You estimate that there are 56 marbles in a jar. The actual amount is 70 marbles. Find the percent error.

Answers

Answer 1

Answer:

80 percent of 70 is 56, so you were 20% wrong?

The percent error is 20%

let me know if you need anything else :)


Related Questions

Integrate the function y = f(x) between x = 2.0 to x = 2.8, using Simpson's 1/3 rule with 6 strips. Assume a = 1.2, b = -0.587
y = ax2/(b+ x2)

Answers

Using Simpson's [tex]\frac{1}{3}[/tex] rule with 6 strips, the approximate value of the integral ∫[2.0, 2.8] f(x) dx is -3.8492.

To integrate the function [tex]\begin{equation}y = f(x) = \frac{ax^2}{b + x^2}[/tex] using Simpson's 1/3 rule, we need to divide the interval [2.0, 2.8] into an even number of strips (in this case, 6 strips). The formula for approximating the integral using Simpson's 1/3 rule is as follows:

[tex]\begin{equation}\int_a^b f(x) dx \approx \frac{h}{3} \left[ f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + ... + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right][/tex]

Where:

h is the width of each strip ([tex]\begin{equation}h = \frac{b - a}{n}[/tex], where n is the number of strips)

[tex]x_0[/tex] is the lower limit (2.0)

[tex]x_n[/tex] is the upper limit (2.8)

f(xi) represents the function evaluated at each strip's midpoint

Given the values of a = 1.2 and b = -0.587, we can proceed with the calculations.

Step 1: Calculate the width of each strip (h):

[tex]\begin{equation}h = \frac{b - a}{n} = \frac{-0.587 - 1.2}{6} = \frac{-1.787}{6} \approx -0.2978[/tex]

Step 2: Calculate the function values at each strip's midpoint:

x₀ = 2.0

x₁ = x₀ + h = 2.0 + (-0.2978) = 1.7022

x₂ = x₁ + h = 1.7022 + (-0.2978) = 1.4044

x₃ = x₂ + h = 1.4044 + (-0.2978) = 1.1066

x₄ = x₃ + h = 1.1066 + (-0.2978) = 0.8088

x₅ = x₄ + h = 0.8088 + (-0.2978) = 0.511

x₆ = x₅ + h = 0.511 + (-0.2978) = 0.2132

xₙ = 2.8

Step 3: Evaluate the function at each midpoint:

[tex]f(x_0) = \frac{1.2 \times 2^2}{-0.587 + 2^2} = \frac{4.8}{3.413} \approx 1.406 \\\\f(x_1) = \frac{1.2 \times 1.7022^2}{-0.587 + 1.7022^2} \approx 2.445 \\\\f(x_2) = \frac{1.2 \times 1.4044^2}{-0.587 + 1.4044^2} \approx 2.784 \\\\f(x_3) = \frac{1.2 \times 1.1066^2}{-0.587 + 1.1066^2} \approx 2.853 \\\\[/tex]

[tex]f(x_4) = \frac{1.2 \times 0.8088^2}{-0.587 + 0.8088^2} \approx 2.455 \\f(x_5) = \frac{1.2 \times 0.511^2}{-0.587 + 0.511^2} \approx 1.316 \\f(x_6) = \frac{1.2 \times 0.2132^2}{-0.587 + 0.2132^2} \approx 0.29[/tex]

Step 4: Apply Simpson's 1/3 rule formula:

[tex]\begin{equation}\int_{2.0}^{2.8} f(x) dx \approx \frac{h}{3} \left[ f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6) \right][/tex]

[tex]\begin{equation}\approx \frac{-0.2978}{3} \left[ 1.406 + 4(2.445) + 2(2.784) + 4(2.853) + 2(2.455) + 4(1.316) + 0.29 \right][/tex]

[tex]\begin{equation}= \frac{-0.2978}{3} \left[ 1.406 + 9.78 + 5.568 + 11.412 + 4.91 + 5.264 + 0.29 \right][/tex]

≈ (-0.09926) * 38.63

≈ -3.8492

Therefore, the approximate value of the integral ∫[2.0, 2.8] f(x) dx using Simpson's 1/3 rule with 6 strips is approximately -3.8492.

To know more about the Simpson's 1/3 rule refer here :

https://brainly.com/question/30639632#

#SPJ11

Compare lengths. Select >, <, or = .
900 cm _ 9 m

Answers

Answer:

900 cm = 9 m

Step-by-step explanation:

9 m = 900 cm

Therefore, 9 m equals 900 cm.

T=21and u =4 what is \sqrt(t+U)

Answers

Answer: 5

Step-by-step explanation: 21 + 4 = 25

square root of 25  = 5

Answer and Step-by-step explanation:

T = 21

U = 4

[tex]\sqrt{ 21 + 4} \\\\\\\sqrt{25} \\\\\\5[/tex]

5 is the answer to the expression.

#teamtrees #PAW (Plant And Water)

If Θˆ 1 and Θˆ 2 are unbiased estimators of the same parameter θ, what condition must be imposed on the constants k1 and k2 so that k1Θˆ 1 + k2Θˆ 2 is also an unbiased estimator of θ?

Answers

The condition imposed on the constants k₁ and k₂ for k₁Θ⁻₁ + k₂Θ⁻₂ to be an unbiased estimator of θ is that their sum must equal 1.

For k₁Θ⁻₁ + k₂Θ⁻₂ to be an unbiased estimator of θ, its expected value should be equal to θ. In other words, we want to find the conditions on k₁ and k₂ such that E(k₁Θ⁻₁ + k₂Θ⁻₂) = θ.

Given that Θ⁻₁ and Θ⁻₂ are unbiased estimators of θ, we have:

E(Θ⁻₁) = θ

E(Θ⁻₂) = θ

Now, let's calculate the expected value of k₁Θ⁻₁ + k₂Θ⁻₂:

E(k₁Θ⁻₁ + k₂Θ⁻₂) = k₁E(Θ⁻₁) + k₂E(Θ⁻₂)

Since E(Θ⁻₁) = θ and E(Θ⁻₂) = θ, we can substitute these values into the equation:

E(k₁Θ⁻₁ + k₂Θ⁻₂) = k₁θ + k₂θ

To make sure this expression is equal to θ, we need:

k₁θ + k₂θ = θ

This implies that k₁ + k₂ = 1. Therefore, the condition imposed on the constants k₁ and k₂ for k₁Θ⁻₁+ k₂Θ⁻₂ to be an unbiased estimator of θ is that their sum must equal 1.

Learn more about Unbiased Estimator of θ at

brainly.com/question/31471516

#SPJ4

At a birthday party pizzas and sodas were purchased for the kids. The number of sodas bought was two more than three times the number of pizzas. Pizzas cost $9.50 each and sodas cost $1.25 each. (ANSWER A AND B PLEASEEEEEEE I REALLY NEED HELP!!!!)

A). If 8 pizzas were bought, how many sodas were bought?

B). How much was the total money would be spent on the pizza and sodas from (A)?

THANK YOU SOOOOO MUCH!!!! :))))))

Answers

Answer:

61

Step-by-step explanation:

Givens

Let the pizzas = x

Let the sodas = y

Equation

y = 3x + 2

Part A

y = 3*8 + 2

y = 24 + 2

y = 26

Part B

Sodas = 26* 1.25 = 32.50

Pizzas =9.50 * 3  = 28.50

Total for both = 32.50 + 28.50 = 61

30 POINTS!!! HELP!!!!

Answers

I think its f(0) = 3
Thats the only one that sounds true but not sureee

Which correctly describes this rotation?
A. a counterclockwise rotation of 30° about point A
B. a counterclockwise rotation of 45° about point A
c. a counterclockwise rotation of 90° about point A
D. a counterclockwise rotation of 180° about point A

Answers

A counterclockwise rotation of 180 about point A

Reagan rides on a playground roundabout with a radius of2.5 feet. To the nearest foot, how far does Reagan travel over an angle of 4π/3 radians?

Answers

Answer:

10 feets

Step-by-step explanation:

Given that:

Angle, θ = 4π/3

Radius, r = 2.5 feets

To obtain how Far Reagan traveled, we calculate the Length of the arc, s

s = r*θ

s = 2.5 feets * 4π/3

s = 10π/3

s = 10.4719

To the nearest foot ; distance traveled by Reagan is 10 feets

A system of linear equations is graphed.
Which ordered pair is the best estimate for the solution to the system?
(−4, 2 1/2)
(0, −2)
(−4 1/2, 2 1/2)
(0, 7)

Answers

The best estimate for the solution to the system of linear equations among the given ordered pairs is (-4, 2 1/2).

In the context of a system of linear equations, the solution represents the values of the variables that satisfy all the equations simultaneously. To determine the best estimate for the solution, we need to evaluate each ordered pair and see which one satisfies the given system.

By substituting the values of the ordered pairs into the equations of the system, we can determine if they satisfy the equations or not. Among the given options, when substituting (-4, 2 1/2) into the system of linear equations, it is likely to result in a solution that satisfies all the equations.  Therefore, it is important to consider the specific equations and the context of the problem to determine the best estimate for the solution.

Learn more about ordered pairs here:

https://brainly.com/question/28874341

#SPJ11

Given the points A(-2, 0), B(6, 16), C(1, 4), D(5, 4), E(2,2)2
​,2
​)), and F(32,−4232
​,−42
​), find the position vector equal to the following vectors.
AB⃗
AB

Answers

This indicates that vector 2AB has a length of 165.

Given the points A(-2, 0), B(6, 16), C(1, 4), D(5, 4), and E, let's determine the length of the vector 2AB. To begin, we must determine the distance that separates points A and B. The distance formula is as follows: Equation for distance: We can calculate d as [(x2 - x1)2 + (y2 - y1)2] using the distance formula: Spot = [(6 - (- 2))2 + (16 - 0)2] = [(6 + 2)2 + (16)2] = [(8)2 + (16)2] = [(64 + 256) = 320 = 8] Now, we can deduct the directions of point A from guide B toward decide the vector Stomach muscle:

To find 2AB, simply multiply each part of AB by 2: AB = (6 - (-2)i + (16 - 0)j = 8i + 16j 2AB = 2(8i + 16j) = 16i + 32j. Last but not least, we must ascertain the magnitude of 2AB. The extent recipe is as per the following: Size formula: Using the magnitude formula, we get: ||v|| = (v12 + v22). ||2AB|| = (162 + 322) = (256 + 1024) = (1280 + 165). This indicates that vector 2AB has a length of 165.

To know more about distance formula refer to

https://brainly.com/question/25841655

#SPJ11

The table shows the scores of students recent test. Find the mean of the scores and round to the nearest hundredth

Answers

Answer:

Answer and work is in the pdf

Step-by-step explanation:

75+75+80+80+80+80+80+80+85+85+90+90+90+90+90+90+95+95+95+100+100+100+100+100+100

=2,425

2+6+2+6+3+8

=27

2,425/27=89.81

The mean is 89.81

Please help and explain, please no links, thank you

Answers

Answer:

The two triangles are related by angles, so the triangles are similar but not proven to be congruent.

Step-by-step explanation:

Because the triangles have the same angles, they are congruent. The definition of congruence is if you take a shape and scale it up or down (or keep it the same) therefore, they are congruent.

Hope this helped, have a nice day

EDIT: I screwed up, I thought it was supposed to be similar.  These triangles are SIMILAR not congruent. The actual answer is they are related by AAA similarity but they are similar, but they are not proven to be congruent. Hope this clears it up, and sorry.

~cloud

Put all equations into y= and see which have matching graphs.

Answers

Answer:

I don't see any equations.

help-

1. half a number, less 3, is 8
2. the area decreased by 7 is 14

Answers

Answer:

. the area decreased by 7 is 14

i need help please thanks​

Answers

Answer:

33

Step-by-step explanation:

6 * 3 = 18

8-3 = h

h = 5

A = 5 * 3 = 15

Combined:

15 + 18

33

Tossing of a fair coin infinitely many times. Define (1, if head shows, X(t)= for nT

Answers

Tossing of a fair coin infinitely many times. The process X(t) can be defined as follows:

- X(t) = 1 if a head shows up at time t, where t = nT for some positive integer n.

- X(t) = 0 if a tail shows up at time t.

In the given scenario, we are considering the tossing of a fair coin infinitely many times. We want to define a process X(t) that represents the outcome of each toss at different time points.

The process X(t) is defined as 1 when a head shows up at time t, where t is a multiple of T (the fixed time interval between tosses). In other words, X(t) takes the value 1 when t is of the form nT, where n is a positive integer.

Conversely, X(t) is defined as 0 when a tail shows up at time t. This includes all time points that are not of the form nT.

The process X(t) is a representation of the outcome of the coin tosses over time. It takes the value 1 when a head shows up at time t = nT for some positive integer n, and 0 when a tail shows up. This process allows us to track the occurrences of heads at specific time intervals in the infinite sequence of coin tosses.

To know more about Tossing , visit

https://brainly.com/question/31393235

#SPJ11

Yoshi is a basketball player who likes to practice by attempting the same three-point shot until he makes the shot. His past performance indicates that he has a 30 % 30%30, percent chance of making one of these shots. Let X XX represent the number of attempts it takes Yoshi to make the shot, and assume the results of each attempt are independent. Is X XX a binomial variable? Why or why not?

Answers

Answer:

There is no fixed number of trials, so X is not a binomial variable

Step-by-step explanation:

mama

There is no fixed number of trials, so X is not a binomial variable.

What is a binomial variable in statistics?

This is a specific kind of discrete random variable. A binomial random variable counts how regularly a specific event occurs in a fixed variety of attempts or trials.

What is a binomial data example?

The binomial is a form of distribution that has possible effects (the prefix “bi” method two, or twice). as an example, a coin toss has only viable effects: heads or tails, and taking a check may want to have viable outcomes: pass or fail. A Binomial Distribution indicates both success and failure.

Learn more about Binomial Distribution here: https://brainly.com/question/24756209

#SPJ2

Find the total amount owed, to the nearest cent, for the following simple interest loans.
(Step-by-step explanation)

a. $525 loan at 9.9% interest for 6 months

b. $12,460 loan at 5.6% interest for 30 months

Answers

a. The total amount owed for the $525 loan at 9.9% interest for 6 months is approximately $556.19 when rounded to the nearest cent.

b. The total amount owed for the $12,460 loan at 5.6% interest for 30 months is approximately $33,504.80 when rounded to the nearest cent.

a. To calculate the total amount owed for the $525 loan at 9.9% interest for 6 months, we can use the formula for simple interest:

Total amount owed = Principal + (Principal × Interest Rate × Time)

Given:

Principal (P) = $525

Interest Rate (R) = 9.9% = 0.099 (converted to decimal)

Time (T) = 6 months

Plugging these values into the formula, we get:

Total amount owed = $525 + ($525 × 0.099 × 6)

Simplifying the equation:

Total amount owed = $525 + ($31.185)

Total amount owed = $556.185

Therefore, the total amount owed for the $525 loan at 9.9% interest for 6 months is approximately $556.19 when rounded to the nearest cent.

b. To calculate the total amount owed for the $12,460 loan at 5.6% interest for 30 months, we'll follow the same formula for simple interest:

Total amount owed = Principal + (Principal * Interest Rate * Time)

Given:

Principal (P) = $12,460

Interest Rate (R) = 5.6% = 0.056 (converted to decimal)

Time (T) = 30 months

Plugging these values into the formula, we get:

Total amount owed = $12,460 + ($12,460 * 0.056 * 30)

Simplifying the equation:

Total amount owed = $12,460 + ($21,044.8)

Total amount owed = $33,504.8

Therefore, the total amount owed for the $12,460 loan at 5.6% interest for 30 months is approximately $33,504.80 when rounded to the nearest cent.

for such more question on total amount

https://brainly.com/question/25109150

#SPJ8

Show explicitly that the following functions: (a) (x+at)², (b) 2e-(x-at) ², 7 satisfy the wave equation J²u(x, t) Ət² = (c) 5 sin[3 (x - at)] + (x + at). ₂d²u(x, t) dx²

Answers

Each satisfies the wave equation.

We are given the functions as follows:

(a) (x+at)², (b) 2e-(x-at) ², 7 satisfy the wave equation J²u(x, t) Ət² = (c) 5 sin[3 (x - at)] + (x + at).

₂d²u(x, t) dx²

Let us prove that they satisfy the wave equation using the formula of the wave equation. Wave equation is given by;

J²u(x, t) Ət² = ₂d²u(x, t) dx²

Applying the partial derivative to

(a) with respect to time, t, we obtain:

2a(x+at)

The second partial derivative with respect to x is as follows:

2a

By substituting these results into the wave equation, we have:

J²u(x, t) Ət² = ₂d²u(x, t) dx²

(2a(x+at)) = 2aJ²u(x, t) Ət² = 2a

Ət² = 1/J².

Thus, (a) satisfies the wave equation.  

For part (b), let us begin by taking the partial derivative of the function with respect to time, t. This is given by:

-4a e^-(x-at) ²

By taking the second partial derivative with respect to x, we get:4a e^-(x-at) ²

Similar to above, we substitute these results into the wave equation as follows:

J²u(x, t) Ət² = ₂d²u(x, t) dx²

-4a e^-(x-at) ² = 4aJ²u(x, t) Ət² = -4a e^-(x-at) ²/J²

Ət² = -1/J²e^-(x-at) ².

Thus, (b) satisfies the wave equation.

For part (c), let us calculate the partial derivative with respect to t as follows:

5a cos[3(x-at)] + a

The second partial derivative with respect to x is given by:-

15a sin[3(x-at)]

By substituting these results into the wave equation, we have:

J²u(x, t) Ət² = ₂d²u(x, t) dx²

(5a cos[3(x-at)] + a) = -15a

sin[3(x-at)]J²u(x, t) Ət² = -15a

sin[3(x-at)]/(5a cos[3(x-at)] + a)

Ət² = -3 sin[3(x-at)]/(cos[3(x-at)] + 1/5).

Thus, (c) satisfies the wave equation.

Learn more about wave equation here:

https://brainly.com/question/17013458

#SPJ11

The number of bagels sold daily for two bakeries is shown in the table.

Bakery A Bakery B
53 34
52 40
50 36
48 38
53 41
47 44
55 40
51 39

Based on these data, is it better to describe the centers of distribution in terms of the mean or the median? Why? Select the correct answer below. (5 points)

Mean for both bakeries because the data is symmetric
Mean for Bakery B because the data is symmetric; Median for Bakery A because the data is not symmetric
Mean for Bakery A because the data is symmetric; Median for Bakery B because the data is not symmetric
Median for both bakeries because the data is not symmetric

Answers

Answer:

“Mean for both bakeries because the data is symmetric.”

Step-by-step explanation:

This is correct because the numbers shown in this problem is all in the same range. Meaning that on bakery A and B there are no stray numbers, also known as outliers. No outliers means that the data is symmetric. If you search up, you can see that when the data is symmetric, you use “mean.”

also I got it right on my test

Answer:

Mean for both bakeries because the data is symmetric.

Step-by-step explanation:

Seth is using a large shoe box to store his baseball cards. The length of the box is 12 inches, and the height is 6 inches. If the volume of Seth's box is 288 cubic inches, how wide is the box?

Answers

Step-by-step explanation: *First, decide which volume formula to use:     v = lwh

*Next, substitute in for what you do know (leave variable for unknown):  288 = 12 · w · 6

*Then simplify the side of the equation with the variable: 288 = 72 · w

*Now divide each side of the equation by 72 to solve for w:

288 ÷ 72 = w

4 in = w

Given the functions f(n)=11 and g(n)=((3)/(4))^(n-1), combine them to create a geometric sequence, a_(n), and solve for the 9 th term.

Answers

The given functions f(n) = 11 and g(n) = (3/4)^(n-1) can be combined to create a geometric sequence. The nth term of a geometric sequence is given by a_n = a_1 * r^(n-1), where a_1 is the first term and r is the common ratio.

In a geometric sequence, each term is obtained by multiplying the previous term by a constant ratio. In this case, the first term is given as 11, and the common ratio is (3/4).

The nth term of a geometric sequence is calculated using the formula a_n = a_1 * r^(n-1), where a_1 is the first term, r is the common ratio, and n is the position of the term. By substituting the values into the formula, we can find the 9th term.

To learn more about geometric sequence click here:

brainly.com/question/27852674

#SPJ11

A horse runs three races. The first is 2 miles, the second is 1,300 yards, and the last is 850 yards. How many yards does the horse run in all

Answers

Answer:

5670 yards

Step-by-step explanation:

Length of first race = 2 miles

Since, 1 mile = 1760 yards

Therefore, 2 miles = 1760 × 2

                               = 3520 yards

Length of second race = 1300 yards

Length of third race = 850 yards

Total distance to be run by the horse = 3520 + 1300 + 850

                                                              = 5670 yards

Point E is located at (-8,7). Point F is located at (9,7).
What is the distance, in units, between point E and point F?

Answers

Answer:

18 units to the right.

Step-by-step explanation:

Hope this helps!

Use Cramer's rule to solve the following equation systems A2 JA A VAL 8x1 + 9x2 + 413 = 2 11 +212 + 313 = 3 711 + 6x2 + 5/3 = 1 The solutions are x; = 4,15 = , and ; = What are All, a; and|A3/? 1. |4,1 = -60, x) = -1, and |A3= -60 2. [A1] = -78, 3) = -0.7, and |A3] = 28 3. |A1 = -60, ; = 1, and A3] = 36 4. |A 1 = -78, x = 1.25, and |A3| = 52 2. Given the function y = f(r) = 57- 4r. (a) Find the difference quotient as a function of and Ar. 1. 10.r - 4 2. 5.r? - 4r 3. 5(Ar)? - 4A: 4. 10.r + 5Ar - 4 (b) Find f'(-1) and f'(5). 1. S'(-1) = 9 and f'(5) = 105 2. f'(-1) = -14 and f'(5) = 46 3. $'(-1) = -14 and f'(5) = 105 4. f'(-1) = -19 and f'(5) = 71

Answers

1) The solutions to the equation system are x₁ = 11/39 and x₂ = -7/39.

2) The difference quotient as a function of Δr is -4.

3)  f'(-1) = -4 and f'(5) = -4.

To solve the equation system using Cramer's rule, we need to find the determinant of the coefficient matrix A and the determinants of the matrices obtained by replacing each column of A with the column on the right-hand side.

The given equation system is:

8x₁ + 9x₂ = 2

11x₁ + 2x₂ = 3

7x₁ + 6x₂ = 1

Step 1: Calculate the determinant of the coefficient matrix A.

A = |8 9|

|11 2|

|7 6|

|A| = (8 * 2) - (9 * 11)

    = -78

Step 2: Calculate the determinant of the matrix obtained by replacing the first column of A with the column on the right-hand side.

A₁ = |2 9|

|3 2|

|1 6|

|A₁| = (2 * 2) - (9 * 3)

     = -22

Step 3: Calculate the determinant of the matrix obtained by replacing the second column of A with the column on the right-hand side.

A₂ = |8 2|

|11 3|

|7 1|

|A₂| = (8 * 3) - (2 * 11)

     = 14

Step 4: Calculate the solutions x₁ and x₂ using Cramer's rule.

x₁ = |A₁| / |A|

   = -22 / -78

   = 11/39

x₂ = |A₂| / |A|

    = 14 / -78

    = -7/39

Therefore, the solutions to the equation system are x₁ = 11/39 and x₂ = -7/39.

Now, let's move on to the second part of your question regarding the function f(r) = 57 - 4r.

(a) To find the difference quotient as a function of Δr (Δr represents the change in r):

Difference quotient = (f(r + Δr) - f(r)) / Δr

Expanding and simplifying the expression:

Difference quotient = (57 - 4(r + Δr) - (57 - 4r)) / Δr

                                = (57 - 4r - 4Δr - 57 + 4r) / Δr

                                = -4Δr / Δr

                                = -4

Therefore, the difference quotient as a function of Δr is -4.

(b) To find f'(-1) and f'(5), we need to find the derivative of f(r) with respect to r.

f'(r) = d/dx (57 - 4r)

     = -4

Substituting r = -1 and r = 5 into f'(r), we get:

f'(-1) = -4

f'(5) = -4

Therefore, f'(-1) = -4 and f'(5) = -4.

Learn more about Cramer's Rule at

brainly.com/question/30682863

#SPJ4

You have an order for an 8-gallon aquarium that is 20 in long and 10.5 in wide. How deep should the aquarium be?

Answers

Answer:

8.8

Step-by-step explanation:

What is the difference between 3/4 and one

Answers

Answer:

3/4 is 0.75 and 1 is 1

Step-by-step explanation:

:\

Which of the following are among the five basic postulates of Euclidean geometry? Check all that apply.

A. All circles have 360 degrees
B. A straight line segment can be drawn between any two points.
C. A straightedge and compass can be used to create a triangle.
D. Any straight line segment can be extended indefinitely.

Answers

Answer:

B and D.

Step-by-step explanation:

A p e x

The following are among the five basic postulates of Euclidean geometry

A straight line segment can be drawn between any two points.Any straight line segment can be extended indefinitely.

The five basic postulates of Euclidean geometry

The five (5) basic postulates are:

Any segment of a straight line connecting any two points can be drawn.You can draw and stretch any straight line to any finite length.Given a centre and radius, circles are drawn.Congruent angles are always right angles.There is a line that is parallel to the given line if a given point is not on the supplied line.

Learn more about Euclidean Geometry here:

brainly.com/question/17304015

#SPJ7

Similar Polygons
DEFG is similar to HJKL. What is the length of LK?

A) 5
B)21
C) 80/3
D) 60

Answers

Answer:

I think it's 21. .........


Find the equation in slope-intercept form for the line with a slope of 5/4 and passes through the point (8, 2)

Answers

Answer:

92/37

Step-by-step explanation:

Other Questions
On January 1, 2021, Berkshire paid $100,000 for 8,700 shares of Occidental Petroleum common stock. The ownership in Occidental Petroleum is 10%. Berkshire does not have significant influence over Occidental Petroleum. Occidental Petroleum reported net income of $58,000 for the year ended December 31, 2021. Occidental Petroleum paid dividends of $1 per share on December 31, 2021. The fair value of the Papa stock on that date was $62 per share. What amount will be reported in the balance sheet of Berkshire for the investment in Occidental at December 31, 2021? Multiple Choice O $539,400. O $494,400. O $479,400. O $464,400. What is the half-life of a material which starts with 10 gramsand after 2 days you are down to 2.5 grams?a) 5b) 2c) 1d) 1.5 B eBook H Problem Walk-Through Lloyd Inc. has sales of $400,000, a net income of $20,000, and the following balance sheet: Cash $ 42,880 Accounts payable 128,000 Notes payable to bank 339,200 Total cu Calculus Expectations: V4U.C.1: make connections, graphically and algebraically, between the key features of a function and its first and second derivatives, and use the connections in curve sketching V4U.C.2: solve problems, including optimization problems that require the use of the concepts and procedures associated with the derivative, including problems arising from real-world applications and involving the development of mathematical models 1. Graph the function y = x3 3x2 144x 140 = (x+1)(x+10)(x 14). Make sure to include the following list of items (and explanations /full solutions to how to find them!): a. Any x and y intercepts b. Any local max/min coordinates c. The interval where the function is increasing or decreasing d. Any points of inflection e. The intervals where the function is concave up or concave down f. A clear, labelled sketch! (there's a grid for you to use!) Summary of the data on two variables to be presented simultaneously is called a. simultaneous equations b. a histogram c Pivot table 18-2. OBJECTIVE: Describe the Chicago "standard form". What is meant by bilateral agreement? What was the Two Freedoms Agreement? The Five Freedoms Agreement? Explain why a firm may not necessarily want to reduce itsprice risks to zero byentering into hedging transactions. the equation x 2 8 x 5 = 0 can be transformed into the equation ( x p ) 2 = q , where p and q are real numbers. what are the values of p and q ? Show that each equation has no rational roots. x^3-3x+1=0 describe ltp and the roles of ampa and nmda receptors in ltp. you found some fossil leaves in a sedimentary siltstone with rare pumice fragments. you really need to know how old the fossil leaves are so you can understand what the diversity of your forest was like during a specific time period. you send in your sample and get an age of 2,700,500 years! the half-life of your sample is 245,500 years. during which epoch did the plants live? should you continue to deal with the entire group? why or why not Based on the following, should a one-tailed or two- tailed test be used?H_o: = 91H_A: > 91X = 88s = 12n = 15 **100 POINTS** What is it called when two people work together when they have a disagreement? A. Conflict resolution B. Growth mindset C. Confrontation D. Indifference 10.39 the bitwise operators can be used to manipulate the bits of variables of type __________. a) float b) double c) long d) long double At a work rate of 300 watts, pujas respiratory exchange ratio (rer) was 1.25. based on this, you concluded that puja was What would the price be today of a 10-year bond issued 7 years ago with 3 years of maturity left that pays a 4% semi-annual coupon ($1,000 face value) and has a 5.78% YTM? Consider the statement: "There exists integers x,y such that 26x-33y = 37". If it is true, prove the statement by finding integer values x and y such that 26x-33y = 37. If it's false prove that it is false Assume Evco, Inc. has a current stock price of $49.64 and will pay a $2.05 dividend in one year, its equity cost of capital is 11%. What price must you expect Evco stock to sell for immediately after the firm pays the dividend in one year to justify its current price? a 553 f capacitor is discharged through a resistor, whereby its potential difference decreases from its initial value of 80.5 v to 10.7 v in 3.63 s. find the resistance of the resistor in kilohms.