The problem at hand involves base plates that exceed the maximum width dimension, resulting in improper fitting of the mating component. To address this issue, a sample of 50 base plates manufactured from each of the four CNC milling machines was analyzed.
Graphical analysis of the data revealed insights into the problem. Recommendations for solving the problem include identifying pertinent possible solutions through cause and effect diagrams.
The analysis of the sample data from each CNC milling machine provides valuable insights into the issue of base plates exceeding the maximum width dimension. By graphically analyzing the data, patterns or variations can be identified, helping to pinpoint the specific source of the problem. This analysis may involve creating graphs or tables to visualize the measurements and compare them across the machines.
To identify possible solutions, cause and effect diagrams, such as fishbone diagrams, can be utilized. These diagrams help to identify potential causes of the issue by categorizing them into different categories such as machine factors, material factors, human factors, and environmental factors.
Learn more about graphs here:
https://brainly.com/question/17267403
#SPJ11
Question is in picture
on average, which value is expected for the f-ratio if the null hypothesis is false?
. 0
. 1
. Between 0 and 1.00
. Much grer than 1.00
On average, if the null hypothesis is false, the expected value for the F-ratio is much greater than 1.00.
The F-ratio is a statistic used in analysis of variance (ANOVA) tests to compare the variances between groups. In the context of hypothesis testing, the F-ratio measures the ratio of the variability between groups to the variability within groups. When the null hypothesis is false, it means that there is a significant difference between the groups being compared.
If the null hypothesis is false, it implies that there are systematic differences between the groups, resulting in larger variation between groups compared to within groups. This leads to a higher F-ratio value. The F-ratio is calculated as the ratio of the mean square between groups to the mean square within groups. As the differences between groups become more pronounced, the F-ratio increases, indicating a greater likelihood of rejecting the null hypothesis.
Therefore, if the null hypothesis is false, the expected value for the F-ratio is much greater than 1.00, indicating significant variability between groups.
Learn more about F-ratio and ANOVA here: brainly.com/question/31973991
#SPJ11
South Africa reported the number of people employed by sector in a given year as follows (in thousands) 6 678 in the formal business sector (excluding agriculture), 1 492 in the commercial agricultural sector, 653 in subsistence agriculture: 2 865 in the informal business sector and 914 in the domestic service sector Construct a percentage frequency distribution of employment by sector If an employed person is selected at random from the workforce, what is the likelihood that the person earns a living through agriculture?
The probability that an employed person earns a living through agriculture is ≈ 17%.
The frequency is the number of times the data appear within each category.
A percentage frequency distribution is used to summarize data and report on the proportion or percentage of observations that fall within a specified category.
It is the process of showing how often a particular value or category occurs in a set of data.
In order to create a percentage frequency distribution, we will first add all the values together:
Total number of people employed = 6,678 + 1,492 + 653 + 2,865 + 914
= 12,602
Now we can calculate the percentage of people employed in each sector:
Formal business sector =
(6,678 / 12,602) x 100% = 53.0%
Commercial agricultural sector =
(1,492 / 12,602) x 100% = 11.8%
Subsistence agricultural sector =
(653 / 12,602) x 100% = 5.2%
Informal business sector =
(2,865 / 12,602) x 100% = 22.7%
Domestic service sector =
(914 / 12,602) x 100% = 7.3%
The likelihood that an employed person earns a living through agriculture can be calculated by adding the number of people employed in the commercial agricultural sector and the number of people employed in subsistence agriculture.
This gives a total of 2,145 people employed in agriculture.
Therefore, the probability that a person earns a living through agriculture is:
Probability = (2,145 / 12,602) x 100% ≈ 17%
The probability that an employed person earns a living through agriculture is ≈ 17%.
To know more about probability, visit:
https://brainly.com/question/13604758
#SPJ11
Factorise completely 12 t 2 − 6 t
^^^^^^^
Answer:
6t(2t - 1)
Step-by-step explanation:
12t² - 6t
Common factor: 6t
Factored:
6t(2t - 1)
Define the two sets A = {x E Zx = 5a + 2, for some integer a} and B = {y € Z | y = 10b - 3, for some integer b}. . a. Does € A? Does –8 € A? Does – 8 € B? b. Disprove that AB. C. Prove that B CA
a. € A. Yes, 27 € A. To see this, we set a = 5, so that x = 27.
Does –8 € A? No. If –8 were in A, then –8 = 5a + 2 for some integer a. But then a = (–10)/5, which is not an integer, a contradiction.
Does – 8 € B? Yes, we set b = 0, so that y = –3, which is in B.
In either case, we have expressed y as a member of A or C, which means that B CA.
b. AB. We claim that AB. To see this, we assume the contrary, namely, that there is an integer z which is in both A and B. This means that z = 5a + 2 and z = 10b – 3 for some integers a and b. Adding these two equations, we get 7 = 5a + 10b, or 1 = a + 2b. Since the left-hand side is odd, so is the right-hand side, which means that a and b have opposite parity. However, this is impossible since 1 is not odd. Therefore, the assumption that there is such a z is false, which means that AB, as desired. C. B CA. We claim that B CA. To see this, we need to show that every element of B is in A or C. Let y be an element of B, so that y = 10b – 3 for some integer b. If y is even, then we can set a = (y + 1)/5, and we have x = 5a + 2 = y/2 + 3/2. If y is odd, then we can set c = (y + 3)/7, and we have z = 7c – 4 = y/2 + 5/2.
Know more about integer here:
https://brainly.com/question/490943
#SPJ11
Solve the LP problem using graphical method
Minimize and maximize objective function = 12x + 14y
–2x + y ≥ 6
x + y ≤ 15
x ≥ 0, y ≥ 0
The minimum value of the objective function 12x + 14y is 156 at point C(6, 9).Answer: 156.
Given:
Minimize and maximize objective function = 12x + 14y–2x + y ≥ 6x + y ≤ 15x ≥ 0, y ≥ 0.
The graphical method is a simple and easy method of solving a linear programming problem (LP).
LP issues are represented on a graphical scale using graphical method.
Let's plot the given inequalities on the graph. The graph of all inequalities must be in the first quadrant since x, y ≥ 0.Initially, let us consider x = 0 and y = 0 for (2) and (3) respectively.
(2) y ≤ 15 - x On plotting the line y = 15 - x in first quadrant, we get the following graph:
(3) x ≤ 15 - y On plotting the line x = 15 - y in first quadrant, we get the following graph:Now let's check for the first inequality, -2x + y ≥ 6.It can be written as y ≥ 2x + 6.
On plotting the line y = 2x + 6 in first quadrant, we get the following graph:The region containing common feasible points for all the three inequalities is shown in the figure below:Thus, the feasible region is OACD.The corner points of the feasible region are A(2, 13), B(3.8, 11.2), C(6, 9) and D(15, 0).
We need to determine the minimum and maximum values of the objective function 12x + 14y at each corner point as follows:At point A, 12x + 14y = 12(2) + 14(13) = 194At point B, 12x + 14y = 12(3.8) + 14(11.2) = 184.8At point C, 12x + 14y = 12(6) + 14(9) = 156At point D, 12x + 14y = 12(15) + 14(0) = 180.
To know more about function :
https://brainly.com/question/30721594
#SPJ11
To find the minimum and maximum values of the objective function 12x + 14y subject to the given constraints using graphical method.
Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.
We can follow these steps:
Step 1: Convert the inequality constraints into equation form by replacing the inequality signs with equality signs. So, -2x + y = 6 and
x + y = 15
Step 2: We find the values of x and y for each equation.
Step 3: Plot the two lines on the coordinate axis formed by the values obtained in Step 2.
Step 4: Determine the feasible region by identifying the portion of the plane where the solution satisfies all the constraints. In the present case, it is the region
above the line -2x + y = 6 and
below the line x + y = 15 and
to the right of the y-axis.
Step 5: Plot the objective function 12x + 14y on the same graph.
Step 6: Move the objective function line either up or down until it just touches the highest or lowest point of the feasible region. The point of contact is the solution to the linear programming problem. The graph of the feasible region and the objective function is shown below:
graph
y = 15 - x [-10, 20, -5, 25]
y = 2x + 6 [-10, 20, -5, 25]
y = -(6/7)x + 180/7 [-10, 20, -5, 25](-1/2)x+(1/14)
y = 0.5[0, 20, 0, 20](-1/2)x+(1/7)
y = 1[0, 20, 0, 20]12x + 14
y = 210[0, 20, 0, 20]
Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.
To know more about minimum visit
https://brainly.com/question/21426575
#SPJ11
Can I get help with number 19
Answer:
D
Step-by-step explanation:
x = 2 and y = -7
Plug those values into the equation:
2(2) - (-7) = 11
complete this item. (enter letter variables in alphabetical order.) rewrite the expression so that it has no denominator.
The given expression is $\frac{6}{t}+\frac{8}{u}-\frac{9}{v}$ and we need to rewrite this expression without any denominator in it. Step-by-step explanation: We can use the concept of the Least Common Multiple (LCM) of the denominators to remove the fractions in the expression. By taking the LCM of the denominators of the given expression, we have,$LCM\text{ of }t, u, v = t \cdot u \cdot v$ Now, multiplying each term of the given expression with the LCM $t \cdot u \cdot v$, we get,$\frac{6}{t}\cdot t \cdot u \cdot v+\frac{8}{u}\cdot t \cdot u \cdot v-\frac{9}{v}\cdot t \cdot u \cdot v$$6uv + 8tv - 9tu$$\therefore \text{The given expression without any denominator is } 6uv + 8tv - 9tu.$Thus, we can rewrite the given expression $\frac{6}{t}+\frac{8}{u}-\frac{9}{v}$ without any denominator in it as $6uv + 8tv - 9tu$.
LCM (a,b) in mathematics stands for the least common multiple, or LCM, of two numbers, such as a and b. The smallest or least positive integer that is divisible by both a and b is known as the LCM. Take the positive integers 4 and 6 as an illustration.
There are four multiples: 4,8,12,16,20,24.
6, 12, 18, and 24 are multiples of 6.
12, 24, 36, 48, and so on are frequent multiples for the numbers 4 and 6. In that lot, 12 would be the least frequent number. Now let's attempt to get the LCM of 24 and 15.
LCM of 24 and 15 is equal to 222235 = 120.
Know more about LCM here:
https://brainly.com/question/24510622
#SPJ11
I need this done, please I need to pass these six weeks! Thanks
Gabriel says that `10` Cowboys Stadiums could seat the entire population of Dallas.
The statement is incorrect since one stadium can hold only 80,000 people while the population of Dallas is approximately 1.3 million. 10 stadiums would, therefore, hold a total of 800,000 people.
The Cowboys Stadium in Dallas is a world-famous stadium, with a capacity of up to 80,000 people. The population of Dallas, Texas, USA, is approximately 1.3 million, according to data from 2020.
In other words, Gabriel's assertion that the whole of Dallas could be seated in ten Cowboys Stadiums is incorrect.
Although that's a significant figure, it's just over half of the city's entire population, and more than half of its people would have to be turned away if there were only ten Cowboys Stadiums present.
Therefore, it is essential to double-check such assertions before making them and presenting them as facts. It is better to research and verify information, rather than make claims that are incorrect and spread false information.
To learn more about : population
https://brainly.com/question/30396931
#SPJ8
10 POINTS!!!!!!
please, this was due yesterday... :(
Which substances are needed for cellular respiration?
Use complete sentences to explain how the mass of hydrogen is conserved during cellular respiration.
Answer:
for the first part:
Oxygen and glucose are both reactants in the process of cellular respiration.
Step-by-step explanation:
The mass of hydrogen is conserved during cellular respiration as it follows the Law of Conservation of Matter...This shows that hydrogen has been conserved throughout the entire process as the product has the same amount of hydrogen as the reactants.
How many slices of pizza can I eat for it to be one serving is one serving is 1/4 of the pizza and the pizza itself equal 4 servings
Any mind helping? 15 Points! :>
Answer:
(63a+54b) and (2xy+11yz)
Step-by-step explanation:
9*7a is 63a
9*6b is 54b
2x*y is 2xy
11z*y is 11yz
Sketch the curve with the given vector equation. indicate with anarrow the direction in which t increases
r(t) = t^2i +t^4j +t^6k
I have no idea how to go about drawing the vector. I knowthat
x=t^2
y=t^4
z=t^6
and that a possible subsititution can be y=x^2and z=x^3
The vector equation r(t) = t^2i + t^4j + t^6k represents a parametric curve in three-dimensional space. To sketch the curve, we can substitute values of t and plot corresponding points in the coordinate system.
By examining the components of the vector equation, we can observe that x = t^2, y = t^4, and z = t^6. This implies that the curve lies in the x-y-z coordinate system, where the x-coordinate is determined by t^2, the y-coordinate is determined by t^4, and the z-coordinate is determined by t^6.
To start sketching, we can choose a range of values for t and substitute them into the equations. For example, for t = -1, 0, 1, we can calculate the corresponding x, y, and z values.
By plotting these points and connecting them, we can obtain an approximate shape of the curve. Additionally, we can observe that as t increases, the curve moves in the direction of increasing t, which can be indicated by an arrow along the curve.
Note that without specific values for t or a specific range, the sketch will be a general representation of the curve.
learn more about coordinate system here: brainly.com/question/4726772
#SPJ11
Use Newton's method with the specified initial approximation X1 to find x3, the third approximation to the solution of the given equation. (Round your answer to four decimal places.) x5 = x2 + 4, X1 = 1 X3 =
The is specified initial approximation X1 x3 is equal to 5.
We absolutely need to accentuate using the recipe in order to find x3 using Newton's method:
In this particular instance, we are informed that x5 is equal to x2 minus 4 and that X1 equals 1. Because we need to find x3, let's use the given equation to find x2.
We can solve for x2 because we have x5: x2 + 4
As of now we have x2 = x5 - 4 from x2 = x5 - 4. This ought to be added to the Newton's system recipe, and afterward we can find x3:
We ought to portray our ability f(x) and its subordinate f'(x) as Xn+1 = Xn - f(Xn)/f'(Xn).
We can now calculate x3 by using X1 = 1 as our underlying estimate: X2 = X1 - f(X1)/f'(X1) = 1 - ((1)2 + 4 - 1)/(- 1) = 1 - (1 + 4 - 1)/(- 1) = 1 + 4 = 5 In this way, x3 is the same as 5.
To know more about Newton's method refer to
https://brainly.com/question/30763640
#SPJ11
PLEASE HELP I JUST NEED TO KNOW HOW TO DO IT
Answer:
y=7, x=7
Step-by-step explanation:
They both equal y, so you can set the right part of the equations equal to each other
4x-21=2x-7
solve for x
2x-21=-7
2x=14
x=7
knowing x, we can now substitute back into one of the original equations to find y
y=4(7)-21=28-21=7
or
y=2(7)-7=14-7=7
Why did Michael Gallin begin making tweaks to
the way he taught math to his students?
Realizing that the mental barriers of being scared to be wrong or too slow were getting in the way and stopping his kids from even attempting to solve problems, Gallin decided to change his approach.
The drama club is selling tickets to a play for $10 each. The cost to rent the theater
and costumes is $500. In addition, the printers are charging $1 per ticket to print the
tickets. How many tickets must the drama club sell to make a profit.
A jar contains 10 red marbles, 30 blue marbles, 10 green marbles, and 35 orange marbles. Find the probablilty of picking a marble.
Answer:
6/17
Step-by-step explanation:
The amount of blue marbles is 30, over the total number of marbles, which is 85. 30/85 simplifies to 6/17, which is the probability.
Hopefully this helps - let me know if you have any questions!
Simplify the expression: 5(x + 2) > 50
Answer:
x >8
Step-by-step explanation:
Answer:
x > 8
Step-by-step explanation:
Solving an algebraic inequality is the same as solving an algebraic equation. One uses the technnique of inverse operations to undo every step in the expression to get the answer. The only difference is that with an inequality, one must remember to flip the inequality sign when dividing or multiplying by a negative. This rule does not apply to the given inequality.
5(x + 2) > 50
/5 /5
x + 2 > 10
-2 -2
x > 8
The answer choices are..
A. 90°
B. 250°
C. 87°
D. 110°
Answer:
87°
Step-by-step explanation:
Suppose X is a random variable with pdf "u(x + 1). Random variable Y is defind as Y=g(X). y = g(x) f(x) = {"(x+1) f (x) х X -1 1 -2 Then, (1) Fx0= (a) e 2 (b) 1+e-2 (c)e-1 (d) 1-e-1 (e) None of them
F(x<=0) = 1/2.The correct option is (b) 1+e-2.
The probability distribution function of the random variable X is given by;
`f(x) = {(x+1), for x between -1 and 1, 0 elsewhere}.
The random variable Y is defined as Y = g(X), and y = g(x).
Find the probability that F(X) is less than or equal to 0. That is; F(x <= 0).
To find this, we need to evaluate the integral of the function over the interval (-infinity, 0).
Thus, F(x<=0) = ∫[from -∞ to 0] f(x) dx.
We know that the function is zero for all values of x, except when -1 < x < 1.
Therefore, we can break up the integral into two parts. We get:
F(x<=0) = ∫[from -∞ to -1] 0 dx + ∫[from -1 to 0] f(x) dx
Thus;
F(x<=0) = ∫[from -∞ to -1] 0 dx + ∫[from -1 to 0] (x + 1) dx
F(x<=0) = 0 + [(x^2/2) + x] [from -1 to 0]F(x<=0) = (0 - [(1/2) - 1]) = (1/2)
Therefore, F(x<=0) = 1/2.The correct option is (b) 1+e-2.
learn more about probability distribution function here:
https://brainly.com/question/32099581
#SPJ11
Prove that (A intersect B) is a subset of A. Prove that A is a subset of (A union B). Suppose that A is a subset of (B union C), B is a subset of D, and C is a subset of E. Prove that A is a subset of (D union E). Prove for any natural number n and real number x that |sin(nx)| <= n |sin(x)|.
(A intersect B) is a subset of A, A is a subset of (A union B), A is a subset of (D union E), and |sin(nx)| <= n|sin(x)| for any natural number and real number x.
To prove that (A intersect B) is a subset of A, we need to show that every element in (A intersect B) is also in A. Let x be an arbitrary element in (A intersect B). This means x is in both A and B. Since x is in A, it follows that x is also in the union of A and B, which means x is in A. Therefore, (A intersect B) is a subset of A.
To prove that A is a subset of (A union B), we need to show that every element in A is also in (A union B). Let x be an arbitrary element in A. Since x is in A, it follows that x is in the union of A and B, which means x is in (A union B). Therefore, A is a subset of (A union B).
Given A is a subset of (B union C), B is a subset of D, and C is a subset of E, we want to prove that A is a subset of (D union E). Let x be an arbitrary element in A. Since A is a subset of (B union C), it means x is in (B union C). Since B is a subset of D and C is a subset of E, we can conclude that x is in (D union E). Therefore, A is a subset of (D union E).
To prove |sin(nx)| <= n |sin(x)| for any natural number n and real number x, we can use mathematical induction. For the base case, when n = 1, the inequality reduces to |sin(x)| <= |sin(x)|, which is true. Assuming the inequality holds for some positive integer k, we need to show that it holds for k+1. By using the double-angle formula for sin, we can rewrite sin((k+1)x) as 2sin(x)cos(kx) - sin(x). By the induction hypothesis, |sin(kx)| <= k|sin(x)|, and since |cos(kx)| <= 1, we have |sin((k+1)x)| = |2sin(x)cos(kx) - sin(x)| <= 2|sin(x)||cos(kx)| + |sin(x)| <= 2k|sin(x)| + |sin(x)| = (2k+1)|sin(x)| <= (k+1)|sin(x)|. Therefore, the inequality holds for all natural numbers n and real numbers x.
Know more about Induction here:
https://brainly.com/question/32376115
#SPJ11
Which group of numbers is listed from least to greatest?
-4, -6, -7, -8, -9
-2, 3, 5, -8, 9
7, 4, -6, -7, -9
-2, -1, 0, 4, 9
Answer:
-2, -1, 0, 4, 9
Step-by-step explanation:
WHICH ONE SHOULD I CHOOSE
The true statements are:a. Angle R is congruent to angle R'
b. (P' * Q')/(PQ) = 4
e. (C * Q')/(CQ) = 4
To determine which statements are true about triangle PQR and its image P' * Q' * R' after dilation, let's analyze each statement:
a. Angle R is congruent to angle R': This statement is true. When a triangle is dilated, the corresponding angles remain congruent.
b. (P' * Q')/(PQ) = 4: This statement is true. The scale factor of dilation is 4, which means the corresponding side lengths are multiplied by 4. Therefore, (P' * Q')/(PQ) = 4.
c. (QR)/(Q' * R') = 4: This statement is false. The scale factor of dilation applies to individual side lengths, not ratios of side lengths. Therefore, (QR)/(Q' * R') will not necessarily be equal to 4.
d. (C * P')/(CP) = 5: This statement is false. The scale factor of dilation is 4, not 5. Therefore, (C * P')/(CP) will not be equal to 5.
e. (C * Q')/(CQ) = 4: This statement is true. The scale factor of dilation is 4, so the corresponding side lengths are multiplied by 4. Therefore, (C * Q')/(CQ) = 4.
f. (C * P')/(CP) = (C * R')/(CR): This statement is false. The dilation does not guarantee that the ratios of the distances from the center C to the vertices will be equal.
For more such questions on congruent,click on
https://brainly.com/question/29789999
#SPJ8
Rearrange this equation to isolate c.
a = b ( 1/c -1/d)
The equation rearranged to isolate c is c = b / (a - b/d).
To isolate c in the equation a = b(1/c - 1/d), we can follow these steps:
Start with the equation a = b(1/c - 1/d).
Distribute b to the terms inside the parentheses: a = b/c - b/d.
Move the term b/c to the other side of the equation by subtracting it from both sides: a - b/c = -b/d.
Multiply both sides of the equation by c to eliminate the denominator in the left term: c(a - b/c) = -b/d * c.
Simplify the left side by distributing c: ac - b = -bc/d.
Move the term -bc/d to the other side of the equation by adding it to both sides: ac - b + bc/d = 0.
Factor out c on the right side of the equation: ac + c(-b/d) - b = 0.
Combine like terms: ac - (b/d)c - b = 0.
Factor out c: c(a - b/d) - b = 0.
Add b to both sides of the equation: c(a - b/d) = b.
Finally, isolate c by dividing both sides of the equation by (a - b/d): c = b / (a - b/d).
Therefore, the equation rearranged to isolate c is c = b / (a - b/d).
Know more about Eliminate here:
https://brainly.com/question/32403760
#SPJ11
If AABC is reflected across the y-axis, what are the coordinates of A'?
Answer:
(-4, -2)
Step-by-step explanation:
A is initially (-4, 2); when we reflect over the y-axis, we will change from (x, y) to (x, -y). This gives us (-4, -2).
The coordinates of A' are (-5,-3).
What are coordinates?A coordinate system in geometry is a system that uses one or more integers, or coordinates, to define the position of points or other geometric components on a manifold such as Euclidean space. The order of the coordinates matters and they are sometimes identified by their position in an ordered tuple, and other times by a letter, as in "the x-coordinate." In elementary mathematics, the coordinates are assumed to be real numbers, but they can also be complex numbers or members of a more abstract system, such as a commutative ring. The use of a coordinate system allows geometry issues to be transformed into numerical problems and vice versa; this is the foundation of analytic geometry.Solution -If AABC is reflected across the y-axis, the coordinates of A' are (-5,-3).
The reflected graph is given below.
Therefore, the coordinates of A' are (-5,-3).
Know more about graphs here:
https://brainly.com/question/14323743
#SPJ2
question 3 options: in a race, there are 20 runners. trophies for the race are awarded to the runners finishing in first and second place. in how many ways can first and second place be determined?
There are 380 ways to determine the first and second place in the race.
In a race, there are 20 runners. Trophies for the race are awarded to the runners finishing in first and second place. In how many ways can first and second place be determined?When the trophies for the race are awarded to the runners finishing in first and second place, then it means that there are only two trophies to be awarded. Now, the number of ways in which the two trophies can be awarded can be calculated by permutation, which is a way of counting the arrangements or selections of objects in which order is important.
To determine the number of ways first and second place can be determined in a race with 20 runners, we can use the concept of permutations.
The first-place finisher can be any one of the 20 runners. After the first-place finisher is determined, there are 19 remaining runners who can finish in second place. Therefore, the number of ways to determine the first and second place is given by:
Number of ways = 20 * 19 = 380
So, there are 380 ways to determine the first and second place in the race.
Learn more about permutation:https://brainly.com/question/1216161
#SPJ11
Emily is giving candy to 8 of her friends. She wants to give each friend 2/3 of a chocolate bar. How many whole chocolate bars does she need?
Answer:
she needs 1/3 chocolate bars
Step-by-step explanation:
8 × 2/3
=5 1/3
A dice has 6 sides numbered 1 to 6. What is the odds against rolling a 2 or a 4.
A. 4:2
B. 6:2
C. 2:4
D. 2:6