Answer:
10m
Explanation:
if it was at the 2.0 line it would be 10 m
If a typical atom has a diameter of about 1.0×10⁻¹⁰ m, then there are approximately atoms are there along a 2.0-centimeter line.
What are significant figures?In positional notation, significant figures refer to the digits in a number that is trustworthy and required to denote the amount of something, also known as the significant digits, precision, or resolution.
As given in the problem If a typical atom has a diameter of about 1.0×10⁻¹⁰ m, then we have to find out approximately how many atoms are there along a 2.0-centimeter line,
diameter of the one atom = 1.0×10⁻¹⁰
approximate number of atoms in 2 cm line = 2 ×10⁻² /( 1.0×10⁻¹⁰ )
=2 ×10⁸ atoms
Thus, there are approximately 2 ×10⁸ atoms are there along a 2.0-centimeter line.
Learn more about significant figures here,
brainly.com/question/14359464
#SPJ2
Which of the following is the best way to make a conclusion? A. The experiment must be manipulated until the results show what you want B. Estimate results to where they should be C. Choosing the results you like best D. Comparing data from the experiment to
Answer:
D
Explanation:
You should compare your results and data with your original hypothesis. It is okay to have a hypothesis that was shown to be false. That's science. Things do not always work out. You can always discuss what you could have done differently and things that went wrong. There is no right answer in science!
A boat with a jet engine demonstrates Newton’s law of action-reaction . Why is this true?
Answer:Newton’s law also states that larger bodies with heavier masses exert more gravitational pull, which is why those who walked on the much smaller moon experienced a sense of weightlessness, as it had a smaller gravitational pull. To help explain his theories of gravity and motion, Newton helped create a new, specialized form of mathematics.
Explanation:I'm very stupid so I don't think this is the right answer
the four strings of a bass guitar are 0.865 m long and are tuned to the notes g (98 hz), d (73.4 hz), a (55 hz), and e (41.2 hz). in one bass guitar, the g and d strings have a linear mass density of 4.8 g/m, and the a and e strings have a linear mass density of 29.8 g/m.what is the total force exerted by the strings on the neck?
Answer: Total force = 636,554.55N
Explanation: To determine tension of strings, wave speed on a string is necessary. Speed is found by:
v = f.λ
f is frequency
λ is wavelength
For the strings, wavelength equals to:
[tex]\lambda = 2L[/tex]
L is the length of the bass guitar string
Then, wave speed:
[tex]v=f.2L[/tex]
Tension on a string is
[tex]v=\sqrt{\frac{F_{T}}{\mu} }[/tex]
[tex]v^{2}=\frac{{F_{T}} }{\mu}[/tex]
[tex]F_{T} = v^{2}\mu[/tex]
[tex]F_{T} = (2f\lambda)^{2}\mu[/tex]
[tex]F_{T} = 4(f\lambda)^{2}\mu[/tex]
μ is linear mass density
For g string:
[tex]F_{T} = 4(98.0.865)^{2}.4.8[/tex]
[tex]F_{T}[/tex] = 137970.3N
For d string:
[tex]F_{T} = 4(73.4.0.865)^{2}.4.8[/tex]
[tex]F_{T}=[/tex] 77397.25N
For a string:
[tex]F_{T} = 4(55.0.865)^{2}.29.8[/tex]
[tex]F_{T}=[/tex] 269795N
For e string:
[tex]F_{T} = 4(41.2.0.865)^{2}.29.8[/tex]
[tex]F_{T}=[/tex] 151392N
Total force = 137,970.3 + 77,397.25 + 269,795 + 151,392
Total force = 636,554.55N
Total force exerted on the neck by the strings is 636,554.55N.
This question involves the concepts of the tension force in strings, linear mass density, and frequency.
The total force exerted by strings on the guitar is "359.4 N".
The tension force exerted by each string is given as:
[tex]F_T=v^2\mu[/tex]
where,
F_T = tension force = ?
v = speed = (frequency)(wavelength) = fλ
μ = linear mass density
Therefore,
[tex]F_T=f^2\lambda^2\mu[/tex]
but for strings in this case:
[tex]\lambda = 2(Length of string) = 2(0.865\ m)=1.73\ m[/tex]
Therefore,
[tex]F_T=f^2(1.3\ m)^2\mu[/tex]
For string g:
[tex]F_{Tg}=(98\ Hz)^2(1.3\ m)^2(4.8\ x\ 10^{-3}\ kg/m)\\F_{Tg}=77.9\ N[/tex]
For string d:
[tex]F_{Td}=(73.4\ Hz)^2(1.3\ m)^2(4.8\ x\ 10^{-3}\ kg/m)\\F_{Td}=43.7\ N[/tex]
For string a:
[tex]F_{Ta}=(55\ Hz)^2(1.3\ m)^2(29.8\ x\ 10^{-3}\ kg/m)\\F_{Ta}=152.3\ N[/tex]
For string e:
[tex]F_{Te}=(41.2\ Hz)^2(1.3\ m)^2(29.8\ x\ 10^{-3}\ kg/m)\\F_{Te}=85.5\ N[/tex]
So, the total force will be the sum of all tension forces:
[tex]F=F_{Tg}+F_{Td}+F_{Ta}+F_{Te}[/tex]
F = 77.9 N + 43.7 N + 152.3 N + 85.5 N
F = 359.4 N
Learn more about Tension Force here:
https://brainly.com/question/3445152?referrer=searchResults
If you do not have enough time to complete a full workout, you should:
A. Cut the cool-down portion short.
B. Skip the warm-up and cool-down portions altogether.
C. Cut the warm-up portion short.
D. Cut the exercise portion short.
Answer:
the answer to this question would be cut the exercise portion down (D)
this is because warm ups and cooling down during exercise are more important than the exercise itself
Explanation:
Calculate the displacement traveled (in m) from start to finish.
Answer:
nnkn
Explanation:
nkn
Work done of frictional force from instant
Answer:
[tex]-100\ J[/tex]Step-by-step explanation:
1. Find acceleration:
[tex]m=2\ kg[/tex] [tex]F=-5\ N[/tex] [tex]a=\frac{F}{m}[/tex] (Newton's second law)[tex]a=\frac{-5}{2} =-2.5\ \frac{m}{s^{2}}[/tex]2. Find distance traveled:
[tex]v_0=10\ \frac{m}{s}[/tex] [tex]v=0[/tex][tex]a=-2.5\ \frac{m}{s^{2} }[/tex] [tex]v^2-v_0^2=2ad[/tex] (Kinematic equation)[tex]-100=-5d[/tex] [tex]d=20\ m[/tex]3. Find work done by friction:
[tex]W=Fd[/tex] (Work formula when angle between Force and Displacement vectors are 0°) [tex]W=-5\times20=-100\ J[/tex]a 20 ft shipping container on a cargo ship has a mass of 24000 kg and a volume of 33.2m3. what is the density of the shipping container
Answer:
722.89
Explanation:
mass=24000kg
volume=33•2
density=?
now,
density=mass/volume
=24000/33•2
=722•89
density=722•89 kg/m^3
How does society shape reality?
Tony completed a 720 km journey with an average speed of 90 km/h for the first 285 km he travelled at an average speed of 95 Km/h what was the average speed for the remaining journey
Answer:
[tex]Speed = 87 km/h[/tex]
Explanation:
Given
Total Distance = 720km
Average Speed = 90km/h
Average Speed (285km) = 95km/h
Required
Determine the average speed for the rest of the journey
First we need to determine the time taken to complete the journey using
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]90 = \frac{720}{Time_1}[/tex]
Make Time the subject of formula
[tex]Time_1 = \frac{720}{90}[/tex]
[tex]Time_1 = 8 hour[/tex]
Next, we determine the time taken to complete 285km of the journey using
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]95 = \frac{285}{Time_2}[/tex]
Make Time the subject of formula
[tex]Time_2 = \frac{285}{95}[/tex]
[tex]Time_2 = 3 hours[/tex]
The difference between these calculated times is the time taken to complete the rest of the journey
[tex]Time = Time_1 - Time_2[/tex]
[tex]Time = 8\ hour - 3\ hour[/tex]
[tex]Time = 5\ hour[/tex]
Also, we need to calculate the distance of the rest of the journey
[tex]Distance = 720\ km - 285\ km[/tex]
[tex]Distance = 435\ km[/tex]
The average speed can then be calculated;
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]Speed = \frac{435}{5}[/tex]
[tex]Speed = 87 km/h[/tex]
Hence, the average speed of the rest of the journey is 87km/h
Two vectors of magnitudes |A| = 8 units and |B| = 5 units make an angle that can vary from 0° to 180°. The magnitude of the resultant vector A + B CANNOT have the value of:
The question is missing the alternatives. Here is the complete question.
Two vectors of magnitude |A| = 8units and |B| = 5units make an angle that can vary from 0° to 180°. The magnitude of the resultant vector A+B CANNOT have the value of:
A. 2 units
B. 5 units
C. 8 units
D. 12 units
Answer: A. 2 units
Explanation: Vector is an entity that has characteristics as magnitude and direction. Resultant vector is the "sum" of 2 or more vectors.
In this question, the vectors have magnitude and angle varies from 0° to 180°.
When angle between vectors A and B is 0°, they are parallel and pointing to the same direction, so:
[tex]V_{R} = |A| + |B|[/tex]
[tex]V_{R}=8+5[/tex]
[tex]V_{R}[/tex] = 13
When the angle is 180°, it means vectors are in opposing directions, so:
[tex]V_{R} = |A| - |B|[/tex]
[tex]V_{R} = 8-5[/tex]
[tex]V_{R}[/tex] = 3
From the calculations, we can conclude the magnitude of resultant vector varies between 3 and 13.
The least value is 3, so it cannot have a value of 2 units.
Which is one physical property that all stars have? pick one They are made of gases. They shine very brightly. They have a triangle shape. They contain iron in their cores.
Answer: They are made of gases
The physical property that all stars have will be they are made of gases. option 1 is correct.
What is a star?A star is a heavenly body made up of a brilliant spheroid of plasma held together by gravity. The Sun is the closest star to Earth.
Many additional stars may be seen with the normal eye at night, but due to their great distance from Earth, they appear as stationary points of light in the sky.
The physical property that all stars have will be they are made of gases.
Hence option 1 is correct.
To learn more about the stars refer to the link;
https://brainly.com/question/24493066
A silver block of silver block of density 10.5 g/cm3 has a volume of 30 cm3. Which of the following is the correct mass of the block
➝ Density of block = 10.5 g/cm³
➝ Volume of block = 30 cm³
We have to find mass of block[tex].[/tex]
➠ Density is defined as mass of substance per unit volume[tex].[/tex]
[tex]\dag\:\boxed{\bf{Density=\dfrac{Mass}{Volume}}}[/tex]
[tex]:\implies\sf\:Mass=Density\times Volume[/tex]
[tex]:\implies\sf\:Mass=10.5\times 30[/tex]
[tex]:\implies\boxed{\boxed{\bf{\red{Mass=315\:g}}}}[/tex]
Suppose we have Cl-, Na+, and Ca2+ ions in an aqueous solution (with dielectric constant κ = 80.4—we will discuss this later). Consider the situation where a sodium ion is between a chlorine ion and a calcium ion as shown:
(Cl-) (Na+) (Ca2+)
If the sodium ion is 1.50 nm from the chlorine ion and 3.00 nm from the calcium ion, find the electric force on the Na+ ion.
Answer:
a) 1.19 x 10^7 N/C
b) 2 x 10^-12 N
Explanation:
field due to Cl on (9.0xE¡)(1.6x10-19 C) (1.5Å—10-9m) -6.4x10 N/C field due to Ca+3 ion, 2(90x10 (1.6x10-19c) ((4.5-1.5)Å—10-9 m)' magnitude of net field at given point without dielectric E E+E 6.4x108 +3.2x108-9.6x10 N/C magnitude of net field at given point with di electric K 80.4 the force on sodium ion at this point, F-Edq= (1.19å—107 N/C)(1.6å—10-19C)= 2.0Å—10-12 N
Which is true for a car moving around a circular track with constant speed? 1. It has zero acceleration2. it has an acceleration directed toward the center of its path3. it has an acceleration directed away fromt he center of its path4. it has an acceleration with a direction that cannot be determined from the information given5. it has an acceleration component in the direction of its velocity.
Answer:
2. it has an acceleration directed toward the center of its path
Explanation:
For a car moving with constant velocity around a circular track, there is a a change in the direction of the velocity at every point on the path taken by the car around the track. This change in direction generates an acceleration on the car which will be directed towards the center of the track. This is why the inertia force on a person inside the car when it is driven around a circular track is usually away from the center of the track, since the inertia force acts in an opposite direction to the acceleration on a body.
which is an accurate description of what occurs when a log burns
Answer:
charcoal
Explanation:
Answer:
charcoal
Explanation:
Mark as Brainliest
A sound wave is observed to travel through a liquid with a speed of 1400 m/s. The specific gravity of the liquid is 1.8.
Determine the bulk modulus for this fluid.
Answer:
21
Explanation:
I think its 21 because its 21
who is known as father of science?
GalileoGalilei is known as the father of science
What are some superheroes that resemble neurotransmitter functions. Dopamine: Acetylcholine: Endorphins: GABA: Glutamates: Norepinephrine: Serotonin:
Answer:
Serotonin
___________
The acceleration of a particle is given by a(t)= -2.00 m/s^2 + (3 m/s^3)t. Required:a. Find the initial velocity vo such that the particle will have the same x-coordinate at t=4.00 s as it had at t=0. b. What will be the velocity at t=4.00 s ?
Answer:
Explanation:
a(t)= -2.00 m/s^2 + (3 m/s^3)t.
dv / dt = -2.00 m/s^2 + (3 m/s^3)t.
dv = (-2.00 m/s^2 + (3 m/s^3)t.)dt
v = - 2t + 3 t² / 2 + c , where c is a constant
for initial velocity t = 0
v0 = c
v = - 2t + 3 t² / 2 + v0
ds / dt = - 2t + 3 t² / 2 + v0
ds = (- 2t + 3 t² / 2 + v0)dt
s = - 2t²/2 + 3 t³/6 + vot + c₁
At t = 0
s = c₁
At t = 4
s = -16 + 32 + 4v0 + c₁
= 4v0 + c₁ + 16
Given
4v0 + c₁ + 16 = c₁
v0 = - 4 m /s
Putting this value in the equation of velocity
v = - 2t + 3 t² / 2 - 4
At t = 4
v = -8 + 24 - 4
= 12 m / s
What are the components of vector a
Answer:
Option (A)
Explanation:
From the picture attached,
Given : Vector A with magnitude 12 m.
To Find : Components of vector A.
There are two components of any vector.
1). Horizontal component
2). Vertical component
If vector A represents the velocity, horizontal component of a vector decides the horizontal motion and vertical component decides the vertical motion.
To find these components we draw a right triangle OBA as shown in the figure,
From ΔOBA,
Sin(37)° = [tex]\frac{\text{AB}}{\text{OA}}[/tex]
= [tex]\frac{{A_x}}{{A}}[/tex]
[tex]A_x=A\text{Sin}(37)[/tex]
= 12Sin(37)°
= 7.22 m
[tex]A_y=A\text{Cos}(37)[/tex]
= 12Cos(37)°
= 9.58 m
Therefore, Option (1) is the correct option.
A child on a bridge throws a rock straight down to the water below. The point where the child released the rock is 74 m above the water and it took 2.7 s for the rock to reach the water. Determine the rock's velocity (magnitude & direction) at the moment the child released it. Also determine the rock's velocity (magnitude & direction) at the moment it reached the water. Ignore air drag.
The rock's altitude y at time t, thrown with initial velocity v, is given by
[tex]y=74\,\mathrm m+vt-\dfrac12gt^2[/tex]
where [tex]g=9.80\frac{\rm m}{\mathrm s^2}[/tex] is the acceleration due to gravity.
After t = 2.7 s, the rock reaches the water (0 altitude), so
[tex]0=74\,\mathrm m+v(2.7\,\mathrm s)-\dfrac12g(2.7\,\mathrm s)^2[/tex]
[tex]\implies v=-\dfrac{74\,\mathrm m-\frac g2(2.7\,\mathrm s)^2}{2.7\,\mathrm s}\approx-14.177\dfrac{\rm m}{\rm s}[/tex]
so the rock was thrown with a velocity with magnitude 14 m/s and downward direction.
Its velocity at time t is [tex]v-gt[/tex] (with no horizontal component), so that at the moment it hits the water, its velocity is
[tex]v-g(2.7\,\mathrm s)\approx-40.637\dfrac{\rm m}{\rm s}[/tex]
That is, its final velocity has an approximate magnitude of 41 m/s, also directed downward.
A bowling ball of mass 3 kg is dropped from the top of a tall building. It safely lands on the ground 3.5 seconds later. Neglecting air friction, what is the height of the building in meters? (Give the answer without a unit and round it to the nearest whole number)
Answer:
The height of the building is 60 m.
Explanation:
Given;
mass of the mass of the ball, m = 3 kg
time of motion, t = 3.5 s
The velocity of the ball is given by;
v = u + gt
where;
u is the initial velocity of the ball = 0
v = 0 + 9.8 x 3.5
v = 34.3 m/s
When the ball hits the ground, energy is conserved;
mgh = ¹/₂mv²
gh = ¹/₂v²
h = (0.5 v²) / g
h = (0.5 x 34.3²) / (9.8)
h = 60.025 m
h = 60 m
Therefore, the height of the building is 60 m.
The height of the building is 60 m.
calculation of building height:The velocity of the ball should be provided by
v = u + gt
here,
u is the initial velocity of the ball = 0
v = 0 + 9.8 x 3.5
v = 34.3 m/s
Now
When the ball hits the ground, energy is conserved;
mgh = ¹/₂mv²
gh = ¹/₂v²
h = (0.5 v²) / g
h = (0.5 x 34.3²) / (9.8)
h = 60.025 m
h = 60 m
Learn more about friction here: https://brainly.com/question/14455351
which sentences describes an object that has kinetic energy
Answer:
A boat sails across the Ocean
Explanation:
Out of all the options on Edmentum none of them where moving so it would only make sense that this is the only one with kinetic energy.
How does the Coriolis effect impact ocean currents in the Northern and Southern Hemispheres?
Now let’s pretend you’re standing at the North Pole. When you throw the ball to your friend, it will again to appear to land to the right of him. But this time, it’s because he’s moving faster than you are and has moved ahead of the ball.
Everywhere you play global-scale "catch" in the Northern Hemisphere, the ball will deflect to the right.
Doug rubs a piece of fur on a hard rubber rod, giving the rod a negative charge. Which of the following statements best describes what happens in this process?A) Protons are removed from the rod.B) Electrons are added to the rod.C) The fur is also charged negatively.D) The fur is left neutral.
Answer:
B is correct. Electrons are added to the rod.
Explanation:
Because the fur lose electrons to the rode and because positively charged while the rod because negative
Regular exercise is positively related to wellnes t or f
Light of wavelength 600 nm illuminates a diffraction grating. The second order maximum is at an angle of 65 degrees. a) List your known variables. b) What is the spacing between slits in this grating? c) How many lines per millimeter does this grating have?
Answer:
A. Known variables include
Wavelength = 600nm
Theta= 65°
m= 2
B.
d= m x wavelength / sin theta
= 2 * 600*10^-9 /sin 65°
= 1.3*10^-6m
C.
N = 1/d
So N = 1/1.3*10^-6m
=76.9 lines per micro meter
Starting from rest, a panther accelerates at 3 m/s/s for 10 seconds. What is the final velocity of the panther
Answer:
Final velocity = 30 m/s
Explanation:
We are given;
Initial velocity; u = 0 m/s
Acceleration; a = 3 m/s²
Time; t = 10 seconds
From Newton's first law of motion, the final velocity is given by the formula;
v = u + at
Plugging in the relevant values gives;
v = 0 + (3 × 10)
v = 30 m/s
a) An electric circuit is rates, 240V, 13Ω calculate the amount of current that can be used by this appliance.
Answer:
18.4615385 amps
Explanation:
The voltage V in volts (V) is equal to the current I in amps (A) times the resistance R in ohms (Ω):
A model rocket accelerates upward from the ground with a constant acceleration, reaching a height of 50 m in 8 s.What is the speed (in m/s) at a height of 50 m?A: 1.07×101 B: 1.25×101 C: 1.46×101 D: 1.71×101 E: 2.00×101
Answer:
The value is [tex]v = 12.5 \ m/s[/tex]
Explanation:
From the question we are told that
The height is [tex]h = 50 \ m[/tex]
The time taken is [tex]t = 8 \ s [/tex]
From the equation of motion we have that
[tex]s = ut + \frac{1}{2} * a * t^2[/tex]
Here u = 0 because the rocket started at rest
[tex]50 = 0 + \frac{1}{2} * a * 8^2[/tex]
=> [tex]a = \frac{100}{64}[/tex]
=> [tex]a = 1.5625 \ m/s^2[/tex]
Also from the kinematic equation we have that
[tex]v = u + at[/tex]
=> [tex]v = 0 + (8 * 1.5625)[/tex]
=> [tex]v = 12.5 \ m/s[/tex]