A wardrobe with 3 pants, 5 shirts, and 7 ties, has a possible outcome of 105 outfits and not 15. So the answer is False
False. The number of total possible outfits is not 15. To calculate the number of possible outfits, we need to multiply the number of choices for each item together. In this case, we have 3 choices for pants, 5 choices for shirts, and 7 choices for ties. Therefore, the total number of possible outfits would be 3 x 5 x 7 = 105.
The statement incorrectly states that there are only 15 possible outfits. It's important to consider that when selecting multiple items, the total number of combinations is found by multiplying the number of choices for each item together. In this scenario, with 3 pants, 5 shirts, and 7 ties, there are 105 possible outfits, not 15.
Learn more about Combination:
https://brainly.com/question/28065038
#SPJ4
Coffee is ordered weekly in bulk, and you must specify the number of pounds to order. You
must also choose coffee quality: good quality, high quality, or organic. Small cups use 1 shot of
espresso, medium use 2 shots, and large cups use 3 shots. It is estimated that each shot of
espresso requires approximately 7 grams of coffee, or about 1/64 of a pound—but you may
want to allow a bit extra in case your servers spill some. Thus, a large size would use
approximately 3/64 of a pound of coffee. Fresh coffee grounds are discarded immediately after
use. Any coffee left at the end of the week is discarded for quality and freshness reasons. If you
run short, local purchases are made at a higher cost than when ordering in bulk.
Given estimated sales of 2,000 cups of coffee per week, how many pounds of coffee should you buy? Explain in detail.
Based on estimated sales of 2,000 cups of coffee per week and the amount of coffee required for each cup size, it is recommended to purchase approximately 46.875 pounds of coffee.
To determine the amount of coffee needed for 2,000 cups of coffee per week, we need to consider the size of each cup and the amount of coffee required for each size.
According to the information provided, small cups use 1 shot of espresso, medium cups use 2 shots, and large cups use 3 shots.
Since each shot requires approximately 7 grams of coffee (or about 1/64 of a pound), a small cup would require approximately 1/64 of a pound, a medium cup would require approximately 2/64 (or 1/32) of a pound, and a large cup would require approximately 3/64 of a pound.
Let's calculate the total amount of coffee required for 2,000 cups based on these proportions. Assuming a certain distribution of cup sizes, we can estimate the average number of shots per cup.
Let's assume that 40% of the cups are small, 40% are medium, and 20% are large.
With these proportions, we can calculate the total amount of coffee required.
(0.4 * 2,000 * 1/64) + (0.4 * 2,000 * 2/64) + (0.2 * 2,000 * 3/64) = 62.5 + 125 + 46.875 = 234.375
Therefore, to meet the estimated sales of 2,000 cups of coffee per week, it is recommended to purchase approximately 46.875 pounds of coffee.
To learn more about total amount visit:
brainly.com/question/2683720
#SPJ11
Each letter in the word THEORETICAL is placed on a separate piece of paper
and placed in a hat. A letter is chosen at random from the hat. What is the
probability that the letter chosen is an E?
(Give answer in format 'a/b, no spaces, use slash for fraction bar)
Answer:
The answer is 1/11
Step-by-step explanation:
Explanation is in the picture above
please mark as brainliest
find the remainder when f(x) = 2x3 − 12x2 11x 2 is divided by x − 5. (2 points) 7 −3 3 −7
The remainder when f(x) = 2x3 - 12x2 + 11x + 2 is divided by x - 5 is 7.
We can use the remainder theorem to find the remainder when a polynomial is divided by a linear factor.
The remainder theorem states that the remainder when a polynomial f(x) is divided by x - a is f(a). In this case, the polynomial is f(x) = 2x3 - 12x2 + 11x + 2 and the linear factor is x - 5. So, the remainder is f(5).
To find f(5), we can simply substitute x = 5 into the polynomial. This gives us f(5) = 2(5)3 - 12(5)2 + 11(5) + 2 = 7.
Therefore, the remainder when f(x) = 2x3 - 12x2 + 11x + 2 is divided by x - 5 is 7.
Learn more about remainder theorem here:
brainly.com/question/30242665
#SPJ11
Suppose that A and B are mutually exclusive events Select the correct answer below, O A. Since A and B are mutually exclusive events, then the probability that A or Boccur is 1. That is, P(A)*P(B)-1 OB. Since A and B are mutually exclusive events, then the probability that both A and B occur is O. That is, PA}{B} = 0, OC. Since A and B are mutually exclusive events, then the probability that A or B occur is 1. That is, PIA & B)=1, OD. Since A and B are mutually exclusive events, then the probability that both A and B occur is O. That is, P(A&B)=0
The correct answer is option D. Since A and B are mutually exclusive events, the probability that both A and B occur is 0. In other words, P(A&B) = 0.
When two events, A and B, are mutually exclusive, it means that they cannot occur simultaneously. If one event happens, the other event cannot happen at the same time. In this scenario, the correct answer is option D, which states that the probability of both events A and B occurring together is 0, i.e., P(A&B) = 0.
To understand this concept, consider a simple example. Let's say event A represents flipping a coin and getting heads, while event B represents flipping a coin and getting tails. Since getting heads and getting tails are mutually exclusive outcomes, it is impossible for both events A and B to occur simultaneously. Therefore, the probability of both A and B occurring together is 0. In summary, when events A and B are mutually exclusive, the correct answer is option D, which states that the probability of both A and B occurring together is 0, i.e., P(A&B) = 0.
Learn more about probability here:
https://brainly.com/question/31828911
#SPJ11
Use a special right triangle to write
tan 60° in simplest radical form.
Answer:
√3
Step-by-step explanation:
opposite side (√3)/2
tan 60 degrees = ------------------------- = ------------ = √3
adjacent side 1/2
write the number thirty three in figures
Answer:
3x10 15x2 5x6
Step-by-step explanation:
.16 with the 6 repeating to a fraction
If a random variable has binomial distribution with n = 150 and p = 0.6. Using normal approximation the probability; P(X≥ 95) =---
The required probability is 0.2023.
Given random variable X with binomial distribution with n=150 and p=0.6.
The binomial distribution with parameters n and p has probability mass function:
$$f(x)= \begin{cases} {n\choose x} p^x (1-p)^{n-x} & \text{for } x=0,1,2,\ldots,n, \\ 0 & \text{otherwise}. \end{cases}$$
Now the mean, μ = np = 150 × 0.6 = 90 and standard deviation, σ = √(npq) = √(150 × 0.6 × 0.4) = 6
Using the normal approximation,
we have:
$$\begin{aligned}P(X ≥ 95) &\approx P\left(Z \geq \frac{95 - \mu}{\sigma}\right)\\ &\approx P(Z \geq \frac{95 - 90}{6})\\ &\approx P(Z \geq 0.8333) \end{aligned}$$
Using the standard normal table, the area to the right of 0.83 is 0.2023.
Therefore, P(X ≥ 95) = 0.2023.
To know more about binomial distribution, visit:
https://brainly.com/question/29137961
#SPJ11
According to the given information, the required probability is 0.2019.
The random variable has a binomial distribution with n = 150 and p = 0.6.
We can use the normal approximation to the binomial distribution to find the probability P(X ≥ 95).
Normal Approximation:
The conditions for the normal approximation to the binomial distribution are:
np ≥ 10 and n(1 - p) ≥ 10
The expected value of the binomial distribution is given by the formula E(X) = np
and the variance is given by the formula [tex]Var(X) = np(1 - p)[/tex].
Let X be the number of successes among n = 150 trials each with probability p = 0.6 of success.
The random variable X has a binomial distribution with parameters n and p, i.e., X ~ Bin(150, 0.6).
The expected value and variance of X are:
[tex]E(X) = np = 150(0.6) = 90[/tex],
[tex]Var(X) = np(1 - p) = 150(0.6)(0.4) = 36[/tex].
The probability that X takes a value greater than or equal to 95 is:
[tex]P(X ≥ 95) = P(Z > (95 - 90) / (6))[/tex]
where Z ~ N(0,1) is the standard normal distribution with mean 0 and variance 1.
[tex]P(X ≥ 95) = P(Z > 0.8333)[/tex]
We can use a standard normal distribution table or a calculator to find this probability.
Using a standard normal distribution table, we find:
[tex]P(Z > 0.8333) = 0.2019[/tex]
Thus, [tex]P(X ≥ 95) = 0.2019[/tex] (rounded to four decimal places).
Therefore, the required probability is 0.2019.
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
1. Find
A) 35
B) 47.5
C) 67.5
D95
Answer:
find which one my guy im trying to get infinite awnseres srryyyyy
Step-by-step explanation:
what is the answer to
-6x+4(-2+8y)- 2y+ 4
Answer:
− 6 + 3 0 − 4
Answer:
do you mean simplify the expression?
-6x+4(-2+8y)- 2y+ 4
-6x - 8 + 32y - 2y + 4
-6x + 30y + 4 - 8
-6x + 30y - 4
The least-squares regression line of the number of visitors, y, at a national park and the temperature, x, is modeled by the equation D=85.2 +10.3x. What is the predicted number of visitors when the temperature is 78°? 10.3 visitors 85.2 visitors 95.5 visitors 888.6 visitors 6,655.9 visitors
The predicted number of visitors when the temperature is 78° is 888.6 visitors.
The least-squares regression line of the number of visitors, y, at a national park and the temperature, x, is modeled by the equation,
D = 85.2 + 10.3x
We need to find the predicted number of visitors when the temperature is 78°.
Substitute x = 78 in the given equation of regression line:
D = 85.2 + 10.3x= 85.2 + 10.3(78)= 85.2 + 803.4
D = 888.6
To know more about least-squares regression, visit:
https://brainly.com/question/15455036
#SPJ11
Given that the least-squares regression line of the number of visitors, y, at a national park and the temperature, x, is modeled by the equation D=85.2+10.3x.
We need to find the predicted number of visitors when the temperature is 78°.
Option D (fourth) is correct.
To find out this we just need to substitute the given value of x = 78 into the equation of the regression line. So, we get the predicted number of visitors when the temperature is 78° as below:
[tex]D = 85.2 + 10.3 \times 78[/tex]
[tex]D = 85.2 + 803.4[/tex]
D = 888.6
Therefore, the predicted number of visitors when the temperature is 78° is 888.6 visitors.
Hence, option D is correct.
To know more about regression line visit
https://brainly.com/question/7656407
#SPJ11
Which expression is equivalent to the expression shown below? --8x – 2(5 + 4x)
-8x-2(5+4x)
Step-by-step explanation:
-8x-10-8x -8x-8x-10 -16x-10
3 is 6 1/2 of what number?
2. What number is 30% of 9?
3. What number is 42% of 30?
4. 54 is 4 1/2 of what number?
5. A drug label recommends 0.8 mg of a certain antibiotic per 2 mL of solution. At this rate, how many milligram of antibiotic should be added to 4.8 mL of solution?
Therefore, 3 is 6 1/2 of 19.5. Therefore, 30% of 9 is 2.7. Therefore, 42% of 30 is 12.6. Therefore, 54 is 4 1/2 of 243. Therefore, 1.92 milligrams of antibiotic should be added to 4.8 mL of solution at this rate.
To find the number that is 6 1/2 times 3, we can set up the equation: x = 6 1/2 * 3. Multiplying 6 by 3 gives us 18, and 1/2 of 3 is 1.5. Adding these results, we get x = 19.5. Therefore, 3 is 6 1/2 of 19.5.
To find 30% of 9, we multiply 9 by 0.30 (or 30% written as a decimal). The calculation is 9 * 0.30 = 2.7. Therefore, 30% of 9 is 2.7.
To find 42% of 30, we multiply 30 by 0.42 (or 42% written as a decimal). The calculation is 30 * 0.42 = 12.6. Therefore, 42% of 30 is 12.6.
To find the number that is 4 1/2 times 54, we can set up the equation: x = 4 1/2 * 54. Multiplying 4 by 54 gives us 216, and 1/2 of 54 is 27. Adding these results, we get x = 243. Therefore, 54 is 4 1/2 of 243.
If the recommended rate is 0.8 mg per 2 mL of solution, we can set up a proportion to find the amount of antibiotic for 4.8 mL: (0.8 mg / 2 mL) = (x mg / 4.8 mL). Cross-multiplying and solving for x gives us x = (0.8 mg / 2 mL) * 4.8 mL = 1.92 mg. Therefore, 1.92 milligrams of antibiotic should be added to 4.8 mL of solution at this rate.
Learn more about decimal here:
https://brainly.com/question/30958821
#SPJ11
1/(x+6)+(×+1)/x=13/(x+6)
Answer:
x = 3, 2
Step-by-step explanation:
Answer: x = 3, 2
Step-by-step explanation:
Find the area of the shaded region.
Answer:嘿,我不知道答案,但這段文字很酷
Solve the below equations put the answer in radical form.
Find the unit rate for each, then compare. Which is faster?
8 laps in 70 seconds
12 laps in 98 seconds.
Answer:
8 laps in 70 seconds is faster.
Step-by-step explanation:
If we divide 70/8 and 98/12 we get the following:
70/8= 8.75
98/12=8.16
8.75>8.16
The unit rate is 1 lap in 8.75 seconds and 1 lap in 8.16 seconds
Find the lateral area of this square
based pyramid.
10 in
5 in
[ ? ] in
Answer:
100in
Step-by-step explanation:
1/2 *10*5=25
4(25)=100
Giving away 30 points, have a good day
Answer:
For real???
Step-by-step explanation:
Tysm!! <3 you deserve so much!
Answer:thanks
Step-by-step explanation:
If the ratio of boys to girls is 1:4 and there are 20 girls in your class, how many boys are there?
Answer:
Step-by-step explanation:
5 boys
Answer:
me
Step-by-step explanation:
beceaus im the best Guy
How many solutions does the system have? 4x-2y=8 2x+y=2
Answer:0
Step-by-step explanation:
please help is it 2/9?
Answer:
7/9
Step-by-step explanation:
7/9
Answer:
7/9
Step-by-step explanation:
Brainliest maaaybe? :)
PLSS HELP IMMEDIATELY!!! i’ll give brainiest if u don’t leave a link!
Answer:
it is A
Step-by-step explanation:
i remember doing this in middle school.
The manager of a grocery store has taken a random sample of 100 customers. The average length of time it took the customers in the sample to check out was 3.1 minutes. The population standard deviation is known to be 0.5 minute. We want to test to determine whether or not the mean waiting time of all customers is significantly more than 3 minutes. Use Scenario 3 above to answer the following question. The critical value is _______therefore we can______ the Null at the 40% level of significance
0.845, reject
2.33, not reject
0.255, reject
1.96, not reject
The critical value for the 40% level of significance is 1.96. Therefore, we can reject the Null hypothesis at the 40% level of significance.
In hypothesis testing, the critical value is used to determine the threshold for rejecting or not rejecting the Null hypothesis. The critical value depends on the desired level of significance and the distribution being used. In this scenario, we are conducting a one-sample t-test with a known population standard deviation.
To determine the critical value, we need to consider the level of significance. In this case, the level of significance is 40%, which corresponds to an alpha value of 0.40. Since the test is a one-tailed test (we want to test whether the mean waiting time is significantly more than 3 minutes), we divide the alpha value by 2, resulting in 0.20.
Using a t-distribution table or a statistical calculator, we find that the critical value for an alpha of 0.20 with degrees of freedom equal to the sample size minus 1 (99) is approximately 1.96.
Therefore, if the test statistic falls beyond the critical value of 1.96, we can reject the Null hypothesis at the 40% level of significance.
Learn more about statistic here:
https://brainly.com/question/32201536
#SPJ11
Please answer correctly! I will mark you Brainliest!
Answer:
d=18 feet
Step-by-step explanation:
The volume of a sphere is represented by the equation [tex]V=\frac{4}{3}\pi r[/tex]³, where r is the radius. If the volume is 972[tex]\pi[/tex],
[tex]972\pi =\frac{4}{3}\pi r[/tex]³
Divide [tex]\pi[/tex] from each side,
[tex]972=\frac{4}{3} r[/tex]³
Multiply each side by 3/4 to get rid of the fraction,
[tex]r[/tex]³[tex]=729[/tex]
Using the cube root, we find that 729 is actually a perfect cube.
[tex]r=9[/tex]
Now, the diameter is 2 times the radius, so
9×2=18
So, the measure of the diameter is 18 feet.
3 feet
5 feet
4 feet
Answer:
Post the question along with this
3(x + 2) + 4(x - 5) = 10
solve x
3(x + 2) = 12
solve x
7(3 - x) = 8(4 - 2x)
solve x
8(x + 1) - 3(x + 4) = 7(2 - x)
solve x
7(x + 2) = 6(x + 5)
solve x
4(x + 2) = 48
siplfy
5x + 2(x - 3) = -2(x - 1)
Answer:
1. x=24/7
2. x=2
3. x= 11/9
4. x=3/2
5. x=16
6. x=10
7. x=8/9
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
1. x=24/7
2. x=2
3. x= 11/9
4. x=3/2
5. x=16
6. x=10
7. x=8/9
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Step-by-step explanation:
Can you please help me
Answer:
7. 7.1+5.4+2.9=15.7
10.3+5.4=15.7
8. 373.4 - 152.9 = 220.5
373.4 - 153 = 220.4
220.4 - 0.1 = 220.5
9. 18.25 + 7.99 + 4.75 = 30.99
10. 1.05 + 3 + 4.28 + .95 = 9.28
11. 302.504
12 50.5
You want to create a triangle with sides of a, b, and c. Which of the following inequalities should be true?
a+b c
a-b>c
a-b
What is the midpoint of DC with endpoints C (6,−1) and D (−7,8)?
Answer:
Fraction form: (-1/2, 7/2) Decimal form: -.5, 3.5)
Step-by-step explanation:
use the midpoint formula of: (x1 + x2/2 , y1 + y2/2) in order to get (x,y) coordinates.
Let's call endpoint C x1 and y1. So 6=x1 and -1=y1.
This makes endpoint D x2 and y2. So -7=x2 and 8=y2.
Now plug it in and simplify!
x-coordinates: (6+-7)/2 = (6-7)/2 = -1/2 or -.5
y-coordinates: (-1+8)/2 = (8-1)/2 = 7/2 or 3.5
the midpoint of endpoints C and D is (-1/2, 7/2)
**decimal form: (-.5, 3.5)