Average reaction rate is 0.02 mol/liter/sec
What is an average reaction rate?Change in concentration divided by the change in time gives average reaction rate. The rate of a chemical reaction is measured in mol/l/s.
Average rate is defined as the change in molar concentration of either reactants or products in time is called as average rate. The concentration of reactants decreases during reaction, whereas the concentration of products keeps on increasing until an equilibrium is reached.
Evaluating an average rate shows the amount of change of one variable with respect to another. The other variable is generally time that describes the average change in distance or chemical concentrations.
For the given reaction
CO(g) + NO₂(g) → CO₂(g) + NO(g), a CO₂
concentration of 0.040
moles/liter was measured at 2 seconds.
Average reaction rate = concentration/ time
0.040/ 2
=0.02 mol/l/sec
To know more about average reaction rate, refer
https://brainly.com/question/14189499
#SPJ13
Name something you use in your home that could be considered an acidic, basic, and neutral solution. Use properties of acids and bases to tell why do you think the solutions you chose could be considered acidic, basic, or neutral.
Acidic solution I use: Lemon Juice (Citric acid)
I know this is acidic because it is sour in taste just like all other acids.
Basic solution I use: Handwash
I know this is basic because it is soapy and slippery in nature, and it dissolves oil and grease.
Neutral solution I use: Water
I know this is neutral because it has equal number of H+ and OH- ions.
What are Acids and Bases?An acid is any hydrogen-containing substance that has the ability to donate a proton (hydrogen ion) to another chemical. In order to accept a hydrogen ion from an acid, a molecule or ion must be a basic.The pH scale, where pH stands for "potential of hydrogen," can be utilized to determine the numerical value of a substance's level of acidity or basicity. How acidic or basic a substance is, that can be determined using the pH scale, which is the most used and reliable method. From 0 to 14, on a pH scale, a chemical can range from being the most acidic to the most basic.Using litmus paper is a further method of determining an object's acidity or basicity.Litmus paper comes in two colors, red and blue, and can be employed to distinguish between acids and bases. In an acidic environment, blue litmus paper turns red, and in an alkaline or basic environment, blue litmus paper turns red.To learn more about Acids and Bases, refer to:
https://brainly.com/question/23687757
#SPJ13
metric preferred to write 5.8 * 10 to -3 g
Since the number is 5.8*10^-3 g, the negative symbol in front of the power of 3 means that there are 3 0's in front of the real number, in standard notation, therefore we will add these 3 zeros to the number
0.0058 grams, and if we multiply it by 1000 we will end up with 5.8 mg, letter C
Which has the incorrect name-formula combination? A) Cobalt(II) chlorite - Co(CIO2)2 B) Iron(II) chlorate - FECIO4 C) Manganese(II) perchlorate - Mn(CIO4)2 D) Chromium(III) hypochlorite - Cr(CIO)3
The incorrect name-formula combination is FeCIO₄ - Iron(I) perchlorate; option B.
What is the IUPAC nomenclature of the given compounds?The IUPAC nomenclature of naming compounds refers to the convention of naming compounds using the oxidation states of the elements present in the compound.
The IUPAC nomenclature of the given compounds is given below as follows:
A. Co(CIO₂)₂ - Cobalt(II) chlorite; the oxidation state of cobalt is +2
B. FeCIO₄ - Iron(I) perchlorate; the formula of the compound is wrong because iron does not exist in the +1 state
C)Mn(CIO4)₂ - Manganese(II) perchlorate; the oxidation state of manganes is +2
D) Cr(CIO)₃ - Chromium(III) hypochlorite ; the oxidation state of chromium is +3
Learn more about the IUPAC nomenclature at: https://brainly.com/question/28872356
#SPJ1
Why D is the correct answer
Explanation:
Because during the phase transformation the pressure inside the closed container remains the same and that's a fact ay
Predict the products for each of the following reactions. Write the molecular equation, the complete ionic equation, and the net ionic equation. Classify the reactions in as many ways as you can.
a. Aqueous copper (II) chloride is added to aqueous silver nitrate.
The molecular equation of the reaction of copper chloride and aqueous silver nitrate:
CuCl₂ (aq) + 2 AgNO₃ (aq) → Cu(NO₃)₂ (aq) + 2AgCl (s)
The net ionic equation will be:
2Ag⁺(aq) + 2Cl⁻(aq) → 2AgCl(s)
What are the net ionic equations?The net ionic equation can be described as an equation that represents only those elements, compounds, or ions that directly participated in that particular chemical reaction.
The balanced chemical equation reaction of copper chloride and aqueous silver nitrate:
CuCl₂ (aq) + 2 AgNO₃ (aq) → Cu(NO₃)₂ (aq) + 2AgCl (s)
The complete ionic equation for the reaction can be represented as follows:
Cu²⁺(aq) + 2Cl⁻(aq) + 2Ag⁺(aq) + 2NO₃⁻ → Cu²⁺ (aq) + 2NO₃⁻(aq) + 2AgCl(s)
In the ionic equation, the copper and nitrate ions appear unchanged on both sides of the equation. When we mix the two solutions, the copper and nitrate ions do not participate in the reaction. So copper and nitrate ions can be eliminated from the ionic equation.
2Ag⁺(aq) + 2Cl⁻(aq) → 2AgCl(s)
Learn more about the net ionic equation, here:
brainly.com/question/15466794
#SPJ1
In its native state, which element has bonds between many cations and a sea of valence electrons?
O He
O CI
O Zn
Ο Ν
Answer: The correct answer is C. Zn
Explanation: Zn in its native state has bonds between multiple cations and a sea of valance electrons.
An excess of chromium metal is added to 500.0 mL of a 0.915 M AgNO3solution in a constant-pressure calorimeter. As a result of the reactionCr(s) + 2 AgNO3(aq)Cr(NO3)(aq) + 2 Ag(s)the temperature rises from 19.3 °C to 55.9 °C. Based on your previoustwo answers, calculate reaction (in J).Please help I don’t understand how i got it wrong :(
The enthalpy of the reaction is -164 kJ/mol.
What is the enthalpy of reaction?We know that the reaction that occurs between the chromium metal and the acid is an exothermic reaction thus there is an increase in the temperature of the system.
Number of moles of the silver nitrate solution is obtained from;
Volume * concentration
500/1000 L * 0.915 M = 0.46 moles
We can now assume that the density of the solution is 1 g/mL hence the mass of the solution is 500g. Let the specific heat capacity of the solution be 4.18 J/Kg/°C.
Then;
H = mcdT
H = Heat lost in the reaction
m = mass of the solution
c = specific heat capacity
dT = temperature change
H = 500 * 4.12 * ( 55.9 - 19.3)
= 75.4 kJ
The heat of reaction = 75.4 kJ/0.46 moles
= -164 kJ/mol
Let us recall that the negative simply means that heat was lost in the reaction.
Learn more about enthalpy:https://brainly.com/question/13996238
#SPJ1
a graduated cylinder contains 25.8 ml of water.Due drops 2 glass marbles weighting 6.5 g into the cylinder.Thew new water level reads 27.2 ml what is the volume of the marbles.What is the density of the marbles
According to this question, a graduated cylinder contains 25.8 mL of water. 2 glass marbles weighing 6.5 g was dropped into the cylinder. The new water level reads 27.2 mL.
This means that the volume of the marbles can be calculated as follows:
27.2mL - 25.8mL = 1.4mL
The volume of the marbles is 1.4mL.
Density is a measure of the mass of matter contained by a unit volume. The density can be calculated by dividing the mass by the volume as follows:
Density = 6.5g ÷ 1.4mL = 4.64g/mL
The density of the marble is 4.64g/mL.
Learn more about density at: https://brainly.com/question/6107689
#SPJ1
Corn oil, ice, and ethanol are mixed in the same container. What will be the order of the liquids once they settle out from top to bottom ? A. corn oil, ice, ethanol B. ethanol, ice, corn oil C. ice, ethanol, corn oil D. corn oil, ethanol, ice
The order of the liquids will depend on the density of each of them. The densest will go to the bottom of the container, the least dense will be on top.
Let's see what the density of each of the substances is, let's assume that we are at room temperature.
Ice density = 0.917g/cm^3
Corn oil density =0.925g/cm^3
Ethanol density = 0.789g/cm^3
The order of density from lowest to highest is:
Ethanol < Ice < Corn oil
This will be the order from top to bottom, so the answer will be:
B. ethanol, ice, corn oil C
Determine the mass in grams of HCl that can react with 0.750 g of Al(OH)₃ according to the following reaction
Al(OH)₃(s) + 3 HCl(aq) → AlCl₃(aq) + 3 H₂O(aq)
How do i start this? I need to convert from moles to grams of HCI but not sure where to start
A mixture of KCl and KNO3 is 44.20% potassium by mass. The percent of KCl in the mixture is closest to
Step-by-step explanation:
Assuming a basis of 100 grams
composition of Potassium = 44.2%
composition of potassium = 0.442
mass of potassium = 0.442 x 100g
Mass of potassium= 44.2 grams
mole of potassium = reacting mass / molar mass
Molar mass of potassium = 39.1 gram/ mol
Mole of potassium = 44.2 / 39.1
Mole of potassium = 1.13 moles
mole of potassium chloride + mole of potassium nitrate = mole of potassium
n(KCL) + n(KNO3) = n(k)
since mole (n) = m/M.M
Then we have,
m(KCL)/M.M(KCL) + m(KNO3)/M.M (KNO3) = 1.13
M.M (KCL) = 39.1 + 35.5
M.M (KCL) = 74.6 gram/mol
M.M (KNO3) = 39.1 + 14 + 3(16)
M.M (KNO3) = 39.1 + 14 + 48
M.M (KNO3) = 101.1 gram/mol
Let the mass of KCL be x
Let the mass of KNO3 be y
Assuming the total mass of the mixture is 100g
x + y = 100 ---------- equation 1
x/74.6 + y/101.1 = 1.13 ---- equation 2
From the first equation, make x the subject of the formula
x = 100 - y
100- y / 74.6 + y/101.1 = 1.1.3
1.355(100 - y) + y = 1.13 * 101.1
135.52 - 1.355y + y = 114.243
Collect the like terms
-1.355y - y = 114.243 - 135.52
-0.355y = -21.277
Divide both sides by -0.355
-0.355y/-0.355 = -21.277/-0.355
y = 59.9grams
y is 60 grams approximately
Recall, y is the mass of KNO3
From the first equation
x + y = 100
___Mg(s) + ___O2(g) ____Mg(s)
The balanced equation for the reaction above is: 2Mg(s) + O₂(g) = 2MgO(s).
What is meant by balancing chemical reactions?To balance a chemical reaction or equation, it simply means to make sure the total number of atoms of elements on the reactants side of the equation equals or is the same as the number of atoms in product side.
From the task given above, to balance the equation in the reaction between magnesium and oxygen to give the product, magnesium oxide:
Mg(s) + O₂(g) = MgO(s)
Since there are 2 oxygen atoms in reaction side and 1 oxygen atom at the product side, you'll add 2 to the product (MgO) so we can have the same number of oxygen atoms as the reactant side and complete it by adding 2 also to magnesium in the product side:
2Mg(s) + O₂(g) = 2MgO(s
So therefore, having the same atom numbers in both reactants and products side is the only way to balance chemical equation.
Complete question:
Balance the chemical reaction below:
___Mg(s) + ___O₂(g) ____MgO(s)?
Read more on balancing chemical equations:
https://brainly.com/question/14179067
#SPJ1
Calculate the number of grams of glucose (C6H12O6) that would need to be dissolved to a total volume of 1.5L to get a 15.3% (w/v) solution
ANSWER
The mass of glucose in grams is 230 grams
EXPLANATION
Given information
The total volume of the solution = 1.5L
Follow the steps below to find the mass of glucose
Step 1: Convert the volume of the solution from L to mL
According to the standard conversion, 1L is equivalent to 1000mL
Let x represents the volume of the solution in mL
[tex]\begin{gathered} \text{ 1L }\rightarrow\text{ 1000mL} \\ \text{ 1.5L }\rightarrow\text{ xmL} \\ \text{ Cross multiply} \\ \text{ 1L }\times\text{ xmL = 1000mL }\times\text{ 1.5L} \\ \text{ Isolate x} \\ \text{ xmL = }\frac{1000mL\times\text{ 1.5L}}{1L} \\ \text{ x = }\frac{1000\times1.5\cancel{L}}{1\cancel{L}} \\ \text{ x = 1500mL} \end{gathered}[/tex]Hence, the volume of the solution in mL is 1500mL
Step 2: Find the mass of the glucose in grams
[tex]\begin{gathered} \text{ The mass of glucose = }\frac{15.3}{100}\times\text{ 1500} \\ \text{ The mass of glucose = 0.153 }\times\text{ 1500} \\ \text{ The mass of glucose = 229.5 grams} \end{gathered}[/tex]Hence, the mass of glucose in grams is 229.5 grams
For the reaction: 2 A (g) + B (s) ⇌ 2 C (s) + D (g) Kp = 8210
At 298 K in a 10.0 L vessel, the known equilibrium values are as follows: 0.021 atm of A, 0.22 mol of B, and 10.5 mol of C. What is the equilibrium partial pressure of D?
Answer:D
Explanation:
The equilibrium partial pressure of D is 0.362atm.
2A(g) + B(s) <==> 2C(s) + D(g)
The pressure that a gas, in a mixture of gases, would exert if it alone occupied the whole volume occupied by the mixture is called partial pressure of the gas.
In the equilibrium expression, we ignore solids as they are considered to have a value of unity. Thus, we can write the equilibrium expression for the above reaction as:
K = (PD) / (PA)²
where, K = Partial pressure equilibrium
PD = Partial pressure of gas D
PA = Partial pressure of gas A
Kp = 8210
PA = 0.021 atm
8210 = PD / (0.021)²
PD = 8210 × (0.021)²
PD = 0.362 atm.
To know more about partial pressure visit the link:
https://brainly.com/question/13199169?referrer=searchResults
#SPJ1
Calculate the molarity of a carbonic acid solution given the following titration results: 47.00 mL of the carbonic acid solution was neutralized to a phenolphthalein endpoint with 23.82 mL of 0.1250 M ammonium hydroxide.
To know the molarity of carbonic acid when titrated with ammonium hydroxide. We use [tex]M_{1} V_{1} =M_{2} V_{2}[/tex] formula and hence the molarity of carbonic acid is 0.063M.
What is titration?Titration is an experimental technique in which the molarity of unknown solution is calculated using other solution whose molarity is known. To know the end point we use phenolphthalein as indicator.
Mathematically,
[tex]M_{1} V_{1} =M_{2} V_{2}[/tex]
where,
[tex]M_{1}[/tex]=Molarity of carbonic acid
[tex]M_{2}[/tex]=Molarity of ammonium hydroxide
[tex]V_{1}[/tex]=Volume of carbonic acid
[tex]V_{2}[/tex]=Volume of ammonium hydroxide
Substituting all values
[tex]M_{1}[/tex]=(0.125×23.8)÷47.00
[tex]M_{1}[/tex]=0.063M
Thus the molarity of carbonic acid is 0.063M
To know more about titration, here:
https://brainly.com/question/13307013
#SPJ1
Predict the missing component
in the nuclear equation.
175/71 Lu → 4/2 He + X
Answer:
B
Explanation:
If a solution containing 24.68 g of mercury(II) nitrate is allowed to react completely with a solution containing 7.410 g of sodium dichromate, How many grams of the reactant in excess will remain after the reaction?
The balanced equation is
[tex]Hg(NO_3)_2+Na_2Cr_2O_7\to HgCr_2O_7+2Na(NO_3)[/tex]We need the molar mass of each compound.
• The molar mass of Hg(NO3)2 is 324.7 g/mol.
,• The molar mass of Na2Cr2O7 is 261.97 g/mol.
,• The molar mass of HgCr2O7 is 416.58 g/mol.
,• The molar mass of 2Na(NO3) is 169.99 g/mol.
Then, we find the number of moles of each reactant.
• Moles of Hg(NO3)2 = 24.68g ÷ 324.7 g/mol = 0.076 mol.
,• Moles of Na2Cr2O7 = 7.41g ÷ 261.97 g/mol = 0.028 mol.
According to equation 1 mole of Hg(NO3)2 will react with 1 mole of Na2Cr2O7, which means 0.076 mol of Hg(NO3)2 has to react with 0.076 mol Na2Cr2O7, which is not possible because there are not enough moles to get 0.076 of Na2Cr2O7 in the reaction. Hence, Na2Cr2O7 is the limiting reactant and Hg(NO3)2 is the excess reactant.
Then, subtract the number of moles to obtain the excess:
The remaining moles from Hg(NO3)2 are: 0.076mol - 0.028 = 0.048 mol.
Therefore, the remaining excess reactant is 0.048 moles.
But, we need to transform it to grams using the molar mass of Hg(NO3)2.
[tex]0.048\text{mol}\cdot\frac{324.7g}{1\text{mol}}=15.59g[/tex]Therefore, the remaining mass of Hg(NO3)2. is 15.59 grams.
How does this simulation demonstrate Newton’s third law of motion?
Answer:
For every action, there is opposite and equal reaction
If 2.47 g of CuNO3 is dissolved in water to make a 0.820 M solution, what is the volume of the solution in milliliters?
volume:
Answer:
23.4 milliliters
Explanation:
Note 1: This answer assumes that the volume of CuNO3 is negligible
Note 2: CuNO3 can't be produced in any meaningful quantities and can't be obtained by the average chemist, maybe you meant Cu(NO3)2 instead?
From the definition of molarity, molarity = moles / volume
the number of moles is the number of grams divided by the molar mass, or
2.47 divided by 125.55 which is 0.01967
The M and moles is known so volume can be found.
0.82 = 0.01967 / volume
0.82 * volume = 0.01967
volume = 0.01967 / 0.82 = 0.023988 liters = 23.4 milliliters
How many moles are in .009 grams of Carbon?
The no. Of moles of carbon is found to be 7.5×10⁻⁴.
No. of moles are give by = Given mass/molar mass.
Given mass is 0.009g and the molar mass of carbon atom is 12g.
So, the no. Of moles are given by ,
No. Of moles = 0.009/12
= 0.00075 = 7.5×10⁻⁴mol.
The value of 6.023 x 10²³ is equal to one mole of any substance (Avogadro number). It can be used to quantify the chemical reaction’s by-products. The symbol for the unit is mol.
Carbon element is insoluble in water, diluted acids and bases, as well as organic solvents, carbon is an inert material. It combines with oxygen at high temperatures to generate carbon monoxide or dioxide. Diamond and graphite are two distinct allotropes, crystalline forms of the carbon atom.
To learn more about allotropes, refer this link.
https://brainly.com/question/20897327
#SPJ9
Now that you have learned to balance equations using the models on the simulation. See if you can balance the(These are not found in the sim). Balance the reactions given
1)
Na3PO4 + H2SO4 => Na2SO4 + H3PO4
We must have the same number of atoms on both sides.
We start with Na,
2 Na3PO4 + H2SO4 =>3 Na2SO4 + H3PO4 (6 Na on both sides)
Then we proceed with P,
2 Na3PO4 + H2SO4 =>3 Na2SO4 +2 H3PO4 (2 P on both sides)
After that, we continue with S,
2 Na3PO4 + 3 H2SO4 =>3 Na2SO4 +2 H3PO4 (3 S)
The number of H and O are solved.
Answer: 2 Na3PO4 + 3 H2SO4 =>3 Na2SO4 +2 H3PO4
Oxidation number of each element in the compound (NH4)2CrO4
Answer:
the oxidation number of N in (NH4)2CrO4 is -3. the oxidation number of O in (NH4)2CrO4 is -2. the oxidation number of Cr in (NH4)2CrO4 is +6. the oxidation number of H in (NH4)2CrO4 is +1
hope i helped <3
N has an oxidation number of -3, O has an oxidation number of -2, and Cr has an oxidation number of +6 in the compound (NH4)2CrO4. The H in (NH4)2CrO4 has an oxidation number of 1
What is oxidation number?Oxidation number is defined as how many electrons a given atom or ion has either gained or lost when compared to a neutral atom. Any free element's oxidation number is always zero. The meaning was expanded to cover additional reactions in which electrons are lost, regardless of whether oxygen was present, since the substance loses electrons when it is oxidized.
In the case of a monatomic ion, the oxidation number is always the same as the ion's charge. The name of the compound is ammonium chromate which has oxidation number both in positive as well as negative charge electrons.
Thus, N has an oxidation number of -3, O has an oxidation number of -2, and Cr has an oxidation number of +6 in the compound (NH4)2CrO4. The H in (NH4)2CrO4 has an oxidation number of 1.
To learn more about oxidation number, refer to the link below:
https://brainly.com/question/15167411
#SPJ2
What is the pH of a 1.63 M solution of methylamine?
Report your answer to 2 decimal places.
The pH of the 1.63 M solution of methylamine is 10.56.
What is the pH of the solution?
The pH of the 1.63 M solution of methylamine is calculated from the equation of the dissociation reaction as follows:
H₃CNH₂ (aq) + H₂O (l) ---> H₃CNH₃ (aq) + OH⁻ (aq)
pKb of H₃CNH₂ = 3.66
Kb of H₃CNH₂ = 10⁻³°⁶⁶ = 2.19 * 10⁻⁴
The [OH¯] is calculated using the Kb expression:
Kb = [OH⁻] * [H⁺] / [HA}
[OH⁻] = [H⁺] = x
Kb = x² / (1.63 - x)
Assuming is x <<< 1.63, x is negligible and the denominator = 1.63
x = √(2.19 * 10⁻⁴ x 10⁻¹¹ * 1.63)
x = 3.57 * 10⁻⁴
pOH = -log (3.57 * 10⁻⁴)
pOH = 3.44
pH = 14 - 3.44
pH = 10.56
Learn more about pH at: brainly.com/question/172153
#SPJ1
Carlon is using two wooden blocks to model the movement of Earth’s plates. He pushes one block forward and the other block backward, rubbing their surfaces together.
Which Earth feature is he modeling?
Carlon is modelling the strike slip fault .
What is Strike Slip fault?Faults are known as displacement or fractures that occurs on Earth's crust arising from cracks as the movement of rocks continuosly slide against each other. They can be tiny without causing any cracks or very large cause noticeable defects between the rock layers.
A strike slip fault is also known as a Lateral fault zone.
Here, The fault shows how two blocks of the earth's crustal plates undergo a horizontally slip on a fault plane. This slip can case cracks which extends deep inside the crust causing continuos wear and tear as they rub on each other.
Most times this stretches and eventually causes earthquakes
Lean more about other Faults that happen on the earth crust here:https://brainly.com/question/16906279
#SPJ1
how could armondo test how curves in a river affect the speed of the river
Armondo could test how curves in a river affect the speed of the river as the speed of the water outside of a bend increases as a river rounds the bend. The water's velocity, however, diminishes as it approaches the interior of the curve.
A fantastic illustration of how water can alter the contour of the land is a meandering river. A river seldom turns when it is bordered by sheer rock, but it will do so when it opens up in broad valleys. Water will flow more swiftly and destroy the ground faster outside the river. Over time, it will curve too much and slow down.
To simulate a meandering river, use a stream table. The speed of the water outside of a bend increases as a river rounds the bend. The water's velocity, however, diminishes as it approaches the interior of the curve. A bar of deposited silt, like this one, is created as a result of the reduction in velocity.
The velocity of a river is the rate at which water flows through its course. Numerous elements, such as the channel's form, the slope's grade, the amount of water carried by the river, and the amount of friction brought on by jagged edges in the riverbed, all affect a river's speed.
Learn to know more about Armando's model on
https://brainly.com/question/18491122
#SPJ1
The correctly drawn Lewis structure for CBr4 will have1. 3 single bonds to carbon and 2 single bonds to a terminal bromine2. 2 single bonds to carbon and 2 double bonds to terminal bromine3. 4 single bonds to carbon4. 2 single bonds to carbon and 1 single bond to a terminal bromine5. 2 single bonds to carbon and 2 single bonds to terminal bromine
The Lewis structure of the carbon tetrabromide would have 4 single bonds to carbon
What is the correct structure?We know that the Lewis structure of a compound is the kind of structure that shows the symbols of the elements that are found in the compound along side the number of valence electrons that are present.
When we apply the Lewis structure to a molecule, we would see that the symbols of the atoms that can be found in the molecule would be shown as well as the number of valence electrons on the atoms of the elements in the molecule.
Learn more about Lewis structure:https://brainly.com/question/20300458
#SPJ1
The specific heat of a certain type of cooking oil is 1.75 J/(g-°C). How much heat energy is needed to raise the temperature of 2.74 kg of this oil from 23 °C to 191 °C?
The amount of heat energy needed to increase a substance's temperature by 1°C per unit mass is known as its specific heat capacity (or 1K). joule per kilogram per kelvin is the SI unit (Jkg-1K-1).
so,
805,560 Joules heat energy is needed to raise the temperature from 23 °C to 191 °C.
What is specific heat capacity and why is it important?A substance's potential to hold heat is indicated by its specific heat capacity. This substance size reflects the amount of heat required to raise a specific volume of a substance's temperature by one Kelvin. It is a distinguishing feature of every substance and is useful for material identification.The amount of heat energy needed to increase a substance's temperature by 1°C per unit mass is known as its specific heat capacity (or 1K). joule per kilogram per kelvin is the SI unit (Jkg-1K-1).The mass, temperature change, and solid's nature all affect heat capacity.Use the formula:
Q = cMΔT
where
Q = heat energy needed for that material to get desired temperature change (in Joules)
M = mass (in grams) so you have to convert from kilograms.
c = specific heat constant for the material being heated [in /(grams oC)]
ΔT = change in temperature (in oC)
Q = (1.75)(2.74 x 1000)(191 - 23) = (1.75)(2740)(168) = 805,560 Joules
To learn more about : Specific heat capacity
Ref : https://brainly.com/question/21406849
#SPJ13
Q = cMΔT
where
Q is the amount of heat energy required to change the material's temperature.
You must convert from kilograms since M is mass (in grams).
c = the material's specific heat constant [in grams per degree Celsius]
T stands for temperature change (in oC)
Q is equal to (1.75 x 2.17 x 1000) (191 - 23) = (1.75 x 2170 x 168) = 637,980 Joules.
What does "specific heat capacity" mean?
In thermodynamics, a substance's specific heat capacity, commonly referred to as massic heat capacity, is calculated by dividing its heat capacity by its mass in a sample.
particular heat capacity's mathematical formula?
Delta T = Q=mc
to learn more about "specific heat capacity" refer to:
https://brainly.com/question/27991746
#SPJ13
M
What volume of a 0.224 M perchloric acid solution is required to neutralize 26.0 mL of a 0.149 M calcium hydroxide
solution?
2reg
mL perchloric acid
Step 1 - Balancing the neutralization reaction
Since perchloric acid (HClO4) is an acid and calcium hydroxide (Ca(OH)2) is a base, the reaction will be a neutralization. Note that HClO4 is a monoprotic acid, whereas Ca(OH)2 will liberate, by dissociation, two OH(-) groups. We will need thus two HClO4 (to liberate two H(+) and fully neutralize the OH(-) groups):
[tex]2\text{HClO}_{4(aq)}+Ca(OH)_{2(aq)}\rightarrow2H_2O_{(l)}+Ca(ClO4)_{2(aq)}[/tex]Step 2 - Discovering how many moles of Ca(OH)2 have reacted
Since the exercive gives us the volume (V) as well as the concentration ([ ])of Ca(OH)2, we can discover how many moles (n) of it reacted by using the following relation:
[tex]\lbrack\text{ }\rbrack=\frac{n}{V}\rightarrow n=\lbrack\text{ }\rbrack\times V[/tex]We already know that [Ca(OH)2] = 0.149 mol/L and V = 26 ml (0.026 L). The number of moles will be thus:
[tex]n=0.149\times0.026=3.87\times10^{-3\text{ }}moles\text{ }[/tex]Step 3 - Discovering how many moles of HClO4 have reacted
Looking at the equation in step 1 again:
[tex]2\text{HClO}_{4(aq)}+Ca(OH)_{2(aq)}\rightarrow2H_2O_{(l)}+Ca(ClO4)_{2(aq)}[/tex]We can see that 2 moles of HClO4 react with 1 mole of Ca(OH)2. This is a fixed proportion which means that we'll always need two times more HClO4 than Ca(OH)2.
The number of moles of HClO4 that reacted will be thus:
[tex]n_{\text{HClO}4}=2\times n_{Ca(OH)2}\rightarrow n_{\text{HClO}4}=2\times3.87\times10^{-3}=7.74\times10^{-3}\text{ moles}[/tex]The number of moles of HClO4 that reacted is thus 7.74*10(-3) moles.
Step 4 - Discovering the required volume of HClO4
Now that we know how many moles of HClO4 reacted and given that we also know the concentration (0.224 M), we can discover the volume by using the same formula as in step 2:
[tex]\lbrack\text{ }\rbrack=\frac{n}{V}\rightarrow V=\frac{n}{\lbrack\text{ }\rbrack}[/tex]Substituting the values on the equation, we get:
[tex]V=\frac{7.74\times10^{-3}\text{ moles}}{0.224\text{ moles/L}}=0.034\text{ L or 34 ml}[/tex]The required volume will be thus 34 ml.
what is a molecule that plays a role in a feedback loop?
A molecule that plays a role in a feedback loop increase the production of one outcome in a cyclic manner.
What is a feedback loop?A feedback loop is a biological phenomenon in which the outcome in the system is required to increase the production for a given molecule, thereby the output converts into the input of the system to produce a given result that maintains across time.
Therefore, we can conclude that a feedback loop is a system in which the input and output are the same in some periods of its functioning.
Learn more about a feedback loop here:
https://brainly.com/question/2902510
#SPJ1
Calculate the standard enthalpy change for the reaction at 25 ∘ C. Standard enthalpy of formation values can be found in this list of thermodynamic properties. 2CH3OH(g)+3O2(g)⟶2CO2(g)+4H2O(g)
The enthalpy of the reaction is obtained as -430.22 kJ/mol
What is the enthalpy change?The enthalpy change refers to the energy that is lost or gained in the reaction. Let us now look at the standard enthalpies of formation of the reactants and the products.
Standard enthalpy of formation of gaseous water = -241.82 kJ/mol
Standard enthalpy of formation of gaseous carbon dioxide = -393.5 kJ/mol
Standard enthalpy of formation of gaseous methanol = -205.10 kJ/mol
Standard enthalpy of formation of gaseous oxygen = 0 kJ/mol
Hence;
Using the formula;
Enthalpy of formation of the products - Enthalpy of formation of the reactants
ΔH = [(-393.5 ) + (-241.82)] - [(-205.10) + 0]
ΔH = (-635.32) + 205.10
ΔH = -430.22 kJ/mol
Learn more about enthalpy:https://brainly.com/question/3393755
#SPJ1