Let $x ij$ represent the quantity of cars that will be delivered in the following two hours from city I to city j.
Create a maximum flow issue?Network Diagram:
LP Formulation:
Maximize Z = 150x14 + 150x24
Subject to:
x11 + x12 + x13 + x14 <= 300 (flow from city 1 to other cities)
x21 + x22 + x23 + x24 <= 300 (flow from city 2 to other cities)
x31 + x32 + x33 + x34 <= 300 (flow from city 3 to other cities)
x41 + x42 + x43 + x44 <= 300 (flow from city 4 to other cities)
x11 + x21 + x31 + x41 = 150 (flow into city 1)
x12 + x22 + x32 + x42 = 150 (flow into city 2)
x13 + x23 + x33 + x43 = 150 (flow into city 3)
x14 + x24 + x34 + x44 = 150 (flow into city 4)
xij >= 0 (all variables must be positive)
Where xij represents the number of cars traveling from city i to city j in two hours.To learn more about network diagram and the LP formulation refer to:
https://brainly.com/question/29672656
#SPJ4
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 412 MPa (59760 psi) is applied if the original length is 480 mm (18.90 in.)? Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / [tex]0.02^{0.22[/tex]
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
[tex]l_i[/tex] = [tex]l_0e^{ET[/tex]
given that [tex]l_0[/tex] = 480 mm
we substitute
[tex]l_i[/tex] =[tex]480mm[/tex] × [tex]e^{0.04481[/tex]
[tex]l_i[/tex] = 501.998 mm
Now we find the elongation;
Elongation = [tex]l_i - l_0[/tex]
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
If it is struck by a rigid block having a weight of 550 lblb and traveling at 2 ft/sft/s , determine the maximum stress in the cylinder. Neglect the mass of the cylinder. Express your answer to three significant figures and include appropriate units.
This question is incomplete, The missing image is uploaded along this answer below;
Answer:
the maximum stress in the cylinder is 3.23 ksi
Explanation:
Given the data in the question and the diagram below;
First we determine the initial Kinetic Energy;
T = [tex]\frac{1}{2}[/tex]mv²
we substitute
⇒ T = [tex]\frac{1}{2}[/tex] × (550/32.2) × (2)²
T = 34.16149 lb.ft
T = ( 34.16149 × 12 ) lb.in
T = 409.93788 lb.in
Now, the volume will be;
V = [tex]\frac{\pi }{4}[/tex]d²L
from the diagram; d = 0.5 ft and L = 1.5 ft
so we substitute
V = [tex]\frac{\pi }{4}[/tex] × ( 0.5 × 12 in )² × ( 1.5 × 12 in )
V = 508.938 in³
So by conservation of energy;
Initial energy per unit volume = Strain energy per volume
⇒ T/V = σ²/2E
from the image; E = 6.48(10⁶) kip
so we substitute
⇒ 409.93788 / 508.938 = σ²/2[6.48(10⁶)]
508.938σ² = 5,312,794,924.8
σ² = 10,438,982.5967
σ = √10,438,982.5967
σ = 3230.9414
σ = 3.2309 ksi ≈ 3.23 ksi { three significant figures }
Therefore, the maximum stress in the cylinder is 3.23 ksi
How will the proposed study contribute to your career?*
(quantity Surveying
Answer:
PROPOSED STUDY CONTRIBUTES TO YOUR CAREER. Proposed study is essential for career growth. It contributes to our career in a great way. It enhances leadership skills and polish our skills making us more competent. It expand our horizons and opportunities. It gives us better understanding of things. We become able of developing professional relationships with our students as well as development sector which helps in future projects.
Hope this help!:)
A cylindrical rod of brass originally 10 mm in diameter is to be cold worked by drawing. The circular cross section will be maintained during deformation. A cold-worked tensile strength in excess of 380 MPa and a ductility of at least 15 %EL are desired. Furthermore, the final diameter must be 7.5 mm. Explain how this may be accomplished. Use the graphs given in previous question.
Answer:
Explanation:
From the information given:
original diameter [tex]d_o[/tex] = 10 mm
final diameter [tex]d_f =[/tex] 7.5 mm
Cold work tensile strength of brass = 380 MPa
Recall that;
[tex]\text {The percentage CW }= \dfrac{\pi (\dfrac{d_o}{2})^2 - \pi(\dfrac{d_f}{2})^2 }{\pi(\dfrac{d_o}{2})^2} \times 100[/tex]
[tex]\implies \dfrac{\pi (\dfrac{10}{2})^2 - \pi(\dfrac{7.5}{2})^2 }{\pi(\dfrac{10}{2})^2} \times 100[/tex]
[tex]\implies43.87\% \ CW[/tex]
→ At 43.87% CW, Brass has a tensile strength of around 550 MPa, which is greater than 380 MPa.
→ At 43.87% CW, the ductility is less than 5% EL, As a result, the conditions aren't met.
To achieve 15% EL, 28% CW is allowed at most
i.e
The lower bound cold work = 15%
The upper cold work = 28%
The average = [tex]\dfrac{15+28}{2}[/tex] = 21.5 CW
Now, after the first drawing, let the final diameter be [tex]d_o^'[/tex]; Then:
[tex]4.5\% \ CW = \dfrac{\pi (\dfrac{d_o^'}{2})^2 - (\dfrac{7.5}{2})^2}{\pi (\dfrac{d_o^'}{2})^2}\times 100[/tex]
By solving:
[tex]d_o^'} = 8.46 mm[/tex]
To meet all of the criteria raised by the question, we must first draw a wire with a diameter of 8.46 mm and then 21.5 percent CW on it.
2. (Problem 4.60 on main book, diameters different) Water flows steadily through a fire hose and nozzle. The hose is 35 mm diameter and the nozzle tip is 25 mm diameter; water gage pressure in the hose is 510 kPa, and the stream leaving the nozzle is uniform. The exit speed and pressure are 32 m/s and atmospheric, respectively. Find the force transmitted by the coupling between the nozzle and hose. Indicate whether the coupling is in tension or compression.
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
Determine the force transmitted by the coupling between the nozzle and hose
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
In a certain company the cost of software depends on the license type which could be Individual or Enterprise. Write a program that reads License Type wanted (just the first character of each type: I, i, E, e). Number of Users to use the software. Type Price/User Minimum number of users Individual 500$ 1 Enterprise 300$ 5 Your program should: Check if the number of users is greater than or equal than Minimum Number of Users allowed Compute the cost: (for example cost = Cost per user x Number of Users)
Solution :
import [tex]$\text{java}.$[/tex]util.*;
public [tex]$class$[/tex] currency{
public static [tex]$\text{void}$[/tex] main(String[tex]$[]$[/tex] args) {
Scanner input [tex]$=$[/tex] new Scanner(System[tex]$\text{.in}$[/tex]);
System[tex]$\text{.out.}$[/tex]print("Enter [tex]$\text{number of}$[/tex] quarters:");
int quarters = input.nextInt();
System.out.print("Enter number of dimes:");
int [tex]$\text{dimes =}$[/tex] input.nextInt();
System[tex]$\text{.out.}$[/tex]print("Enter number of nickels:");
int nickels = input.nextInt();
System[tex]$\text{.out.}$[/tex]print("Enter number of pennies:");
int [tex]$\text{pennies = }$[/tex] input.nextInt();
// computing dollors
double dollars = (double) ((quarters*0.25)+(dimes*0.10)+(nickels*0.05)+(pennies*0.01));
System[tex]$\text{.out.}$[/tex]format("You have : $%.2f",dollars);
}
}
Which of these is shown in the photo below?
A. Radiator
B. Surge tank
C. Overflow tank
D. Water pump
Answer:
Option C
Explanation:
The image given in the question represents an overflow tank
Since a water pump has rotor and blades (which is not visible in the given image), hence, this image is not of water pump.
The surge tank has a different structure as compared to that of overflow tank
Radiator looks like a metallic structure with parallel blades.
Hence, option C is correct
Which statements describe the motion of car A and car B? Check all that apply. Car A and car B are both moving toward the origin. Car A and car B are moving in opposite directions. Car A is moving faster than car B. Car A and car B started at the same location. Car A and car B are moving toward each other until they cross over.
Answer:
car a is moving faster than the car b
Answer:
B: Car A and car B are moving in opposite directions.
C: Car A is moving faster than car B.
E: Car A and car B are moving toward each other until they cross over.
Explanation:
I just did the assignment on EDGE2020 and it's 200% correct!
Also, heart and rate if you found this answer helpful!! :) (P.S It makes me feel good to know I helped someone today!!) :)
The part in the photo below is
A. an evaporator.
B. an accumulator.
C. a condenser.
D. a compressor.
Answer: a accumulator
Explanation:
A 10 cm thick slab (density 8530 kg/m3 , specific heat 380J/kg K, conductivity 110 W/m K) initially at 650C is being cooled by air at 15C (convection coefficient 220 W/m2 K) at left surface. The right surface is insulated. We want to estimate temperature in the slab. a. What will be the temperature of the slab after a very long time
Answer:
The temperature after a long time will return to 15°C
Explanation:
Determine the temperature of the slab after a very long time
First we calculate the heat flow for m^2 area normal to the surface
= q / A = 650°c - 15°C / ( 1 / h + L / K )
= 635°c / ( 1 / 220 + 0.1 / 110 ) = 116.416 kw/m^2
Total heat content in the slab is calculated as
= m* c * ΔT
= 8530 * A * 0.1 * 380 * ( 650 - 15 )
= 205828.9 kJ/m^2
The temperature will return to 15°C after a long time
The ____ neurons allow the body to move and are greatly influenced by electri
A. compression
B. motor
C. positive
D. mobile
Answer:
the answer would be B motor
In warm climates, a vapor barrier is placed on the exterior side of the insulation, and in cold climates it is installed on the interior side of the
insulation. Which of the following explains this placement of the barrier?
The barrier should always be placed on the side opposite from where the water condenses.
The barrier should always be placed on the side opposite where rain or snow hit.
The barrier should always be placed on the side where rain or snow hit.
The barrier should always be placed on the side where the water condenses
Answer: its c
Explanation:
A satellite at a distance of 36,000 km from an earth station radiates a power of 10 W from an
antenna with a gain of 25 dB. What is the received power if the effective aperture area of the
receiving antenna is 20 m2?
The received power if the effective aperture area of the receiving antenna is 20 m2 is 177.77 m2.
What is Power?In physics, power is referred to as the rate of energy conversion or transfer over time. The unit of power in the SI system, often known as the International System of Units, is the Watt (W). A single joule per second is one watt.
Power was formerly referred to as activity in some research. A scalar quantity is power. As power is always a function of labor done, it follows that if a person's output varies during the day depending on the time of day, so will his power.
A measure of the pace at which energy is transferred, power is a physical quantity. As a result, it can be described as the pace of job completion relative to time.
Therefore, The received power if the effective aperture area of the receiving antenna is 20 m2 is 177.77 m2.
To learn more about Power, refer to the link:
https://brainly.com/question/29575208
#SPJ2
calculate the radius of a circular orbit for which the period is 1 day
Answer:
(T²/D³)sys1 = (T²/D³)sys2
sys1 = earth-moon
sys2 = earth-sat
(27.33day)²/(3.8e8m)³ = (1day)²/D³
D = cbrt(7.3e22m³) = 4.2e7 m
Explanation:
exchange in capacity whilst a satellite tv for pc differences altitude How plenty paintings could be executed to flow the satellite tv for pc into yet another around orbit it is bigger above the outdoors of the Earth? satellite tv for pc exchange in capacity with top Assuming the satellite tv for pc is to be boosted to a clean top r? Gravitational capacity capacity (to center of earth) new orbit(2) has a greater robust PE than old one(a million), so exchange is helpful PE = G m?m?/r earth GM = 3.98e14 ?PE = (GM)(m)(a million/r? – a million/r?) KE additionally differences. Get speed at each and every top. New orbit(2) has decrease speed, so exchange is damaging v = ?(GM/R) V? = ?(GM/r?) V? = ?(GM/r?) ?KE = –½m(V?² – V?²) ?KE = –½mGM(a million/r? – a million/r?) including the two ?E = (GM)(m)(a million/r? – a million/r?)– ½mGM(a million/r? – a million/r?) ?E = ½mGM(a million/r? – a million/r?) ?E = ½(3.98e14)(7500) [a million/(0.5e7) –a million/(3.3e7) ] ?E = ½(3.98e14)(7500)(1e-7) [a million/(0.5) –a million/(3.3) ] ?E = ½(3.98e7)(7500) [2 – 0.303 ] ?E = ½(3.98e7)(7500)(a million.70) ?E = 2.04e11 Joules edit, corrected .
The radius of a circular orbit will be "[tex]\frac{V}{2 \pi} \ km[/tex]".
According to the question,
The orbit period of satellite,Time = 1 day
Total distance will be equal to the orbit's circumference, thenDistance = [tex]2 \pi r[/tex]
Let,
The velocity be "V km/day".As we know,
→ [tex]Distance = Velocity\times time[/tex]
By substituting the values, we get
→ [tex]2 \pi r = V\times 1[/tex]
→ [tex]r = \frac{V}{2 \pi} \ km[/tex]
Thus the above is the right answer.
Learn more about radius of orbit here:
https://brainly.com/question/12859535
a) For Well A, provide a cross-section sketch that shows (i) ground elevation, (ii) casing height, (iii) depth to
water table, (iv) sampling depth, (v) elevation of the well top of casing, (vi) water table elevation, (vii) elevation
head of the water sampled for bromide, and (viii) pressure head of the water sampled for bromide. Label each of
these distances with the above phrases, plus a unique variable.
b) Calculate the following for each well: (i) elevation of the well top of casing, (ii) water table elevation,
(iii) sampling port elevation, (iv) elevation head of the water sampled for bromide, and (v) pressure head of the
water sampled for bromide. Use sea level as your vertical datum. Write out all calculations (including equations
with variables) for Well A.
Who is he where is he from
Answer:
Levi Ackerman is the tritagonist of the anime/manga series Attack on Titan. He is a Captain in the Survey Corps , known to be the strongest soldier alive. He has a harsh and unsocial personality, but is well-regarded by his subordinates and he cares about their lives. Levi Ackerman spent his childhood in the Underground City. It was the slums of the Attack on Titan’s entire world
Explanation:
a Compass is a weak magnet that aligns itself to the local Electric Field
Select one:
True
False
Answer:
true
Explanation:
Water from an upper tank is drained into a lower tank through a 5 cm diameter iron pipe with roughness 2 mm. The entrance to the pipe has minor loss coefficient 0.4 and the exit has minor loss coefficient of 1, both referenced to the velocity in the pipe. The water level of the upper tank is 4 m above the level of the lower tank, and the pipe is 5 m long. You will find the drainage volumetric flow rate. a) What is the relative roughness
Answer:
Relative roughness = 0.04
Explanation:
Given that:
Diameter = 5 cm
roughness = 2 mm
At inlet:
Minor coefficient loss [tex]k_{L1} = 0.4[/tex]
At exit:
Minor coefficient loss [tex]k_{L2} = 1[/tex]
Height h = 4m
Length = 5 m
To find the relative roughness:
Relative roughness is a term that is used to describe the set of irregularities that exist inside commercial pipes that transport fluids. The relative roughness can be evaluated by knowing the diameter of the pipe made with the absolute roughness in question. If we denote the absolute roughness as e and the diameter as D, the relative roughness is expressed as:
[tex]e_r = \dfrac{e}{D}[/tex]
[tex]e_r = \dfrac{0.2 }{5}[/tex]
[tex]\mathbf{e_r = 0.04}[/tex]
Combinations of velocity and acceleration
Answer:
acceleration=change in velocity/ time
Explanation:
The velocity of an object is its speed in a particular direction. Velocity is a vector quantity because it has both a magnitude and an associated direction. To calculate velocity, displacement is used in calculations, rather than distance.
Which of the following is NOT a factor affecting resource and material management?
A:Equipment
B:Safety
C:Labor
D:Materials
Define hermetic compressor
Answer:
Hermetic compressors are ideal for small refrigeration systems, where continuous maintenance cannot be ensured.
Consider a convergent-
A tiger cub has a pattern of stripes on it for that is similar to that of his parents where are the instructions stored that provide information for a tigers for a pattern
probably in it's chromosomes
In 1951, a small approach embankment was constructed for a highway bridge over a river south of Los Angeles. The embankment was underlain by 5 ft of organic clay. Records of the settlement rate indicate that 90% of the consolidation settlements occurred in the first 4.5 years after construction. A new bridge over the river is now planned for a site a few hundred yards from the old bridge. The approach embankment to the new bridge will be underlain by 20 ft of the same organic clay found at the old bridge site. Estimate the time required to achieve an average degree of consolidation of 90% under the new embankment. Assume single drainage from the organic clay at both sites..
Answer:
72 years
Explanation:
The degree of consideration is the same for both bridges = 90%
Height of first highway bridge( d1 ) = 5 ft
Time to consolidation ( t1 )= 4.5 years
Height of second bridge ( d2 ) = 20 ft
Time to consolidation ( t2 ) = ?
we will apply this relation below
Tv = Cv * t / d^v
Tv = constant
for a single drainage condition : t ∝ d^v hence; d = H
∴ [tex]\frac{t_{2} }{t_{1} } = (\frac{d_{2} }{d_{1} })[/tex]^2
t2 = t1 ( d2/d1 )^2
= 4.5 ( 20 / 5 )^2
= 72 years
Let xa(t)be an analog signal with bandwidth B=3kHz. We wishto use an ????=2m–pointDFT to compute the spectrum ofthe signal with a resolution less than or equal to 50 Hz.
Determine
(a) the minimum sampling rate,
(b) the minimum number of required samples, and
(c) the minimumlength of the analog signal record(in seconds).
Answer:
a) the minimum sampling rate is 6 kHz
b) the minimum numbers of required samples are 120
c) the minimum length of the analog signal is 0.02 s
Explanation:
Given the data in the question;
(a) the minimum sampling rate;
band width of analog signal xₐ(t) is;
bandwidth B = 3kHz
Now, according to sampling theorem, minimum sampling rate F[tex]_s[/tex] must be twice the bandwidth of the signal.
so
F[tex]_s[/tex] = 2B
F[tex]_s[/tex] = 2( 3 kHz )
F[tex]_s[/tex] = 6 kHz
Therefore, the minimum sampling rate is 6 kHz
(b) the minimum number of required samples;
Let L represent the minimum number of samples required,
given that; required resolution of the spectrum of the signal is less than or equal to 50 Hz
F[tex]_s[/tex]/L ≤ 50
L ≥ F[tex]_s[/tex]/50
L ≥ ( 6 × 1000 Hz ) / 50
L ≥ 6000 / 50
L ≥ 120
Therefore, the minimum numbers of required samples are 120
(c) the minimum length of the analog signal record(in seconds).
minimum number of samples required is 120
T = L / F[tex]_s[/tex]
T = 120 / ( 6 × 1000 Hz )
T = 120 / 6000
T = 0.02 s
Therefore, the minimum length of the analog signal is 0.02 s
Which of these parts converts the spinning motion of the driveshaft 90° to turn the wheels?
A. Transmission
B. Axle
C. Differential
D. Engine
2. What is the original length of the rectangular bar if the deformation is 0.005 in with a force of 1000 lbs and an area of 0.75 sqin? The Modulus of Elasticity is 5,000,000 psi.
Answer:
18.75in
Explanation:
Modulus of elasticity = Stress/Strain
Since stress = Force/Area
Given
Force = 1000lb
Area = 0.75sqin
Stress = 1000/0.75
Stress = 1333.33lbsqin
Strain
Strain = Stress/Modulus of elasticity
Strain = 1333.33/5,000,000
Strain = 0.0002667
Also
Strain = extension/original length
extension = 0.005in
Original length = extension/strain
Original length = 0.005/0.0002667
Original length = 18.75in
Hence the original length of the rectangular bar is 18.75in
Define;
i) Voltage
ii) Current
iii) Electrical Power
iv) Electrical Energy
Answer:
I) Voltage - is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop, enabling them to do work such as illuminating a light. In brief, voltage = pressure, and it is measured in volts (V).
II) Current - is the movement of electrons through a wire. Electric current is measured in amperes (amps) and refers to the number of charges that move through the wire per second. If we want current to flow directly from one point to another, we should use a wire that has as little resistance as possible.
III) Electrical Power - is the rate, per unit time, at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries.
IV) Electrical Energy - is a form of energy resulting from the flow of electric charge. Energy is the ability to do work or apply force to move an object. In the case of electrical energy, the force is electrical attraction or repulsion between charged particles.
Explanation:
I hope ot helps to you a lot! Correct me if I'm wrong.
The evaporator:
A. directs airflow to the condenser.
B. absorbs heat from the passenger compartment.
C. removes moisture from the refrigerant.
D. restricts refrigerant flow.
Answer:
Option B
Explanation:
An evaporator along with cold low pressure refrigerant absorbs heat from the air within the passenger compartment thereby supplying cool air for the occupants.
Hence, option B is correct
Design a counter that counts the following sequence of 2-0-1-3 and repeat.
Answer:
Hello your question is incomplete below is the complete question
Design a counter that counts the following sequence of 2-0-1-3 and repeat. Use the JK flip-flops given to you at the start of the semester. These values will be displayed on a seven-segment display like the one used in Lab 3
answer : attached below
Explanation:
Designing a counter that counts in a given sequence can be done using Logic gates that will be used to control the counter. we will design the counter using the 7 segment display
Note : The first Image is the segment display and the second image is the design of the counter