinusoidal function is a periodic function that is based on the sine or cosine function.

The shape of the graph is the shape of a sinusoidal function graph.

The y-coordinates of the peak and the through are; y = 10 and y = -10

The shape of the tire is a circle

The amplitude, A, of the sinusoidal function, which has a magnitude equivalent to the length of the radius of the tire is therefore;

A = (10 - (-10))/2 = 10

The radius of the tire, r = A = 10 inches

The diameter of the tire = 2 × The radius of the tire

The diameter of the tire = 2 × 10 inches = 20 inches

Learn more on sinusoidal function here: https://brainly.com/question/26288131

#SPJ1

State if the triangle is acute obtuse or right

Answers

Answer: Right triangle

Step-by-step explanation:

Every right triangle has a 90 degree square that can fit in it.

:)

Acute triangles measure less than 90 degrees while obtuse goes over 90 degrees.  

Its acute bcuz its Less than 90 degrees, So its small/acute because right is perfect and obtuse is big

Customers arrive at an automated teller machine at the times of a Poisson process with rate of 10 per hour. Suppose that the amount of money withdrawn on each transaction has a mean o f$30 and a standard deviation of $20. Find the mean and standard deviation of the total withdrawals in 8 hours.

Answers

The mean of the total withdrawals in 8 hours is $2400 and the standard deviation is approximately $178.89.

To find the mean of the total withdrawals in 8 hours, we first need to find the mean of withdrawals per hour. Since the rate of customers arriving at the ATM is 10 per hour, we can assume that there are also 10 withdrawals per hour. Therefore, the mean of withdrawals per hour is 10 x $30 = $300.

To find the mean of total withdrawals in 8 hours, we can multiply the mean of withdrawals per hour by the number of hours: $300 x 8 = $2400.

To find the standard deviation of total withdrawals in 8 hours, we need to use the formula: standard deviation = square root of (variance x n), where variance is the square of standard deviation and n is the number of observations.

The variance of withdrawals per hour can be calculated as follows:

Variance = (standard deviation)^2 = $20^2 = $400

Therefore, the variance of total withdrawals in 8 hours is:

Variance = $400 x 8 = $3200

And the standard deviation of total withdrawals in 8 hours is:

Standard deviation = square root of ($3200 x 1) = $56.57

So, the mean of total withdrawals in 8 hours is $2400 and the standard deviation is $56.57.
Hello! I'd be happy to help you with this question. To find the mean and standard deviation of the total withdrawals in 8 hours, we'll first determine the expected number of customers and then use the given information about the mean and standard deviation of the withdrawals.

1. Determine the expected number of customers in 8 hours: Since customers arrive at a rate of 10 per hour, in 8 hours we can expect 10 * 8 = 80 customers.

2. Calculate the mean of total withdrawals: Multiply the mean withdrawal per transaction by the expected number of customers. The mean withdrawal is $30, so the mean of total withdrawals in 8 hours is 80 * $30 = $2400.

3. Calculate the variance of total withdrawals: Since the withdrawals are independent, we can multiply the variance of individual withdrawals by the expected number of customers. The variance is the square of the standard deviation, which is $20^2 = $400. The variance of total withdrawals in 8 hours is 80 * $400 = $32,000.

4. Calculate the standard deviation of total withdrawals: Take the square root of the variance. The standard deviation is √$32,000 ≈ $178.89.

Learn more about standard deviation here:

https://brainly.com/question/23907081

#SPJ11

What is the slope of the line that passes through the points
(2, 3) and (4, 5)? A) 1 B) 2 C) 3 D) 4

Answers

Answer:

A) Slope=1

Step-by-step explanation:

To find the slope of the line passing through the points (2, 3) and (4, 5), we can use the slope formula:

slope = (y2 - y1) / (x2 - x1)

where (x1, y1) = (2, 3) and (x2, y2) = (4, 5).

Plugging in the values, we get:

slope = (5 - 3) / (4 - 2)

= 2 / 2

= 1

Therefore, the slope of the line is 1. Answer: A) 1.

Answer

m = 1

In-depth Explanation

To calculate slope, we use the formula

[tex]\sf{m=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

Where m is the slope and (y2, y1)( x2, x1) are points on the line.

Calculating :

[tex]\sf{m=\dfrac{5-3}{4-2}}[/tex][tex]\sf{m=\dfrac{2}{2}}[/tex][tex]\sf{m=1}[/tex]

Therefore, the slope is m = 1

find the surface area of the part of the cylinder that lies between the xy-plane and the plane . the answer has the form , find the value of a.

Answers

The total surface area of the part of the cylinder that lies between the xy-plane and the plane is:

S = π[tex]r^2[/tex] + 2πr√[tex](r^2 + (c-a)^2)[/tex]

The answer has the form πr(r + a + √(r^2 + (c-a)^2)), where a is the distance from the xy-plane to the plane.

To find the surface area of the part of the cylinder that lies between the xy-plane and the plane, we first need to determine the equations of the cylinder and the plane. Let's assume that the cylinder has radius r and height h, and its center lies on the z-axis at point (0, 0, c). The equation of the cylinder can be written as:

[tex]x^2 + y^2 = r^2[/tex]

and the equation of the plane can be written as:

z = a, where a is the distance from the xy-plane to the plane.

To find the surface area of the part of the cylinder that lies between the xy-plane and the plane, we need to calculate the area of the circular base (which lies on the xy-plane) and the curved surface area (which lies between the plane and the base).

The area of the circular base is simply π[tex]r^2[/tex].

To calculate the curved surface area, we need to project the curved surface onto the xy-plane and find its length. We can do this by considering a right triangle with sides r (the radius of the cylinder) and c-a (the distance from the center of the cylinder to the plane). The length of the hypotenuse of the triangle is given by:

l = √[tex](r^2 + (c-a)^2)[/tex]

The projection of the curved surface onto the xy-plane is a circle with radius l. Therefore, the curved surface area is:

A = 2πrl

Substituting l and simplifying, we get:

A = 2πr√[tex](r^2 + (c-a)^2)[/tex]

Therefore, the total surface area of the part of the cylinder that lies between the xy-plane and the plane is:

S = πr^2 + 2πr√[tex](r^2 + (c-a)^2)[/tex]

The answer has the form πr(r + a + √[tex](r^2 + (c-a)^2)[/tex]), where a is the distance from the xy-plane to the plane.

To know more about equations of the cylinder refer here:

https://brainly.com/question/23695102

#SPJ11

problem 4.3.4 for a constant parameter a > 0, a rayleigh random variable x has pdf fx (x) = { a2xe−a2x2/2x > 0, 0 otherwise. What is the CDF of X?

Answers

The CDF of X for a constant parameter a > 0, a rayleigh random variable x is [tex]F_{X}(x) = 1 - e^{(-a^2x^2/2)[/tex] for x > 0, and 0 otherwise.

To find the CDF (Cumulative Distribution Function) of a Rayleigh random variable X with the given [tex]PDF f_X(x) = {a^2xe^{(-a^2x^2/2)[/tex] for x > 0, 0 otherwise}, we need to integrate the PDF from 0 to x. Here's the solution:

[tex]CDF F_X(x)[/tex] = ∫[tex][a^2xe^{(-a^2x^2/2)]}dx[/tex] from 0 to x

Let's denote u = [tex]a^2x^2/2[/tex]. Then, du = [tex]a^2xdx[/tex]. So the integral becomes:

[tex]F_X(x)[/tex] = ∫[tex][e^{(-u)}du][/tex] from 0 to [tex]a^2x^2/2[/tex]

Now, integrate [tex]e^{(-u)}[/tex] with respect to u:

[tex]F_X(x)[/tex] = [tex]-e^{(-u)[/tex] | from 0 to [tex]a^2x^2/2[/tex]

Evaluate the definite integral:

[tex]F_X(x)[/tex] = [tex]-e^{(-a^2x^2/2)} + e^{(0)} = 1 - e^{(-a^2x^2/2)[/tex]

Thus, the CDF of X is [tex]F_X(x)[/tex] = [tex]1 - e^{(-a^2x^2/2)[/tex] for x > 0, and 0 otherwise.

For more such questions on CDF.

https://brainly.com/question/30697050#

#SPJ11

if y'=x(1 + y) and y>-1 hen y=a. y = sin xb. y = 3 x^2 + Cc. y = Ce x2/2 – 1d. y = ½ e^x2 + Ce. y = C √ x + 3

Answers

The solution to the given differential equation y' = x(1 + y), with the constraint y > -1, can be expressed in terms of different functions and constants. The possible solutions are: y = sin(x) + a, y = 3x² + Cc, y = Ce^(x²/2) - 1, y = 1/2e^(x²) + Ce, and y = C√x + 3, where a, Cc, and Ce are constants.

Given the differential equation: y' = x(1 + y), where y > -1, we can solve it as follows:

y = sin(x) + a:

We can rewrite the given equation as y' = x + xy. Separating variables, we get: (1 + y)dy = xdx. Integrating both sides, we obtain: ∫(1 + y)dy = ∫xdx. This yields: y + y²/2 = x²/2 + C1, where C1 is a constant of integration. Solving for y, we get: y = x²/2 + C1 - y²/2. Substituting y = sin(x) + a, we get: sin(x) + a = x²/2 + C1 - (sin(x) + a)²/2. Rearranging and simplifying, we get: sin(x) + a = x²/2 + C1 - (sin²(x) + 2asinx + a²)/2. Finally, solving for y, we obtain: y = sin(x) + a.

y = 3x² + Cc:

We can directly integrate the given equation with respect to x, which yields: y = 3x² + Cc, where Cc is a constant of integration.

y = Ce^(x²/2) - 1:

We can rewrite the given equation as y'/(1 + y) = x. Separating variables, we get: dy/(1 + y) = xdx. Integrating both sides, we obtain: ∫dy/(1 + y) = ∫xdx. This yields: ln|1 + y| = x²/2 + C2, where C2 is a constant of integration. Exponentiating both sides, we get: 1 + y = e^(x²/2 + C2). Rearranging, we obtain: y = Ce^(x²/2) - 1, where C is a constant.

y = 1/2e^(x²) + Ce:

We can directly integrate the given equation with respect to x, which yields: y = 1/2e^(x²) + Ce, where Ce is a constant of integration.

y = C√x + 3:

We can directly integrate the given equation with respect to x, which yields: y = C√x + 3, where C is a constant.

Therefore, the solutions to the given differential equation y' = x(1 + y), with the constraint y > -1, are: y = sin(x) + a, y = 3x² + Cc, y = Ce^(x²/2) - 1, y = 1/2e^(x²) + Ce, and y = C√x + 3, where a, Cc, and Ce are constants.

To learn more about differential equation here:

brainly.com/question/14620493#

#SPJ11

How many decaliters are in 44. 6 milliliters?

Answers

Answer:

0.00446

Step-by-step explanation:

1 decailiters = 10,000 milliliters.

44.6 / 10,000= 0.00446

The age of 5 singers are 55,52,50,x, and 40 years.if their mean age is 47. find the value of x.​

Answers

The value of x from the mean age is 38



How to calculate the value of x ?

The mean age is 47

The age of the five singers are 55,52,50,x and 40

The value of x can be calculated as follows

55 + 52 + 50 + x + 40/5= 47

cross multiply both sides

55 + 52 + 50 + x + 40=235

collect the like terms

157 + 40 + x= 235

197 + x= 235

x= 235-197

x= 38

The value of x is 38

Read more on mean here

https://brainly.com/question/17210747

#SPJ1

The scatter plot shows the time spent watching TV, x, and the time spent doing homework, y, by each of 24 students last week.
(a) Write an approximate equation of the line of best fit for the data. It doesn't have to be the exact line of best fit.
(b) Using your equation from part (a), predict the time spent doing homework for a student who spends 8hours watching TV.

Answers

a) y = -0.75x + 25 approximate equation of the line of best fit for the data.

b) The prediction for time spent doing homework for someone who spends 12 hours watching TV is 16 hours.

a) I added the graph to Desmos, online graphic calculator and superimposed a line which I think is a good/decent fit to the given data. Image for reference:

Thus, we get the line of best fit (approximately) equation as

y = -0.75x + 25 (in equation)

b)  From the given equation, the prediction for time spent doing homework for someone who spends 12 hours watching TV is

y = -0.75x + 25.

y = -0.75(12) + 25

y = -9 + 25

y = 16

Thus, the prediction for time spent doing homework for someone who spends 12 hours watching TV is 16 hours.

To know more about equation check the below link:

https://brainly.com/question/17145398

#SPJ1

Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)an = ln(7n^2 + 3) − ln(n^2 + 3)lim n→[infinity] an = ???

Answers

The limit of the sequence is ln(7) and the sequence converges to ln(7).

To determine the convergence of the sequence, we need to investigate the behavior of its terms as n approaches infinity.

We have:

[tex]an = ln(7n^2 + 3) − ln(n^2 + 3)[/tex]

To simplify this expression, we can use the property of logarithms that states [tex]ln(a) - ln(b) = ln(a/b)[/tex]:

[tex]an = ln[(7n^2 + 3)/(n^2 + 3)][/tex]

Now, let's investigate the behavior of the fraction inside the natural logarithm as n approaches infinity. We can use the fact that the leading term in the numerator and denominator dominates as n gets large:

[tex](7n^2 + 3)/(n^2 + 3) ≈ 7[/tex]

Therefore, as n approaches infinity, an approaches ln(7), which is a finite number. Thus, the sequence converges to ln(7).

Therefore, the limit of the sequence as n approaches infinity is:

[tex]lim n→∞ an = ln(7)[/tex]

Therefore, the limit of the sequence is ln(7) and the sequence converges to ln(7).

To learn more about limit of the sequence visit:

https://brainly.com/question/30647793

#SPJ11

In a class of students, the following data table summarizes how many students have a cat or a dog. What is the probability that a student has a dog given that they do not have a cat?
Has a cat Does not have a cat
Has a dog 11 10
Does not have a dog 5 2

Answers

The probability that a student has a dog, given that they do not have a cat is 5/6.

How to find the probability ?

The probability that a student has a dog given that they do not have a cat is :

P ( Has a dog | Does not have a cat ) = P ( Has a dog and does not have a cat) / P ( Does not have a cat )

Total number of students = 11 + 10 + 5 + 2 = 28

P ( Has a dog | Does not have a cat ):

= (10 / 28) / (12 / 28)

= 10 / 12

= 5 / 6

Find out more on probability at https://brainly.com/question/29678883

#SPJ1

when the alternative hypothesis says that the average of the box is greater than the given value:
One tail test requires stronger evidence to reject the null hypothesis Better to use two-tail test
Better to use one-tail test One-tail or two-tail test will give the same results

Answers

The test, and it is not necessarily stronger for one-tailed tests compared to two-tailed tests

When the alternative hypothesis says that the average of the box is greater than the given value, this is known as a one-tailed test.

In a one-tailed test, we are only interested in whether the data falls in one direction, either above or below a certain value. In contrast, a two-tailed test is when we are interested in whether the data falls in either direction, above or below a certain value.

In terms of which test to use, it depends on the context and the research question. If the research question specifically asks whether the data falls above a certain value, then a one-tailed test may be more appropriate. However, if there is a possibility that the data could fall in either direction and we want to be able to detect a significant difference in either direction, then a two-tailed test may be more appropriate.

Regarding the strength of evidence required to reject the null hypothesis, it is not necessarily true that one-tailed tests require stronger evidence than two-tailed tests. The level of significance, or alpha, that we choose for the test is what determines the strength of evidence required to reject the null hypothesis.

For example, if we choose a significance level of 0.05, then we require evidence that there is less than a 5% chance that our results occurred by chance alone in order to reject the null hypothesis. This level of evidence is the same for both one-tailed and two-tailed tests, and it is up to the researcher to determine what level of significance is appropriate for their research question.

In conclusion, whether to use a one-tailed or two-tailed test depends on the research question and whether we are interested in detecting a significant difference in one direction or both directions. The strength of evidence required to reject the null hypothesis is determined by the level of significance chosen for the test, and it is not necessarily stronger for one-tailed tests compared to two-tailed tests.

To learn more about null hypothesis visit:

https://brainly.com/question/28920252

#SPJ11

If the point (a,b) is a local minimum, then what will be true about f'(a)? a. It's positive b. Cannot be determined c. It's negative d. It's zero

Answers

The derivate f'(a) when the point (a, b) is a local minimum. In this case, the correct answer is: d. It's zero

When a point (a, b) is a local minimum, the derivative f'(a) will be zero. This is because, at a local minimum, the function changes its direction from decreasing to increasing, and the slope of the tangent line is zero.

If the point (a,b) is a local minimum of a differentiable function f, then f'(a) = 0.

This is because at a local minimum, the slope of the tangent line to the graph of f at point (a,b) is zero (since the derivative f'(x) gives the slope of the tangent line at point x). If the slope of the tangent line at point (a,b) is zero, then the derivative f'(a) must also be zero.

Therefore, the correct answer is (d) it's zero

To know more about "Loacal minimum" refer here"

https://brainly.com/question/30124308#

#SPJ11

in exercises 5–6,find the domain and codomain of the transformation defined by thematrix product.(a) [ 6 3 -1 7] [x1 x2] (b) [2 1 -6 3 7 -4 1 0 3} {x1 x2 x3]

Answers

Let's find the domain and codomain for each of the given matrices.

(a) The given matrix product is: [ 6 3 ] [x1] [-1 7 ] [x2]

The domain of a transformation is the set of all possible input vectors. In this case, the input vector is [x1, x2]. Since there are no restrictions on the values of x1 and x2, the domain is all real numbers for both components.

Mathematically, the domain is R^2, where R represents the set of all real numbers. The codomain of a transformation is the set of all possible output vectors. The given transformation is a 2x2 matrix, which means it maps R^2 to R^2.

Thus, the codomain is also R^2.

(b) The given matrix product is: [ 2 1 -6 ] [x1] [ 3 7 -4 ] [x2] [ 1 0 3 ] [x3]

The domain of this transformation is the set of all possible input vectors. In this case, the input vector is [x1, x2, x3]. Since there are no restrictions on the values of x1, x2, and x3, the domain is all real numbers for each component.

Mathematically, the domain is R^3. The codomain of this transformation is the set of all possible output vectors. The given transformation is a 3x3 matrix, which means it maps R^3 to R^3.

Thus, the codomain is also R^3.

Know more about domain and codomain,

https://brainly.in/question/3940852

#SPJ11

pr(3 ≤ x ≤ 5) when n = 8 and p = 0.62chegg

Answers

The probability of getting between 3 and 5 successes (inclusive) in 8 trial is approximately 0.6309.

How to find probability?

We can use the binomial probability formula to calculate the probability:

P(3 ≤ x ≤ 5) = P(x = 3) + P(x = 4) + P(x = 5)

where [tex]P(x) = (n choose x) * p^x * (1 - p)^{(n - x)}[/tex]

In this case, n = 8 and p = 0.62, so we have:

P(3 ≤ x ≤ 5) = [tex](8 choose 3) * 0.62^3 * (1 - 0.62)^(8 - 3) + (8 choose 4) * 0.62^4 * (1 - 0.62)^{(8 - 4)} + (8 choose 5) * 0.62^5 * (1 - 0.62)^{(8 - 5)}[/tex]

Using a calculator or software, we can compute this expression to get:

P(3 ≤ x ≤ 5) ≈ 0.6309

Therefore, the probability of getting between 3 and 5 successes (inclusive) in 8 trials with a success probability of 0.62 is approximately 0.6309.

Learn more about binomial probability

brainly.com/question/31197941

#SPJ11

Refer to the table of sandwich demand. suppose x = 1. then the slope of the market demand curve is __________ when price is on the vertical axis. a. -3.b. -1/3. c. 1/3.

Answers

Based on the information given, we can assume that "x" represents the price of sandwiches, and "demand" refers to the quantity of sandwiches that consumers are willing and able to buy at that particular price. The term "market" refers to the overall demand for sandwiches in the entire market, rather than just one individual consumer.

If x = 1, we can look at the table to see that the quantity demanded is 6 sandwiches. We can use this information to calculate the slope of the market demand curve, which represents the relationship between the price of sandwiches and the quantity demanded by all consumers in the market.

To calculate the slope, we need to find two points on the demand curve. Let's use the points (1,6) and (2,4), since they are the closest to x=1. We can use the slope formula:

slope = (y2 - y1) / (x2 - x1)

slope = (4 - 6) / (2 - 1)

slope = -2

So the slope of the market demand curve when the price is on the vertical axis is -2. However, none of the answer choices given match this result.

The closest answer is (b) -1/3, but this is not correct based on the calculations we just did.

Therefore, the correct answer cannot be determined with the information given.

To learn more about “demand” refer to the https://brainly.com/question/1245771

#SPJ11

Find the amount of money required for fencing (outfield, foul area, and back stop), dirt (batters box, pitcher’s mound, infield, and warning track), and grass sod (infield, outfield, foul areas, and backstop). Need answers for each area.

Answers

The amount of fencing, dirt and sod for the baseball field are: length of Fencing & 1410.5 ft. Area of the sod ≈ 118017.13ft² Area of the field covered with dist ≈ 7049.6ft²

How did we get the values?

Area of a circle = πr²

Circumference of a circle = 2πr

where r is the radius of the circle

The area of a Quarter of a circle is therefore;

Area of a circle/ 4

The perimeter of a Quarter of a Circle is;

The perimeter of a circle/4

Fencing = ¼ x 2 x π x 380 + 2 x 15 +2 x 380 + ¼ x 2 x π x 15

Fencing = 197.5π + 190π = 1410.5 feet.

Grass =

π/4 x (380 - 6)² + 87 ² - π/4 × (87 + 30)² + 2 x 380 x 15 + π/4 x 15² - (3/4) x π x 10² - 25π

= 31528π + 18969 = 118017.13

The area Covered by the sod is about 118017.13Sq ft.

Dirt = π/4 x 380 ² - π/4 x (380 - 6)² + π/4 (87 + 30)² - 87² + π100 = (18613π - 30276)/4

= 7049.6

The area occupied by the dirt is about 7049.6 Sq feet

learn more about Area of a circle: https://brainly.com/question/14068861

#SPJ1

find p( 2.5 < x < 6.5).

Answers

Without knowledge of the distribution of x, we cannot make any further calculations.

Without additional information about the distribution of variable x, we cannot determine p(2.5 < x < 6.5).

If we know the distribution, we could use the probability density function (PDF) or cumulative distribution function (CDF) to calculate the probability. For example, if x is a normally distributed variable with mean 5 and standard deviation 1, we could use the standard normal distribution to find:

p(2.5 < x < 6.5) = p((2.5-5)/1 < (x-5)/1 < (6.5-5)/1)

= p(-2.5 < z < 1.5)

= Φ(1.5) - Φ(-2.5)

≈ 0.7745 - 0.0062

≈ 0.7683

But without knowledge of the distribution of x, we cannot make any further calculations.

To learn more about distribution visit:

https://brainly.com/question/31197941

#SPJ11

suppose that the regression you suggested for the preceding question yielded a sse of 24.074572. calculate the f-statistic you’d use to test the hypothesis.

Answers

The f-statistic use to test the hypothesis.is 34.719264.

How to calculate the F-statistic for testing?

To calculate the F-statistic for testing the overall significance of the linear regression model,

we need to compare the regression sum of squares (SSR) to the residual sum of squares (SSE) and the degrees of freedom associated with each.

The formula for the F-statistic is:

F = (SSR / k) / (SSE / (n - k - 1))

where k is the number of predictor variables in the model, and n is the sample size.

Since the question does not provide the values of k and n, I will assume that k = 1 (simple linear regression) and use the information given in the previous question to find n.

From the previous question, we have:

SSE = 24.074572

MSE = SSE / (n - 2) = 2.674952

SSTO = SSR + SSE = 83.820408

R-squared = SSR / SSTO = 0.7136

We can use R-squared to find SSTO:

SSTO = SSR / R-squared = 83.820408 / 0.7136 = 117.539337

Then, we can use SSTO and MSE to find n:

SSTO / MSE = n - 2

117.539337 / 2.674952 = n - 2

n = 45

Now we can substitute the values of k, n, SSR, and SSE into the formula for the F-statistic:

F = (SSR / k) / (SSE / (n - k - 1))

F = ((117.539337 - 83.820408) / 1) / (24.074572 / (45 - 1 - 1))

F = 34.719264

Therefore, the F-statistic is 34.719264.

This value can be used to test the hypothesis that the slope coefficient is equal to zero, with a significance level determined by the degrees of freedom and the chosen alpha level.

Learn more about f-statistic

brainly.com/question/18403256

#SPJ11

Other Questions
Please help with these Spanish problems. 100 points, any unnecessary answers will be reported.#: Usan el presente indicative de los verbos como gustar para completar las oraciones. Example: A ellos ___ bien. (Encontrar)Repuesta: les encuentran1) A Maria ____ ______ la garganta (doler) ____2) A nosotros ___ ________ hacer los ejercicios cada da. (Importar) _____ _____ (two different boxes) Es important mantener la Salud.3) A ti ______ los pies para caminar por much temporary sin Buenos zapatos (mol3star) _____ | ________4) A Manuel y Victor _____ facial estirar las pierces desires del jugo. (Parecer) _____ parece.5)_____ Ir al medico cuando tienes Dolor de los oidos. (Hacer falta) _____ ______ 6)_____poner hielo en el tobillo. (Hacer Falta) ____7) A nosotros _____ practicar deportes cuando tenemos dolor en los musculos. (Gustar) ___ _____8) A mi ____ much pizza y como seis trozos y adorable me siento fatal y ____ much el estomago. (Encantar/doler) ____ _____ _____. ( fill in blanks from the sentence). LetD1be the solid in space that lies in the octant where x0,y0,z0, and between the sphere x^2+y^2+z^2=3and the spherex^2+y^2+z^2=7. Express D1in spherical coordinates. 1. A train travels 16.8 km in 25 minutes. Find the speed of the train in (i) km/h, (ii) m/s. f 55 km/h. Find the distance travelled bynumber, opinion, size, shape, condition, age, color, pattern, origin, materials, and purpose.04-Jan-2022 five years from today, you plan to invest $4,300 for 11 additional years at 7.4 percent compounded annually. how much will you have in your account 16 years from today? A student dissolves 11.8 g of sodium hydroxide (NaOH) in 250. g of water in a well-insulated open cup. He then observes the temperature of the water risefrom 20.0 C to 31.3 C over the course of 6.7 minutes.Use this data, and any information you need from the ALEKS Data resource, to answer the questions below about this reaction:NaOH(s) -. Nat (ag) + OH (ag)You can make any reasonable assumptions about the physical properties of the solution. Be sure answers you calculate using measured data are rounded to 3significant digits.Note for advanced students: It's possible the student did not do the experiment carefully, and the values you calculate may not be the same as the known andpublished values for this reaction.See image attached Choose the best multiple choice option below! Thanks in advance! According to a Damon Linker article (Aug 31, 2021), "The South has long producedan abundant supply of populist anger and resentment."This statement can be considered an example of which two propaganda strategies?A.Appeal to Outgroup HomogeneityB.Ipse DixitC.Sweeping GeneralizationD.Sanitizing help pls!!!!!!!!!!!!!! The marked price on a Bridget slippers is $2500. Sales tax of 8% is added. What is the cost of the item? calculate the ph for each of the cases in the titration of 25.0 ml of 0.120 m pyridine, c5h5n(aq) with 0.120 m hbr(aq) . the b of pyridine is 1.7109. If you added 1.0 mL of 0.4 M HCl to 40.0 mL of pure water, what would the resulting pH of the solution be? How does this compare to the pH of buffer 4a? (pH of 4a=-9x10-3 ) which of the following statements best describes a central theme of the poem do not go gentle into that good night a 75.0 kg stunt man jumps from a balcony and falls 21.0 m before colliding with a pile of mattresses. if the mattresses are compressed 1.20 m before he is brought to rest, what is the average force exerted by the mattresses on the stuntman? impulse speed of the car in both miles per hour and kilometers per hour. The table below shows her results.RECORDED SPEEDSSpeed(miles per hour)11.026.034.0Speed(kilometers per hour)17.69941.83454.706Based on her results, which statement describes the relationship between m, the speed of the car in miles per hour, andk, the speed of the car in kilometers per hour?The relationship is proportional because the ratio of m to k is constant.The relationship is not proportional because the ratio of m to k is constant.The relationship is proportional because the difference between m and k is constant.The relationship is not proportional because the difference between m and k is constant. Form negative informal commands (a Ernesto) or affirmative formal commands (a todos) based on the information provided.1. A todos: vestirse rpidamente3. A todos: ponerse los zapatos de tenis brainliest for help plss The path of a particle is defined by ,2 = 4kx. and the component of velocity along the y axis is 1y ct. where both k and c are constants. Determine the . and y components of acceleration_ You perform XRD on a modified hydroxylapatite (HAP) and get a strong peak at 2 = 26.2 degrees. Calculate d using Braggs Law. Assume the wavelength = K for copper of 54 and use n=1. Knowing that the d-spacing of pure HAP (002) planes is 3.45 , what is the modification doing to the lattice? what is a possible reason that secondaries arise from parents that have unpaired chromosomes, but not from parents that are normal diploids? Marcos is making bags of trail mix for hiking club. He will use 21 ounces of walnuts, 10.2 ounces of almonds, and 28.3 ounces of cashews. This amount makes 25 bags of trail mix. How many ounces are in each bag?PLS HELP