A box with a mass of 2 kg is pushed by a 10 N force. The acceleration
is
_m/s^2?

Answers

Answer 1

Answer:

a = 5 m/s^2

Explanation:

First, we look at Newton's 2nd Law:

F = ma

We now plug in the values,

10 N = 2 kg * a

10 N/2 kg = a

5 m/s^2 = a


Related Questions

Write the properties of Non Metals and the families containig non Metals.

Answers

Non-Malleable and Ductile: Non-metals are very brittle, and cannot be rolled into wires or pounded into sheets. Conduction: They are poor conductors of heat and electricity. Luster: These have no metallic luster and do not reflect light.

Group 15, the nitrogen family, contains two nonmetals: nitrogen and phosphorus. These non-metals usually gain or share three electrons when reacting with atoms of other elements. Group 16, the oxygen family, contains three nonmetals: oxygen, sulfur, and selenium.

Elements: Nitrogen; Oxygen; Phosphorus; Selenium...

An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.30 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 38.0 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target

Answers

Answer:

4.79m/s

Explanation:

According to law of conservation of momentum;

The sum of momentum of the bodies before collision is equal to the momentum after collision.

m1u1 + m2u2 = (m1+m2)v

Given;

m1 = 0.3kg

u1 = 2.30m/s

m2 = 0.0225kg

u2 = 38m/s

Required

speed of the arrow after passing through the target v

Substituting the given data into the formula

0.3(2.3) + 0.0225(38) = (0.3 + 0.0225)v

0.69 + 0.855 = 0.3225v

1.545 = 0.3225v

v = 1.545/0.3225

v = 4.79m/s

Hence the speed of the arrow after passing through the target is 4.79m/s

A car enters a 105-m radius flat curve on a rainy day when the coefficient of static friction between its tires and the road is 0.4. What is
the maximum speed which the car can travel around the curve without sliding

Answers

Static friction (magnitude Fs) keeps the car on the road, and is the only force acting on it parallel to the road. By Newton's second law,

Fs = m a = W a / g

(a = centripetal acceleration, m = mass, g = acceleration due to gravity)

We have

a = v ² / R

(v = tangential speed, R = radius of the curve)

so that

Fs = W v ² / (g R)

Solving for v gives

v = √(Fs g R / W)

Perpendicular to the road, the car is in equilibrium, so Newton's second law gives

N - W = 0

(N = normal force, W = weight)

so that

N = W

We're given a coefficient of static friction µ = 0.4, so

Fs = µ N = 0.4 W

Substitute this into the equation for v. The factors of W cancel, so we get

v = √((0.4 W) g R / W) = √(0.4 g R) = √(0.4 (9.80 m/s²) (105 m)) ≈ 20.3 m/s

The motion of a piston of a car engine approximates simple harmonic motion. Given that the stroke (twice the amplitude) is 0.100 m, the engine runs at 2,800 r/min, and the piston starts at the middle of its stroke, find the equation for the displacement d as a function of t. Sketch two cycles.

Answers

Answer:

  y =  - 0.050 sin (131.59t )

Explanation:

In this exercise we are told to approximate the movement of a piston to the simple harmonic movement

          y = A cos (wt + Ф)

in this case they indicate that the stroke (C) of the piston is twice the amplitude

          C = 2A

          A = C / 2

angular velocity is related to frequency

          w = 2π f

let's substitute

         y = [tex]\frac{C}{2}[/tex] cos (2π f t +Ф)

To find the phase (fi) we will use the initial conditions, the piston starts at the midpoint of the stroke, if we create a reference system where the origin is at this point

         y = 0 for  t = 0

we substitute in the equation

        0 = \frac{C}{2} cos (0 + Ф)

The we sew zero values ​​for the angles of Ф = π/2 rad

we substitute in the initial equation

      y = \frac{C}{2} cos (2π f t + π/2)

let's use the double angle relationship

     cos ( a +90) = cos a cos 90 - sin a sin 90

     cos (a+90) = - sin a

       y = -\frac{C}{2} sin (2πf t )

let's reduce the frequency to SI units

        f = 200 rpm (2π rad / 1rev) (1 min / 60s) = 20.94 rad / s

we substitute the given values

       y = - [tex]\frac{0.100}{2}[/tex]  sin (2π 20.94 t )

       y =  - 0.050 sin (131.59t )

A student is provided with a battery-powered toy car that the manufacturer claims will always operate at a constant speed. The student must design an experiment in order to test the validity of the claim. Which of the following measuring tools can the student use to test the validity of the claim?

a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on.
b. A meterstick to measure the distance of the track that the car travels on.
c. A motion detector that is oriented perpendicular to the direction that the car travels.
d. A mass balance to determine the mass of the car

Answers

Answer:

a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on.

b. A meterstick to measure the distance of the track that the car travels on.

Explanation:

Physics can be defined as the field or branch of science that typically deals with nature and properties of matter, motion and energy with respect to space, force and time.

In this scenario, a student is provided with a battery-powered toy car that the manufacturer claims will always operate at a constant speed. The student must design an experiment in order to test the validity of the claim.

Therefore, to test the validity of the claim, the student should use the following measuring tools;

a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on. This device is typically used to measure time with respect to the rate of change of the interruption or block of an infra-red beam.

b. A meterstick to measure the distance of the track that the car travels on.

Hence, with these two devices the student can effectively measure or determine the validity of the claim.

A roller coaster car is released from rest as shown in the image below. If
friction is neglected, the car will oscillate back and forth across the "dip" in
the roller coaster. What is the approximate velocity of the roller coaster car
each time it reaches the bottom of the roller coaster in the image? (Recall
that g = 9.8 m/s2.)
TAS
81 m
O A. 40 m/s
B. 25 m/s
C. 30 m/s
D. 15 m/s

Answers

Answer:

40m/s

Explanation:

a=g

u=0

s=81

v²=u²+2as

v²=2(9.81)(81)

v=√1587.6=39.8446985181≈40m/s

The velocity of the roller coaster car each time it reaches the bottom is 40 ms⁻¹. The correct option is (A).

The rate at which the position of an object changes with respect to time is described by the physical quantity known as velocity. It has both magnitude and direction because it is a vector quantity.

Given:

Initial velocity, u = 0 m/s

Acceleration, a = -9.8 ms⁻²

Distance, d = 81 m

From the third equation of motion:

v² = u² - 2as

v² = 0 - 2×(-9.8)×81

v = 40 ms⁻¹

Hence, the velocity of the roller coaster car is 40 ms⁻¹. The correct option is (A).

To learn more about Velocity, here:

https://brainly.com/question/17127206

#SPJ4

The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 4.22 cm. At the same moment, both particles are released.
A. Calculate the distance (in cm) from the positive plate at which the two pass each other.
B. Repeat part (a) for a sodlum lon (Nat) and a chlorlde lon (CI).

Answers

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Data Given:

Electric Field between two parallel plates = 628 N/C

Separation = 4.22 cm

a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.

Solution:

First of all:

Force on proton due to the Electric field between the plates is:

[tex]F_{p}[/tex] = [tex]q_{p}[/tex]E

and, we know that, F = ma

So,

[tex]m_{p}[/tex]a = [tex]q_{p}[/tex]E

a = [tex]\frac{q_{p}.E }{m_{p} }[/tex]      Equation 1

So,

The distance covered by the electron is:

S = ut + 1/2[tex]at^{2}[/tex]

Here, u = 0.

S = 1/2[tex]at^{2}[/tex]

Put equation 1 into the above equation:

S = 1/2 x ([tex]\frac{q_{p}.E }{m_{p} }[/tex]  )[tex]t^{2}[/tex]      Equation 2

So,  

Similarly, the distance covered by electron will be:

(D-S) = 1/2 x ([tex]\frac{q_{e}.E }{m_{e} }[/tex]  )[tex]t^{2}[/tex]    Equation 3

We know that the charge of electron is equal to the charge of proton so,

[tex]q_{p}[/tex] = [tex]q_{e}[/tex] = q

By dividing the equation 2 by equation 3, we get:

[tex]\frac{S}{D-S}[/tex] = [tex]\frac{m_{e} }{m_{p} }[/tex]

Solve the above equation for S,

S[tex]m_{p}[/tex] = [tex]m_{e}[/tex]D - [tex]m_{e}[/tex]S

So,

S = [tex]\frac{m_{e}.D }{(m_{e} + m_{p}) }[/tex]

Plugging in the values,

As we know the mass of electron is 9.1 x [tex]10^{-31}[/tex] and the mass of proton is 1.67 x [tex]10^{-27}[/tex]

S = [tex]\frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27} }[/tex]

S = 0.002298 cm (Distance from the positive plate at which the two pass each other)

b) In this part, we to calculate distance for Sodium ion and chloride ion as above.

So,

we already have the equation, we need to put the values in it.

So,

S = [tex]\frac{m_{Cl}.D }{(m_{Cl} + m_{Na}) }[/tex]

As we know the mass of chlorine is 35.5 and of sodium is 23

S = [tex]\frac{35.5 . 4.22}{(35.5 + 23)}[/tex]

S = 2.56 cm

A vertical piston-cylinder device contains a gas at a pressure of 100 kPa. The piston has a mass of 10 kg and a diameter for 14 cm. Pressure of the gas is to be increased by placing some weights on the piston. Determine the local atmospheric pressure and the mass of the weights that will doublethe pressure of the gas inside the cylinder.

Answers

Answer:

the local atmospheric pressure is  93.63 kPa

the mass of the weights is 156.9 kg

Explanation:

Given that;

Initial pressure of gas = 100 kPa

mass of piston = 10 kg and diameter = 14 cm = 0.14 m

g = 9.81 m/s²

Now,

P_gas = P_atm + P_piston

100 = P_atm + P_piston --------- let this equation 1

P_piston = M_piston × g / A = (10 × 9.81) / π/4×d²

P_piston = 98.1 / (π/4×( 0.14 )²)

P_piston = 98.1 / 0.01539 = 6374,269 Pa = 6.37 kPa

now, from equation 1

100 = P_atm + P_piston

we substitute

100 = P_atm + 6.37

P_atm = 100 - 6.37

P_atm = 93.63 kPa

Therefore, the local atmospheric pressure is  93.63 kPa

Now for pressure of the gas in the cylinder ⇒ 2×initial pressure

Pgas_2 = 2 × 100 = 200 kPa

Pgas_2 = P_atm + P_piston + P_weight

Pgas_2 =  P_gas  + P_weight

we substitute

200 kPa =  100 kPa  + P_weight

P_weight =  200 kPa -  100 kPa

P_weight = 100 kPa =  100,000 Pa

Also;

P_weight = M×g / A

100,000 Pa = ( M × 9.81 ) / (π/4 × (0.14)²)

100,000 × 0.01539 = M × 9.81

1539 = M × 9.81

M = 1539 / 9.81

M = 156.9 kg

Therefore, the mass of the weights is 156.9 kg

What is the period of an objects motion?

Answers

The time for an object to complete one full cycle. Can have a long period or short period.


Brainliest?

Fluids
A = 2804 cm3 B = 2862 cm2 C = 2916 cm3
Three separate fluids, A, B, and C have been selected at random and each initially fills a 3000 cm3 volume at atmospheric pressure. A gage pressure of 6 x 107 N/m2 is then applied to each fluid. The final volume is given below. Determine which fluids were selected from the given list.
Acetone E = 0.92 GPa Glycerin E = 4.35 GP
Water E = 2.15 GPa Mercury E = 28.5 GPa
Benzene E = 1.05 GPa Sulfuric Acid E = 3.0 GPa
Ethyl Alcohol E = 1.06 GPa Gasoline E = 1.3 GPa
Petrol E = 1.45 GPa Seawater E = 2.34 GPa

Answers

Answer:

Explanation:

Fluid A :

Δ V = Change in volume = (3000 - 2804) x 10⁻⁶ m³ = 196 x 10⁻⁶ m³

volume strain = Δ V / V  = 196 x 10⁻⁶ / 3000 x 10⁻⁶

= .06533

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .06533 = 91.84 x 10⁷ Pa = .92 GPa .

It is Acetone .

Fluid B :

Δ V = Change in volume = (3000 - 2862) x 10⁻⁶ m³ = 138 x 10⁻⁶ m³

volume strain = Δ V / V  = 138 x 10⁻⁶ / 3000 x 10⁻⁶

= .046

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .046 = 130.43  x 10⁷ Pa = 1.3  GPa .

It is Gasoline  .

Fluid C :

Δ V = Change in volume = (3000 - 2916) x 10⁻⁶ m³ = 84 x 10⁻⁶ m³

volume strain = Δ V / V  = 84 x 10⁻⁶ / 3000 x 10⁻⁶

= .028

Δ P = increase in pressure = 6 x 10⁷ Pa

E = Δ P / volume strain = 6 x 10⁷ / .028 = 214.28 x 10⁷ Pa = 2.14  GPa .

It is Water   .

In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 2820 J of work is done on the gas.

Required:
a. How much heat flows into or out of the gas?
b. What is the change in internal energy of the gas?
c. Does its temperature rise or fall?

Answers

Answer:

[tex]Q=0[/tex][tex]U=2820[/tex]Energy increases

Explanation:

From the question we are told that

Work done [tex]W=2820[/tex]

a)Generally the heat flow for an adiabatic process is 0 (zero)

[tex]Q= U + W =>0[/tex]

[tex]Q=0[/tex]

b)Generally Change in internal energy of gas is mathematically given by

Since [tex]W=-2820J[/tex]

Therefore

[tex]U=2820[/tex]

Giving

[tex]Q= 2820 -2820[/tex]

[tex]Q=O[/tex]

c)With increases in internal energy brings increase in temperature

Therefore

Energy increases

Which characteristic involves cleavage and fracture?

the way a mineral breaks apart
the color of a mineral’s powder
the light that is reflected from a mineral’s surface
the number and angle of crystal faces of a mineral

Answers

Answer:

the way a mineral breaks apart

Explanation:

The way a mineral breaks apart involves fracture and cleavage.

These characteristics are very important in mineral identification especially during physical observations. Minerals have different cleavage properties and fracture planes.

Cleavage of a mineral is the ability of a mineral to split along preferred weakness planes. These planes are usually ingrained within the mineral during its formation. Fracture is the plane along through which minerals are able to break.

Answer:

A:the way a mineral breaks apart

Explanation:

The nose of an ultralight plane is pointed south, and its airspeed indicator shows 44 m/s. The plane is in a 18 m/s wind blowing toward the southwest relative to earth.
a. letting x be east and y be north, find the components of \vec v_{\rm P/E} (the velocity of the plane relative to the earth.
b.Find the magnitude of \vec v_{\rm P/E}.
c.Find the direction of \vec v_{\rm P/E}.

Answers

Answer:

a) vx = -12.7 m/s vy = -56.7m/s

b) v= 58.1 m/s

c) θ = 77.4º S of W

Explanation:

a)

In order to get the components of the velocity of the plane relative to the earth, we need just to get the components of both velocities first:Since the nose of the plane is pointing south, if we take y to be north, and positive, this means that the velocity of the plane can be written as follows:

       [tex]v_{ps} = -44m/s (1)[/tex]

Since the wind is pointing SW, it's pointing exactly 45º regarding both directions, so we can find its components as follows (they are equal each other in magnitude)

       [tex]v_{we} = - 18m/s * cos (45) = -12.7 m (2)[/tex]

       [tex]v_{ws} = - 18m/s * cos (45) = -12.7 m (3)[/tex]

The component of v along the x-axis is simply (2), as the plane has no component of velocity along this axis:

        [tex]v_{e} = v_{x} = -12.7 m/s (4)[/tex]

The component of v along the -y axis is just the sum of (1) and (3)[tex]v_{y} = -44 m/s + (-12.7m/s) = -56.7 m/s (5)[/tex]

b)

We can find the magnitude of the velocity vector, just applying the Pythagorean Theorem to (4) and (5):

        [tex]v = \sqrt{(-12.7m/s)^{2} + (-56.7m/s)^{2}} = 58.1 m/s (6)[/tex]

c)

Taking the triangle defined by vx, vy and v, we can find the angle that v does with the negative x-axis, just using the definition of tangent, as follows:

       [tex]tg_{\theta} =\frac{v_{y} }{v_{x} } = \frac{(-56.7m/s)}{(-12.7m/s} = 4.46 (7)[/tex]

Taking tg⁻¹ from (7), we get:

        tg⁻¹ θ = tg⁻¹ (4.46) = 77.4º S of W. (8)

According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity. Do you think this equation is valid in any system of units

Answers

This question is incomplete, the complete question is;

According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula; h= (0.04 to 0.09)(D/d)⁴V²/2g

where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity.

Do you think this equation is valid in any system of units

Answer:

YES, the equation is a general equation that is valid in any system of units

Explanation:

Given the data in the question;

h = (0.04 to 0.09)(D/d)⁴ × [tex]\frac{V^{2} }{2g}[/tex]

so

[ N.m/N ] = (0.04 to 0.09) ( m/m)² × (m²/s²)1/2 × (s²/m)

[ N.L/N ] = (0.04 to 0.09) ( L⁴/L⁴) × (L²/T²)1/2 × (T²/L)

∴ [ L ] = (0.04 to 0.09) [L]

So as each term in the equation must have the same dimensions, the constant term (0.04 to 0.09) must be without dimension.

Therefore, YES, the equation is a general equation that is valid in any system of units

Two metal bricks are held off the edge of a balcony from the same height above the ground. The bricks are the same size but one is made of Titanium (density of 4.5 g/cm%) and one is made of Lead (density of 11.3 g/cm3) so the Lead is about twice as heavy as the Titanium. The time it takes the bricks to reach the ground will be:________.
a. less but not necessarily half as long for the heavier brick
b. about half as long for the lighter brick
c. less but not necessarily half as long for the lighter brick
d. about half as long for the heavier brick
e. about the same time for both bricks

Answers

Answer:

e.

Explanation:

Assuming that the air resistance is neglectable, both bricks are only accelerated by gravity, which produces a constant acceleration on both bricks, which is the same, according  Newton's 2nd Law, as we can see below:[tex]F_{g} = m*g = m*a (1)[/tex]⇒a = g = 9.8m/s² (pointing downward)Since acceleration is constant, if both fall from the same height, we can apply the following kinematic equation:

       [tex]\Delta y = v_{o} * t - \frac{1}{2} *g*t^{2} (2)[/tex]

Since both bricks are held off the edge, the initial speed is zero, so (2) reduces to the following equation:

        [tex]h =\frac{1}{2} *g*t^{2} (3)[/tex]

Since h (the height of the balcony) is the same, we conclude that both bricks hit ground at exactly the same time.If the air resistance is not negligible, due both bricks have zero initial speed, and have the same shape, they will be affected by the drag force in similar way, so they will reach the ground at approximately the same time.

The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.

Answers

Answer:

5766.7 K

Explanation:

We are given that

Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]

Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]

Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]

We have to find the temperature at the surface of the Sun.

We know that

Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]

Where [tex]K_{sc}=1350 W/m^2[/tex]

[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]

Using the formula

[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]

T=5766.7 K

Hence, the temperature at the surface of the sun=5766.7 K

Two objects travel the same distance. The one that is moving faster will:


Take more time to go the distance

Take less time to go the same distance

Take the same time as the slower object

None of the above

Answers

Answer: take less time to go the same distance

Explanation:

Because if it is going faster let’s say mph 60 mph is 60 miles per hour if you are going 40 miles per hour it will take you longer to get to your destination.

A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a ramp of 64.8 degrees at a speed of 25.4 m/s. What would be the largest number of buses he can clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 10.0 m long

Answers

Answer: he can only make it over 5 buses

Explanation:

Given the data in the question;

we know that range is expressed as;

R = (V₀²sin2∅₀)/g

V₀ is the initial velocity( 25.4 m/s), ∅₀ is the angle of projection( 64.8°), g is acceleration due to gravity( 9.8 m/s²),

so we substitute

R = ((25.4)²sin2(64.8))/9.8

R = 50.7 m

now, them number of buses will be;

n = R / bus length

given that bus length is 10.0 m

we substitute

n = 50.7 m / 10.0

n = 5.07 ≈ 5

Therefore, he can only make it over 5 buses

A car pulls on to an onramp with an initial speed of 23.8 mph. The length of the onramp is 852 ft and the car needs to be moving at 45.7 mph at the end of the ramp to merge with traffic. What constant rate of acceleration (in ft/sec2) is required in order to accomplish this

Answers

Answer:

The constant rate of acceleration required in order to accomplish this is 1.921 feet per square second.

Explanation:

Let suppose that car accelerates uniformly in a rectilinear motion. Given that initial and final speeds and travelled distances are known, then the acceleration needed by the vehicle ([tex]a[/tex]), measured in feet per square second, is determined by the following kinematic formula:

[tex]a = \frac{v_{f}^{2}-v_{o}^{2}}{2\cdot \Delta x }[/tex] (1)

Where:

[tex]v_{o}[/tex], [tex]v_{f}[/tex] - Initial and final speeds, measured in feet per second.

[tex]\Delta x[/tex] - Travelled distance, measured in feet.

If we know that [tex]v_{o} = 34.907\,\frac{ft}{s}[/tex], [tex]v_{f} = 67.027\,\frac{ft}{s}[/tex] and [tex]\Delta x = 852\,ft[/tex], then acceleration needed to accomplish the task is:

[tex]a = 1.921\,\frac{ft}{s^{2}}[/tex]

The constant rate of acceleration required in order to accomplish this is 1.921 feet per square second.

46) Recoil is noticeable if we throw a heavy ball while standing on roller skates. If instead we go through the motions of throwing the ball but hold onto it, our net recoil will be

Answers

Answer:

Zero

Explanation:

Appearing to throw the ball but still holding on to it means the recoil velocity will be zero because the recoil velocity is defined as the backward velocity as a result of throwing an object or shooting a bullet. In this case the object was not thrown and thus there is no recoil velocity.

The friction force that acts on objects that are at rest is___________

Answers

Answer:

static friction

Explanation:

static friction is the friction force that acts on objects at rest

According to the work-energy theorem, if work is done on an object, its potential and/or kinetic energy changes. Consider a car that accelerates from rest on a flat road. What force did the work that increased the car’s kinetic energy?


1. the force of the car engine


2. air resistance


3. the friction between the road and the tires


4. gravity

Answers

Answer:

1. The force of the car engine.

Explanation:

We shall see the effect and role played by each force, one by one, as follows:

1. The force of car engine:

The engine produces a force through combustion that is converted to mechanical work through the shaft. This work is then transmitted to the wheels of the car that cause the motion in the car and increase its kinetic energy.

2. Air Resistance:

It is the opposing force of air that tries to reduce the motion of the car and as a result, reduce its kinetic energy.

3. Frictional Force between road and tire:

It is also the opposing force of air that tries to reduce the motion of the car and as a result, reduce its kinetic energy.

4. Gravity:

Gravity pulls everything towards the center of Earth so it does not have much significant role in horizontal motion like this.

Hence, the force of the car engine did the work that increased the car's kinetic energy.

How to find average speed in physics

Answers

Answer: you divide total distance by time. To get the time, divide total distance by speed. To get distance,  multiply speed times the amount of time.

Explanation:

I hope this helps

A long, straight wire carries a current of 5.20 A. An electron is traveling in the vicinity of the wire. At the instant when the electron is 4.40 cm from the wire and traveling at a speed of 6.20 * 104 m>s directly toward the wire, what are the magnitude and direction (relative to the direction of the current) of the force that the magnetic field of the current exerts on the electron

Answers

Answer:

Explanation:

Magnetic field due to current at a distance of 4.4 cm

B = 10⁻⁷ x 2 x 5.2 / 4.4 x 10⁻²           [ B = 10⁻⁷ x 2i / r = ]

= 2.36 x 10⁻⁵ T.

Force on moving electron = Bqv , B is magnetic field , q is charge and v is velocity of charge .

Force = 2.36 x 10⁻⁵  x 1.6 x 10⁻¹⁹ x 6.2 x 10⁴

= 23.41 x 10⁻²⁰ N .

This force will be perpendicular to the direction of current .

Why are soft materials used in theaters and auditoriums?​

Answers

Answer:

The roof and walls of the auditorium or cinema hall are generally covered with sound absorbent materials like draperies or compressed fibreboard to reduce reverberation. These materials reduce the formation of echoes by absorbing sound waves.

Explanation:

Was this answer helpful?

A group of 25 particles have the following speeds: two have speed 11 m/s, seven have 16 m/s , four have 19 m/s, three have 26 m/s, six have 31 m/s, one has 37 m/s, and two have 45 m/s.

Requiredd:
a. Determine the average speed.
b. Determine the rms speed.
c. Determine the most probable speed.

Answers

Answer:

a) Average speed is 24.04 m/s

b) the rms speed is 25.84 m/s

c) the most probable speed is 16 m/s

Explanation:

Given the data in the question;

a) Determine the average speed.

To determine the average speed, we simply divide total some of speed by number of particles;

Average speed =  [(2×11 m/s)+(7×16 m/s)+(4×19 m/s)+(3×26 m/s)+(6×31 m/s)+(1×37 m/s)+(2×45 m/s)] / 25    

= 601 / 25

= 24.04 m/s

Therefore, Average speed is 24.04 m/s

b) Determine the rms speed

we know that  (rms speed)² = sum of square speed / total number of particles

so

(rms speed)² =  [(2×11²)+(7×16²)+(4×19²)+(3×26²)+(6×31²)+(1×37²)+(2×45²)] / 25

(rms speed)² =  16691 / 25

(rms speed)² =  667.64

(rms speed) = √ 667.64

(rms speed) = 25.84 m/s

Therefore, the rms speed is 25.84 m/s

c) Determine the most probable speed.

Most particles (7) have velocity 16 m/s

i.e 7 is the maximum number of particle for a particular speed ,

Therefore, the most probable speed is 16 m/s

The distance between the ruled lines on a diffraction grating is 1900 nm. The grating is illuminated at normal incidence with a parallel beam of white light in the 400 nm to 700 nm wavelength band. What is the angular width of the gap between the first order spectrum and the second order spectrum

Answers

Answer:

3.28 degree

Explanation:

We are given that

Distance between the ruled lines on a diffraction grating, d=1900nm=[tex]1900\times 10^{-9}m[/tex]

Where [tex]1nm=10^{-9} m[/tex]

[tex]\lambda_2=400nm=400\times10^{-9}m[/tex]

[tex]\lambda_1=700nm=700\times 10^{-9}m[/tex]

We have to find  the angular width of the gap between the first order spectrum and the second order spectrum.

We know that

[tex]\theta=sin^{-1}(\frac{m\lambda}{d})[/tex]

Using the formula

m=1

[tex]\theta_1=sin^{-1}(\frac{1\times700\times 10^{-9}}{1900\times 10^{-9}})[/tex]

[tex]\theta=21.62^{\circ}[/tex]

Now, m=2

[tex]\theta_2=sin^{-1}(\frac{2\times400\times 10^{-9}}{1900\times 10^{-9}})[/tex]

[tex]\theta_2=24.90^{\circ}[/tex]

[tex]\Delta \theta=\theta_2-\theta_1[/tex]

[tex]\Delta \theta=24.90-21.62[/tex]

[tex]\Delta \theta=3.28^{\circ}[/tex]

Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree

A piece of aluminum with a mass of 3.05 g initially at a temperature of 10.8 °C is heated to a temperature of 20.
Assume that the specific heat of aluminum is 0.901 J/(g°C).
How much heat was needed for this temperature change to take place?

Answers

Answer:

25.3J

Explanation:

Given parameters:

Mass of aluminum  = 3.05g

Initial temperature  = 10.8 °C

Final temperature  = 20 °C

Specific heat  = 0.9J/g °C

Unknown:

Amount of heat needed for the temperature to change  = ?

Solution:

To solve this problem, we use the expression:

       H  = m C Ф  

H is the amount of heat

m is the mass

C is the specific heat capacity

Ф is the change in temperature

     H  = 3.05 x 0.901 x (20 - 10.8) = 25.3J

6. What is the lowest temperature on the Kelvin scale? What happens to matter when it
reaches this temperature?
7. What is different about the degrees on the Fahrenheit and Kelvin scales and the Celsius
and Kelvin scales?

Answers

I think I only have answers for the first part but- ‘The lowest number would be 0k I believe. When matter reaches this point the atoms would be still/ have no movement at all. ‘

The Burj Khalifa is the tallest building in the world at 828 m. How much work would a man with a weight of 700 N do if he climbed to the top of the building

Answers

Answer:

579600J

Explanation:

Given parameters:

Height of the building  = 828m

Weight of the man  = 700N

Unknown:

Work done by the man  = ?

Solution:

The work done by the man is the same as the potential energy expended.

Work done:

            Work done  = Weight x height  = 700 x 828

       Work done  = 579600J

Other Questions
How far would you have to travel in order to take part in the following sports?SwimmingTennisGolfSailingHockeyWeight trainingCricket Horse riding Which rule describes the composition of transformations that maps ABC to A"B"C"?90 degree rotation about point 0 composition reflection across the x-axisReflection across the x-axis composition 90 degree rotation about point 0180 degree rotation about point 0 composition reflection across the x-axisReflection across the x-axis composition 180 degree rotation about point 0 What is an ecosystem? ? Plz help me i need the answer to this i dont get it Where were most cities and towns in Texas built in the early 1900s?aAlong rivers bNear the ports cNext to major cities dAt railroad junctions Which expressions are solutions to the equation 3/4x=15 Summarise medieval peoples attitude to medicine in 25 words Define Monroe doctrine in your own words The stages of formation of the Psalter may be compared to a(n) _______ .mountainrivericeberglandslide promptbecoming a lifelong learner is this a thesis statement Please help me Which of the following is NOT a step in summarizing?A. Make a graphic organizerB. Write a sentence that tells the main idea of the whole textC. Include all the details and examples of a pointD. Write a sentence or two that tells the main idea of each paragraph The speed, S, of a bicycle varies directly with the number of revolutions per minute, R, that the pedals turn and the number of teeth on the front gear, F, and inversely with the number of teeth on the back gear B.ANSWERSCooling down, Lars pedals 56 rpms. Which equation shows his speed?S=(56) (52)/ (13) (14)Cooling down, the speed of the bicycle is 16 mph. 2 sets of waves with the top waves labeled A having more closely spaced crests than the bottom waves labeled B.Which answer choice provides the best set of labels for Wave A and Wave B?Wave A: Longitudinal WaveWave B: Transverse WaveWave A: High Frequency WaveWave B: Low Frequency WaveWave A: Transverse WaveWave B: Longitudinal WaveWave A: Low Frequency WaveWave B: High Frequency WaveThe answer is d and FREE PTS!!! 2. How and why did Reconstruction fail, and how did its failure impact the lives of African Americans in theSouth? Tires are rotating at a rate of 32 revolutions per minute. Find the angular speed of the tires in radians per minute. 0.65743 In scientific notation Find the measure of angle ACB can you create a punnett square for this question? help me i need help help me help me