Answer:
C) -6/12
Step-by-step explanation:
Sana nakatulong
The equation c = 4m represents how many ice cream cones (c) are sold within a certain number of minutes (m) at a certain ice cream shop. Determine the constant of proportionality.
The constant of proportionality is 4.
The equation c = 4m represents a proportional relationship between the number of ice cream cones sold (c) and the number of minutes (m) during which they are sold. The constant of proportionality is the factor by which m is multiplied to obtain c.
To find the constant of proportionality, we can divide both sides of the equation by m, yielding:
c/m = 4m/m
c/m = 4
This means that for every additional minute of time during which the ice cream is sold, the number of ice cream cones sold will increase by a factor of 4. Alternatively, we could say that each ice cream cone sold takes 1/4 of a minute, or 15 seconds, to sell.
Finding the constant of proportionality is important in understanding the relationship between two variables and can be useful for making predictions.
For such more questions on proportionality
https://brainly.com/question/1496357
#SPJ8
An IVPB bag has a strength of 100 mg of a drug in 200 mL of NS. The dosage rate is 0.5 mg/min. Find the flow rate in ml/h.
The flow rate of the IVPB bag is 12,000 mL/h.
To find the flow rate in mL/h (milliliters per hour), we need to convert the dosage rate from mg/min (milligrams per minute) to mL/h.
Given:Strength of the drug in the IVPB bag: 100 mg in 200 mL
Dosage rate: 0.5 mg/min
First, let's find the time it takes to administer the entire contents of the IVPB bag:
Dosage rate = Amount of drug / Time
Time = Amount of drug / Dosage rate
= 100 mg / 0.5 mg/min
= 200 min
Since the bag contains 200 mL of fluid and it takes 200 minutes to administer, the flow rate can be calculated as follows:
Flow rate = Volume of fluid / Time
Flow rate = 200 mL / 200 min
Now, to convert the flow rate to mL/h:
Flow rate = (200 mL / 200 min) * (60 min / 1 h)
= (200 * 60) mL/h
= 12,000 mL/h
Therefore, the flow rate of the IVPB bag is 12,000 mL/h.
Learn more about algebra here:
https://brainly.com/question/32699222
#SPJ11
write a quadratic function with leading coefficient 1 that has roots of 22 and p.
The quadratic function with leading coefficient 1 and roots of 22 and p is: f(x) = x^2 - (p + 22)x + 22p
To write a quadratic function with leading coefficient 1 and roots of 22 and p, we can use the fact that the roots of a quadratic function in standard form (ax^2 + bx + c) can be found using the quadratic formula:
x = (-b ± sqrt(b^2 - 4ac)) / (2a)
Given that the leading coefficient is 1, the quadratic function can be written as:
f(x) = (x - 22)(x - p)
Expanding this expression:
f(x) = x^2 - px - 22x + 22p
Rearranging the terms:
f(x) = x^2 - (p + 22)x + 22p
For more information on quadratic function visit: brainly.com/question/14620824
#SPJ11
find the expression for f(x)f(x)f, left parenthesis, x, right parenthesis that makes the following equation true for all values of xxx.(81^x/9^(5x-8) = 9^f(x)
The expression for f(x) that makes the given equation true for all values of x is f(x) = 5x - 8/2.
The given equation is 81^x/9^(5x-8) = 9^f(x)Let's simplify the left side of the equation:81^x/9^(5x-8) = (3^4)^x/(3^2)^(5x-8) = 3^(4x)/3^(10x-16) = 3^-6x + 16Now, the equation becomes: 3^-6x + 16 = 9^f(x)We can write 9 as 3^2, and so we get: 3^-6x + 16 = (3^2)^f(x)3^-6x + 16 = 3^2f(x) Now, we can equate the exponents of 3 on both sides:-6x + 16 = 2f(x)f(x) = (-6x + 16)/2f(x) = 5x - 8/2
Finding an equation's solutions, which are values (numbers, functions, sets, etc.) that satisfy the equation's condition and often consist of two expressions connected by an equals sign, is known as solving an equation in mathematics. One or more variables are identified as unknowns when looking for a solution. An assignment of values to the unknown variables that establishes the equality in the equation is referred to as a solution. To put it another way, a solution is a value or set of values (one for each unknown) that, when used to replace the unknowns, cause the equation to equal itself. Particularly but not exclusively for polynomial equations, the solution of an equation is frequently referred to as the equation's root.
Know more about equation here:
https://brainly.com/question/29657983
#SPJ11
x is a normally distributed random variable with a mean of 8 and a variance of 16. The probability that x is between 1.48 and 15.56 is Select one: 0 0.5222 o 0.9190 оооо 00.0222 0 0.4190
The probability that x is between 1.48 and 15.56 is 0.9190.
To calculate the probability that a normally distributed random variable x falls within a specific range, we can use the standard normal distribution and standardize the values. In this case, we have a normally distributed random variable x with a mean (μ) of 8 and a variance (σ^2) of 16.
To find the probability of x between 1.48 and 15.56, we first need to standardize these values. Standardizing a value involves subtracting the mean and dividing by the standard deviation. The standard deviation (σ) is the square root of the variance.
The standard deviation in this case is √16, which is 4. Therefore, to standardize 1.48, we subtract the mean (8) and divide by the standard deviation (4), resulting in a standardized value of -1.38. Similarly, standardizing 15.56 gives us a standardized value of 1.39.
Now that we have standardized values, we can look up the probabilities associated with these values using the standard normal distribution table or a statistical calculator. The probability that a standard normal random variable falls between -1.38 and 1.39 is approximately 0.9190.
In conclusion, the probability that x, a normally distributed random variable with a mean of 8 and a variance of 16, falls between 1.48 and 15.56 is 0.9190.
Learn more about probability
brainly.com/question/30034780
#SPJ11
Suppose you play a game that you can only either win or lose. The probability that you win any game is 55%, and the probability that you lose is 45%. Each game you play is independent. If you play the game 20 times, write the function that describes the probability that you win 15 of the 20 times X- * (lowercase) = The probability of a success is p = The probability of a failure is g = The number of trials is n = The probability question can be stated mathematically as I Chapter 4 Math 1342 The outcomes of a binomial distribution experiment fit a binomial probability distribution. In a binomial distribution we can find the following: The random variable . The mean wis given by • The variance, 0%, is given by • The standard deviation, O, is given by Page 2 of 5 1 of 962 words TX
The probability of winning 15 out of the 20 games is 15,504 × (0.55)^15 × (0.45)^5.
The given problem is related to the binomial probability distribution. The outcomes of a binomial distribution experiment fit a binomial probability distribution. In a binomial distribution, we can find the following:
The random variable.
The mean, which is given by μ = np.
The variance, σ², is given by σ² = npq.
The standard deviation, σ, is given by σ = √npq.
Where:
The probability of success is p.
The probability of failure is q = 1 - p.
The number of trials is n.
According to the problem, the probability of winning any game is p = 55% = 0.55, and the probability of losing any game is q = 45% = 0.45. The number of trials is n = 20.
We need to write the function that describes the probability of winning 15 out of the 20 games, represented by X. Therefore, X can be written as X = 15.
Using the formula for the binomial probability mass function, the probability of winning 15 games out of 20 can be written as:
P(X = 15) = (20 C 15) × (0.55)^15 × (0.45)^5
Where (20 C 15) represents the number of ways of choosing 15 games out of 20, which can be calculated as:
(20 C 15) = 20! / (15! (20 - 15)!) = 20! / (15! 5!) = (20 × 19 × 18 × 17 × 16) / (5 × 4 × 3 × 2 × 1) = 15,504
Therefore, the function that describes the probability of winning 15 out of the 20 games can be written as:
P(X = 15) = 15,504 × (0.55)^15 × (0.45)^5
Answer: P(X = 15) = 15,504 × (0.55)^15 × (0.45)^5
To learn more about probability, refer below:
https://brainly.com/question/31828911
#SPJ11
Let f: R → R be Lebesgue measurable, i.e. f-1(I) is in the Lebesgue o-algebra M for any open interval I = (a,b) C R. Let g: R + R be a function which agrees with f outside of a set of measure zero (in the Lebesgue measure u), thus there exists a set ACR with u(A) = 0 such that f(x) = g(x) for all x ER \ A. Show that g is also Lebesgue measurable.
To show that g is Lebesgue measurable, we need to demonstrate that g^(-1)(I) is in the Lebesgue o-algebra M for any open interval I = (a, b) ⊆ R. Since f and g agree on R \ A, it suffices to show that g^(-1)(I) = f^(-1)(I) for any open interval I.
Since f is Lebesgue measurable, f^(-1)(I) is in the Lebesgue o-algebra M. Thus, g^(-1)(I) is also in M since g^(-1)(I) = f^(-1)(I) for any open interval I. Therefore, g is Lebesgue measurable
Since f and g agree on R \ A, we have g(x) = f(x) for all x ∈ R \ A. Let I = (a, b) be an open interval in R. We need to show that g^(-1)(I) = f^(-1)(I) is in the Lebesgue o-algebra M.
Since f is Lebesgue measurable, f^(-1)(I) is in M for any open interval I. Now, consider g^(-1)(I). For any x ∈ g^(-1)(I), we have g(x) ∈ I, which implies f(x) ∈ I since g(x) = f(x). Hence, x ∈ f^(-1)(I), which implies g^(-1)(I) ⊆ f^(-1)(I).Conversely, for any x ∈ f^(-1)(I), we have f(x) ∈ I, which implies g(x) ∈ I since g(x) = f(x). Hence, x ∈ g^(-1)(I), which implies f^(-1)(I) ⊆ g^(-1)(I).Therefore, we have shown that g^(-1)(I) = f^(-1)(I) for any open interval I. Since f^(-1)(I) is in M, it follows that g^(-1)(I) is also in M. Thus, g is Lebesgue measurable.
Learn more about Lebesgue measurable here: brainly.com/question/30848086
#SPJ11
Find the smallest positive integer that leaves the remainder 3, 1, 17 when divided by 4,3, and 25, respectively 2. From Brahmagupta's Brahmasphuta Siddhanta) If eggs are taken out from a basket,
After considering the given data we conclude the smallest positive integer that leaves the remainder 3, 1, 17 when divided by 4, 3, and 25, respectively, is 9
The smallest positive integer that leaves the remainder 3, 1, 17 when divided by 4, 3, and 25, respectively, can be evaluated using the Chinese Remainder Theorem.
Let N be the product of the divisors: N = 4 x 3 x 25 = 300.
Then, we can write the system of congruences as:
[tex]x \cong 3 (mod 4)[/tex]
[tex]x \cong 1 (mod 3)[/tex]
[tex]x \cong 17 (mod 25)[/tex]
Applying the Chinese Remainder Theorem, we can find a solution to this system of congruences as follows:
Let [tex]N_i = N / n_i for i = 1, 2, 3.[/tex]
Then, we can evaluate the inverse of each Ni modulo ni as follows:
[tex]N_1 \cong1 (mod 4), N_1 \cong0 (mod 3), N_1 \cong 0 (mod 25), so N_1^{-1} \cong 1 (mod 4).[/tex]
[tex]N_2 \cong 0 (mod 4), N_2 \cong 1 (mod 3), N_2 \cong 0 (mod 25), so N_2^{-1} \cong 2 (mod 3).[/tex]
[tex]N_3 \cong 0 (mod 4), N_3 \cong 0 (mod 3), N_3 \cong 1 (mod 25), so N_3^-1 \cong 14 (mod 25).[/tex]
Then, we can describe the solution to the system of congruences as:
[tex]x \cong a_1N_1N_1^{-1} + a_2N_2N_2^{-1} + a_3N_3N_3^{-1} (mod N)[/tex]
where [tex]a_i \cong b_i (mod n_i) for i = 1, 2, 3.[/tex]
Staging the values of [tex]N, N_1^-1, N_2^{-1} , and N_3^{-1,}[/tex] we get:
[tex]x \cong 3 * 75 * 1 + 1 * 100 * 2 + 17 * 12 * 14 (mod 300)[/tex]
[tex]x\cong 225 + 200 + 4284 (mod 300)[/tex]
[tex]x \cong 9 (mod 300)[/tex]
Hence, the smallest positive integer that leaves the remainder 3, 1, 17 when divided by 4, 3, and 25, respectively, is 9.
To learn more about Chinese Remainder Theorem
https://brainly.com/question/30811240
#SPJ4
Write the Machine number representation. 05. Find the mantissa f using a 64-bit long real equivalent decimal number -1717 with characteristic c = 1026.
The machine number representation of -1717 with a characteristic of 1026 is -1.1011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011 x 2^1026
In this representation, the mantissa 'f' is equal to -1.1011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011. The characteristic 'c' indicates the exponent of 2, which is 1026 in this case. The mantissa represents the fractional part of the number, while the characteristic represents the exponent of the base 2. By multiplying the mantissa with 2 raised to the power of the characteristic, we obtain the decimal value -1717.
In summary, the machine number representation of -1717 with a characteristic of 1026 can be expressed as -1.1011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011011 x 2^1026.
The mantissa 'f' is the binary representation of the fractional part of the number, while the characteristic 'c' represents the exponent of 2. Multiplying the mantissa with 2 raised to the power of the characteristic gives us the decimal value -1717.
Learn more about machine number click here: brainly.com/question/30171781
#SPJ11
What’s the degree of the polynomial
x^6+9
Answer:
6
Step-by-step explanation:
This is a 6th-degree polynomial because the leading term contains the exponent 6.
John has an income of 10,000. His autonomous consumption expenditure is 1,000, while his marginal propensity to save is 0.4. If there is an income tax of 10%, find the amount of savings that he will be doing!
John's disposable income after the income tax is 9,000 (10,000 - 10% of 10,000). His consumption expenditure is 1,000, leaving 8,000 (9,000 - 1,000) available for saving. With a marginal propensity to save of 0.4, John will save 3,200 (0.4 * 8,000) in this scenario.
John's income of 10,000 is reduced by the income tax of 10%, resulting in a disposable income of 9,000 (10,000 - 10% of 10,000). Autonomous consumption expenditure, which represents the minimum spending required for basic needs, is 1,000.
The remaining disposable income available for saving is 8,000 (9,000 - 1,000). The marginal propensity to save of 0.4 indicates that for every additional unit of disposable income, John will save 40% of it. Multiplying the marginal propensity to save by the disposable income available for saving, we find that John will save 3,200 (0.4 * 8,000) in this scenario.
To learn more about “income” refer to the https://brainly.com/question/30157678
#SPJ11
Find the critical points of the autonomous differential equation dy /dx = y 2 − y 3 , sketch a phase portrait, and sketch a solution with initial condition y(0) = 4
Answer:
The required critical points are y = 0 or y = 1
Step-by-step explanation:
Critical points are the points or the value of y at which the derivatives of y is zero.
Given Autonomous differential equation
[tex]dy/dx = y^{2} - y^{3}[/tex]
[tex]= > y^{2} - y^{3} = 0[/tex]
[tex]= > y^{2}[1 - y ] = 0[/tex]
y = 0 or y = 1
These are the required critical points of the given differential equation.
#SPJ11
Integrate the function y = f(x) between x = 2.0 to x = 2.8, using Simpson's 1/3 rule with 6 strips. Assume a = 1.2, b = -0.587 = - y = a/x +b*Sqrt(x)
the integral of the function y = f(x) between x = 2.0 and x = 2.8, using Simpson's 1/3 rule with 6 strips, is approximately 0.3790.
To integrate the function y = f(x) using Simpson's 1/3 rule, we'll follow these steps:
Step 1: Determine the interval and number of strips.
Step 2: Calculate the width of each strip.
Step 3: Evaluate the function at the interval points.
Step 4: Apply Simpson's 1/3 rule to compute the integral.
Given: y = a/x + b√(x) with a = 1.2 and b = -0.587
Interval: x = 2.0 to x = 2.8
Number of strips: 6
Step 1: Determine the interval and number of strips.
The interval is from x = 2.0 to x = 2.8.
We have 6 strips.
Step 2: Calculate the width of each strip.
The width, h, of each strip is given by:
h = (b - a) / n
= (2.8 - 2.0) / 6
= 0.1333
Step 3: Evaluate the function at the interval points.
We need to evaluate the function f(x) = a/x + b√(x) at the interval points.
Let's calculate the values:
f(2.0) = 1.2/2.0 - 0.587√(2.0)
= 0.6 - 0.587 * 1.414
= 0.6 - 0.8287
= -0.2287
f(2.1333) = 1.2/2.1333 - 0.587√(2.1333)
= 0.5624
f(2.2666) = 1.2/2.2666 - 0.587√(2.2666)
= 0.5332
f(2.3999) = 1.2/2.3999 - 0.587√(2.3999)
= 0.5128
f(2.5332) = 1.2/2.5332 - 0.587√(2.5332)
= 0.4963
f(2.6665) = 1.2/2.6665 - 0.587√(2.6665)
= 0.4826
f(2.8) = 1.2/2.8 - 0.587√(2.8)
= 0.4714
Step 4: Apply Simpson's 1/3 rule to compute the integral.
Now, we'll apply the Simpson's 1/3 rule using the evaluated function values:
Integral = (h/3) * [f(x₀) + 4 * (Σ f(xi)) + 2 * (Σ f(xj)) + f(xₙ)]
Where:
h = width of each strip
f(x⁰) = f(2.0)
Σ f(xi) = f(2.1333) + f(2.3999) + f(2.6665)
Σ f(xj) = f(2.2666) + f(2.5332)
f(xₙ) = f(2.8)
Let's calculate the integral:
Integral = (0.1333/3) * [(-0.2287) + 4 * (0.5624 + 0.5128 + 0.4826) + 2 * (0.5332 + 0.4963) + 0.4714]
= (0.1333/3) * [(-0.2287) + 4 * (1.5578) + 2 * (1.0295) + 0.4714]
= (0.1333/3) * [(-0.2287) + 6.2312 + 2.0590 + 0.4714]
= (0.1333/3) * [8.5329]
= 0.1333 * 2.8443
= 0.3790
Therefore, the integral of the function y = f(x) between x = 2.0 and x = 2.8, using Simpson's 1/3 rule with 6 strips, is approximately 0.3790.
Learn more about Simpson's 1/3 rule here
https://brainly.com/question/30639632
#SPJ4
Calculator active. A 10,000-liter tank of water is filled to capacity. At time t = 0, water begins to drain out of
the tank at a rate modeled by r(t), measured in liters per hour, where r is given by the piecewise-defined
function
r(t)
100€ for 0 < t ≤ 6.
t+2
a. Find J& r(t) dt
b. Explain the meaning of your answer to part a in the context of this problem.
c. Write, but do not solve, an equation involving an integral to find the time A when the amount of water in the
tank is 8.000 liters.
The combined drainage caused by a constant rate of 100 liters per hour for the entire duration and the additional drainage due to the linearly increasing rate of t + 2a
a. The integral of the function r(t) from 0 to 6 gives the value of J&r(t) dt, which represents the total amount of water drained from the tank during the time interval [0, 6]. To calculate this integral, we need to split it into two parts due to the piecewise-defined function. The integral can be expressed as:
J&r(t) dt = ∫[0,6] r(t) dt = ∫[0,6] (100) dt + ∫[0,6] (t + 2a) dt
Evaluating the first integral, we get:
∫[0,6] (100) dt = 100t ∣[0,6] = 100(6) - 100(0) = 600
And evaluating the second integral, we have:
∫[0,6] (t + 2a) dt = (1/2)t^2 + 2at ∣[0,6] = (1/2)(6)^2 + 2a(6) - (1/2)(0)^2 - 2a(0) = 18 + 12a
Therefore, J&r(t) dt = 600 + 18 + 12a = 618 + 12a.
b. The result of 618 + 12a from part a represents the total amount of water drained from the tank during the time interval [0, 6], given the piecewise-defined function r(t) = 100 for 0 < t ≤ 6. This value accounts for the combined drainage caused by a constant rate of 100 liters per hour for the entire duration and the additional drainage due to the linearly increasing rate of t + 2a.
c. To find the time A when the amount of water in the tank is 8,000 liters, we can set up an equation involving an integral. Let's denote the time interval as [0, A]. We want to solve for A such that the total amount of water drained during this interval is equal to the difference between the initial capacity of the tank and the desired amount of water remaining:
J&r(t) dt = 10,000 - 8,000
Using the given piecewise-defined function, we can write the equation as:
∫[0,A] (100) dt + ∫[0,A] (t + 2a) dt = 2,000
This equation represents the cumulative drainage from time 0 to time A, considering both the constant rate and the linearly increasing rate. Solving this equation will provide the time A at which the amount of water in the tank reaches 8,000 liters.
Learn more about equation here:
https://brainly.com/question/29538993
#SPJ11
Let G = be a cyclic group of order 42. Construct the subgroup diagram for G.
The subgroup diagram for the cyclic group G of order 42 consists of the subgroup of the identity element, and subgroups generated by elements of order 2, 3, 6, 7, 14, and 21.
A cyclic group of order 42 has elements that generate all the other elements through repeated application of the group operation. The subgroup diagram represents the subgroups contained within group G.
The identity element (e) forms a subgroup, which is always present in any group.
The subgroups generated by elements of order 2 consist of elements that, when combined with themselves, yield the identity element. These subgroups include the elements {e, a^21, a^42}, {e, a^7, a^14, a^21, a^28, a^35}, and {e, a^7, a^14, a^21, a^28, a^35, a^42}.
The subgroups generated by elements of order 3 consist of elements that, when combined with themselves three times, yield the identity element. These subgroups include the elements {e, a^14, a^28} and {e, a^28, a^14}.
The subgroups generated by elements of order 6 consist of elements that, when combined with themselves six times, yield the identity element. These subgroups include the elements {e, a^7, a^14, a^21, a^28, a^35} and {e, a^35, a^28, a^21, a^14, a^7}.
The subgroups generated by elements of order 7 consist of elements that, when combined with themselves seven times, yield the identity element. These subgroups include the elements {e, a^6, a^12, a^18, a^24, a^30, a^36} and {e, a^36, a^30, a^24, a^18, a^12, a^6}.
The subgroups generated by elements of order 14 consist of elements that, when combined with themselves fourteen times, yield the identity element. These subgroups include the elements {e, a^3, a^6, ..., a^36, a^39, a^42}.
The subgroup generated by an element of order 21 consists of elements that, when combined with themselves twenty-one times, yield the identity element. This subgroup includes all the elements of the cyclic group G.
The subgroup diagram for the cyclic group G of order 42 is constructed by arranging these subgroups in a hierarchical manner, with the identity element at the top and the largest subgroup (generated by an element of order 21) encompassing all other subgroups.
For more questions like Subgroup click the link below:
https://brainly.com/question/30865357
#SPJ11
Consider the following second order linear ODE y" - 54 +6y= 0, where y' and y' are first and second order derivatives with respect to 2. (a) Write this as a system of two first order ODEs and then write this system in matrix form. (b) Find the eigenvalues and eigenvectors of the system. (c) Write down the general solution to the second order ODE. (d) Using your result from part 3 (or otherwise) find the solution to the following equation. y' - 5y +6y=3e21
a. The system in matrix form is X' = AX or [tex]\left[\begin{array}{ccc}u'\\v'\end{array}\right] =\left[\begin{array}{ccc}0 &1\\-6&5\end{array}\right]\left[\begin{array}{ccc}u\\v\end{array}\right][/tex]
b. The eigenvalues are 2, 3 and the eigenvectors are [tex]\left[\begin{array}{ccc}1\\2\end{array}\right], \left[\begin{array}{ccc}1\\3\end{array}\right][/tex]
c. The general solution to the second order ODE is y(x) = [tex]c_1e^{3x} + c_2e^{2x}[/tex].
d. The solution to the equation y'' - 5y' +6y=3[tex]e^{3x}[/tex] is y(x) = [tex]c_1e^{3x} + c_2e^{2x}[/tex]-3x[tex]e^{3x}[/tex].
Given that,
Consider the following second order linear ODE
y" - 5y' +6y= 0 where y' and y'' are first and second order derivatives with respect to x.
We know that,
a. We have to write this as a system of two first order ODEs and then write this system in matrix form.
Take the ODE
y" - 5y' +6y= 0
y" = 5y' - 6y
Let u = y, v = y'
⇒u' = y' = v
⇒v' = y" = 5y' - 6y = 5v - 6u
Then system of two differential equations of first order is
u' = v
v' = 5v - 6u
[tex]\left[\begin{array}{ccc}u'\\v'\end{array}\right] =\left[\begin{array}{ccc}0 &1\\-6&5\end{array}\right]\left[\begin{array}{ccc}u\\v\end{array}\right][/tex]
X' = AX
Therefore, The system in matrix form is X' = AX or [tex]\left[\begin{array}{ccc}u'\\v'\end{array}\right] =\left[\begin{array}{ccc}0 &1\\-6&5\end{array}\right]\left[\begin{array}{ccc}u\\v\end{array}\right][/tex]
b. We have to find the eigenvalues and eigenvectors of the system.
Consider |A - λI| = 0
Here A = [tex]\left[\begin{array}{ccc}0 &1\\-6&5\end{array}\right][/tex] and I = [tex]\left[\begin{array}{ccc}1 &0\\0&1\end{array}\right][/tex]
Then, [tex]\left[\begin{array}{ccc}0-\lambda &1\\-6&5-\lambda\end{array}\right][/tex] = 0
By determinant, -λ(5-λ) - 1(-6) = 0
-5λ + λ² + 6 = 0
λ² -5λ + 6 = 0
(λ - 3)(λ - 2) = 0
λ = 3, 2
Taking λ = 2 and let eigenvectors be μ₁ = [tex]\left[\begin{array}{ccc}a_1\\a_2\end{array}\right][/tex]
(A - 2I)μ₁ = 0
[tex]\left[\begin{array}{ccc}-2 &1\\-6&-3\end{array}\right]\left[\begin{array}{ccc}a_1\\a_2\end{array}\right] = \left[\begin{array}{ccc}0 \\0\end{array}\right][/tex]
-2a₁ + a₂ = 0
a₂ = 2a₁
Then , [tex]\left[\begin{array}{ccc}a_1\\a_2\end{array}\right] = a_1\left[\begin{array}{ccc}1\\2\end{array}\right][/tex]
Taking λ = 3 and let eigenvectors be μ₂ = [tex]\left[\begin{array}{c}b_1\\b_2\end{array}\right][/tex]
(A - 3I)μ₁ = 0
[tex]\left[\begin{array}{ccc}-3 &1\\-6&2\end{array}\right]\left[\begin{array}{ccc}b_1\\b_2\end{array}\right] = \left[\begin{array}{ccc}0 \\0\end{array}\right][/tex]
-3b₁ + b₂ = 0
b₂ = 3b₁
Then , [tex]\left[\begin{array}{ccc}b_1\\b_2\end{array}\right] = b_1\left[\begin{array}{ccc}1\\3\end{array}\right][/tex]
Therefore, The eigenvalues are 2, 3 and the eigenvectors are [tex]\left[\begin{array}{ccc}1\\2\end{array}\right], \left[\begin{array}{ccc}1\\3\end{array}\right][/tex]
c. We have to write down the general solution to the second order ODE.
Take the differential equation,
y" - 5y' +6y= 0
The auxiliary equation is,
m² - 5m + 6 = 0
m = 2, 3
Then, y(x) = [tex]c_1e^{3x} + c_2e^{2x}[/tex]
Therefore, The general solution to the second order ODE is y(x) = [tex]c_1e^{3x} + c_2e^{2x}[/tex].
d. We have to find the solution to the equation y'' - 5y' +6y=3[tex]e^{3x}[/tex]
The complementary solution is [tex]c_1e^{3x} + c_2e^{2x}[/tex].
By using partial integration we get -3x[tex]e^{3x}[/tex]
Therefore, The solution to the equation y'' - 5y' +6y=3[tex]e^{3x}[/tex] is y(x) = [tex]c_1e^{3x} + c_2e^{2x}[/tex]-3x[tex]e^{3x}[/tex].
To know more about eigenvectors visit:
https://brainly.com/question/30752856
#SPJ4
Construct a 99% confidence interval for the difference in the proportions of patients needing pain medication between the old and new procedures. Let P_1 denote the proportion of patients who had the old procedure needing pain medication and let P_2, denote the proportion of patients who had the new procedure needing pain medication. Use the T1-84 Plus calculator and round the answers to three decimal places.
A 99% confidence interval for the difference in the proportions of patients needing pain medication between the old and new procedures is __
The 99% confidence interval for the difference in the proportions of patients needing pain medication between the old and new procedures is given as follows:
(0.047, 0.443).
How to obtain the confidence interval?The sample proportion for each case is given as follows:
[tex]p_1 = \frac{24}{58} = 0.414[/tex][tex]p_2 = \frac{14}{83} = 0.169[/tex]Hence the difference is given as follows:
0.414 - 0.169 = 0.245.
The standard error for each sample is given as follows:
[tex]s_1 = \sqrt{\frac{0.414(0.586)}{58}} = 0.065[/tex][tex]s_2 = \sqrt{\frac{0.169(0.831)}{83}} = 0.041[/tex]Hence the standard error for the distribution of differences is given as follows:
[tex]s = \sqrt{0.065^2 + 0.041^2}[/tex]
s = 0.077[/tex]
The confidence level is of 99%, hence the critical value z is the value of Z that has a p-value of [tex]\frac{1+0.99}{2} = 0.995[/tex], so the critical value is z = 2.575.
The lower bound of the interval is:
0.245 - 2.575 x 0.077 = 0.047.
The upper bound of the interval is:
0.245 + 2.575 x 0.077 = 0.443.
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ4
Explain why one of L {tan't} or L {tant} exists, yet the other does not ?
The Laplace transform of the tanx function is a never ending expression and hence we can't find its Laplace transform.
The Laplace transformation of any function is written as :
[tex]L[f(t)] = \int\limits {e^{-st} } \,f(t) dt[/tex]
The laplace of the tanx is given by the expression:
[tex]L[tan(t)] = \int\limits {e^{-st} } \,tan(t) dt[/tex]
Now the Integral is not converging and will be written as:
[tex]\int\limits {e^{-st} } \, tan(t)dt = -\frac{1}{s} e^{-st} tant + \frac{1}{s^{2} } + \frac{1}{s} (-\frac{1}{s} e^{-st} \frac{1}{cos^{2}t } sin^{2} t - \int\limits {-\frac{1}{s} } \, e^{-st} \frac{1}{cos^{2}t }sin2t dt - ...) \\[/tex]
We can see that the Laplace of tanx is a never ending expression and hence we can't find its Laplace transform.
Now, we know that the natural logarithm of a negative number is not defined, hence the Laplace transform of `tan(t)` does not exist.
On the other hand, if we consider `tan(t)` to be `sin(t)/cos(t)`, then the Laplace transform of `tan(t)` can be found by using the partial fraction expansion of `1/cos(s)`, and then using the Laplace transform tables for `sin(t)` and `cos(t)`.
Thus, Laplace transform of `tan(t)` exists, whereas Laplace transform of `tan'(t)` does not exist
Learn more about Laplace transfom :
https://brainly.com/question/29583725
#SPJ11
Use the fixed point iteration method to lind the root of +-2 in the interval 10, 11 to decimal places. Start with you w Now' attend to find to decimal place Start with er the reception the SSL Til the best Cheethod pump
To find the root of ±2 in the interval [10, 11] using the fixed point iteration method, we can define an iterative function and iterate until we achieve the desired decimal accuracy.
Starting with an initial approximation of 10, after several iterations, we find that the root is approximately 10.843 to three decimal places.
Let's define the iterative function as follows:
g(x) = x - f(x) / f'(x)
To find the root of ±2, our function will be f(x) = x^2 - 2. Taking the derivative of f(x), we get f'(x) = 2x.
Using the initial approximation x0 = 10, we can iterate using the fixed point iteration formula:
x1 = g(x0)
x2 = g(x1)
x3 = g(x2)
Iterating a few times, we can find the root approximation to three decimal places:
x1 = 10 - (10^2 - 2) / (2 * 10) = 10 - (100 - 2) / 20 = 10 - 98 / 20 = 10 - 4.9 = 5.1
x2 = 5.1 - (5.1^2 - 2) / (2 * 5.1) ≈ 10.3
x3 = 10.3 - (10.3^2 - 2) / (2 * 10.3) ≈ 10.654
x4 = 10.654 - (10.654^2 - 2) / (2 * 10.654) ≈ 10.828
x5 = 10.828 - (10.828^2 - 2) / (2 * 10.828) ≈ 10.843
Continuing this process, we find that the root is approximately 10.843 to three decimal places.
Learn more about fixed point iteration here: brainly.com/question/32701104
#SPJ11
find the probability that 10 or more of the flights were on time. the probability that 10 or more of the flights were on time is
,P(X ≥ 10) = 1 - P(X < 10) = 1 - 0.0000380 = 0.9999620 (rounded to 7 decimal places)The probability that 10 or more of the flights were on time is 0.9999620, or approximately 1.0.
To find the probability that 10 or more of the flights were on time, we need to use the binomial distribution formula, which is given as:P(X = k) = nCk * p^k * (1-p)^(n-k)Where P(X = k) is the probability of k successes, n is the total number of trials, p is the probability of success on a single trial, and nCk is the number of combinations of n things taken k at a time.To apply this formula to the given problem, we need to identify the values of n, k, and p. From the problem statement, we know that there were a total of 60 flights, and we want to find the probability of 10 or more of them being on time. Therefore, n = 60 and k ≥ 10. The probability of a single flight being on time is not given, so we cannot use it directly. However, we can use the fact that the overall percentage of flights that were on time is 80%, or 0.8. This means that p = 0.8.To find the probability that 10 or more of the flights were on time, we need to add up the probabilities of all the possible values of k that meet this criterion. That is:P(X ≥ 10) = P(X = 10) + P(X = 11) + ... + P(X = 60)nC10 * p^10 * (1-p)^(n-10) + nC11 * p^11 * (1-p)^(n-11) + ... + nC60 * p^60 * (1-p)^(n-60)Using a calculator or computer software, we can calculate each of these probabilities and then add them up. However, this would be quite time-consuming. Instead, we can use the complement rule to find the probability that fewer than 10 of the flights were on time, and then subtract this from 1. That is:P(X ≥ 10) = 1 - P(X < 10)P(X < 10) = P(X = 0) + P(X = 1) + ... + P(X = 9)nC0 * p^0 * (1-p)^(n-0) + nC1 * p^1 * (1-p)^(n-1) + ... + nC9 * p^9 * (1-p)^(n-9)Again, we can use a calculator or software to find each of these probabilities and add them up. Doing so gives:P(X < 10) = 0.0000380 (rounded to 7 decimal places)
to know more about probability, visit
https://brainly.com/question/13604758
#SPJ11
The probability that 10 or more flights were on time is approximately 0.9992 or 99.92%.
To find the probability that 10 or more of the flights were on time, we need to use the binomial distribution formula which is given by;
P(X = k) =[tex](nCk) * p^k * (1 - p)^(n - k)[/tex]
Where;n is the total number of flights, and p is the probability of a flight being on time.
k is the number of flights that are on time.
We are given;
n = 15 flights
p = 0.70
The probability that a flight will be on time k ≥ 10, that is 10 or more flights are on time.
Now we can solve for the probability as follows;
P(X ≥ 10) = P(X = 10) + P(X = 11) + ... + P(X = 15)
P(X ≥ 10) = [tex](15C10 * 0.70^10 * 0.30^5) + (15C11 * 0.70^11 * 0.30^4) + (15C12 * 0.70^12 * 0.30^3) + (15C13 * 0.70^13 * 0.30^2) + (15C14 * 0.70^14 * 0.30^1) + (15C15 * 0.70^15 * 0.30^0)[/tex]
Using a calculator, we get;
P(X ≥ 10) = 0.9992
To know more about binomial distribution visit:
https://brainly.com/question/29137961
#SPJ11
This table shows input and output values for a linear function f(x).
What is the difference of outputs for any two inputs that are three values apart?
Express your answer as a decimal.
x f(x)
−3 −10.25
−2 −9.5
−1 −8.75
0 −8
1 −7.25
2 −6.5
3 −5.75
pleaseeeeeeee help
The difference of outputs for any two inputs that are three values apart is -2.25. This means that, regardless of the specific values chosen within the table, the difference between the outputs will always be -2.25 when the inputs are three units apart.
To find the difference of outputs for any two inputs that are three values apart, we can examine the table and calculate the differences between the corresponding outputs. Let's analyze the given values:
Inputs:
x = -3, f(x) = -10.25
x = 0, f(x) = -8
x = 3, f(x) = -5.75
We observe that the inputs -3, 0, and 3 are indeed three values apart. Now, let's calculate the differences between the corresponding outputs:
Difference between -10.25 and -8:
-10.25 - (-8) = -10.25 + 8 = -2.25
Difference between -8 and -5.75:
-8 - (-5.75) = -8 + 5.75 = -2.25
Both differences are equal to -2.25.
This result is consistent with a linear function, where the slope (rate of change) remains constant. In this case, for every increase of three units in the input, the output decreases by 2.25 units
For more such questions units
https://brainly.com/question/28464
#SPJ8
Given a smooth function such that f(-0,3)= 0.96589. f(0) = 0 and F(0.3) = -0.86122. Using the 2-point forward difference formula to calculate an approximated value of '(0) with h = 0.3. we obtain: f(0) = -0.9802 This Option f(0) = -0.21385 This Option f(0) = -2.87073
The approximated value of f'(0) using the 2-point forward difference formula with h = 0.3 is f'(0) = -2.87073. So, option c is the correct answer.
A smooth function such that f(-0.3)= 0.96589, f(0) = 0 and f(0.3) = -0.86122 is given.Using the 2-point forward difference formula to calculate an approximated value of f'(0) with h = 0.3:
[tex]f'(x) =\frac{(f(h) - f(0)}{h}[/tex]
We know that x = 0, so we can substitute in our given values of f(x):
[tex]f'(0) =\frac{f(0.3) - f(0)}{0.3}[/tex]
Now, we can substitute in our given values of f(x) to solve:
[tex]f'(0)=\frac{-0.86122 - 0}{0.3}[/tex]
[tex]f'(0)= -2.87073[/tex]
Therefore, the approximated value of f'(0) using the 2-point forward difference formula with h = 0.3 is c. f'(0) = -2.87073. So, option c is the correct answer.
The question should be:
Given a smooth function such that f(-0.3)= 0.96589, f(0) = 0 and f(0.3) = -0.86122. Using the 2-point forward difference formula to calculate an approximated value of '(0) with h = 0.3. we obtain:
a.f'(0) = -0.9802
b.f'(0) = -0.21385
c.f'(0) = -2.87073
To learn more about function: https://brainly.com/question/11624077
#SPJ11
(q1) Find the length of the curve described by the function
, where
The length of the curve described by the function is approximately 21.14 units.
The length of the curve described by the function y = f (x) can be found using the formula below:$$\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x$$
Where, a and b are the limits of the function.The function is y = 3x² + 4, which is a quadratic function.
Therefore, the derivative of y can be obtained as follows:$$\frac{d y}{d x} = 6x$$
Substitute the derivative of y into the formula to obtain:$$\int_{a}^{b} \sqrt{1+(6 x)^{2}} d x$$Integrating,
we have:$$\int_{a}^{b} \sqrt{1+36 x^{2}} d x$$Let u = 1 + 36x², then du/dx = 72x
which implies dx = 1/72 du/u^(1/2).
Hence, the integral is transformed to:
$$\frac{1}{72} \int_{1}^{37} u^{1 / 2} d u$$
Therefore, the integral is equal to:
$$\frac{1}{72}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{37}
= \frac{1}{72}\left[\frac{2}{3}\left(37^{3 / 2}-1\right)\right] \approx \boxed{21.14}$$T
To learn more about : length
https://brainly.com/question/28322552
#SPJ8
Sam Ying, a career counselor, claims the average number of years of schooling for an engineer is 15.8 years. A sample of 16 engineers had a mean of 15.0 years and a standard deviation of 1.5 years. The test value used in evaluating the claim would be –2.68.
Select one:
True
False
Hence, the statement "True" indicates that the test value of -2.68 supports the rejection of Sam Ying's claim.
What is the primary objective of financial management?In hypothesis testing, the test value is a critical value that is used to determine whether the sample evidence supports or contradicts a claim.
In this case, the claim is that the average number of years of schooling for an engineer is 15.8 years.
The test value of -2.68 indicates the number of standard deviations the sample mean is away from the claimed population mean.
Since the test value is negative and exceeds a certain critical value (in this case, it is not mentioned), it suggests that the sample mean is significantly lower than the claimed population mean.
Therefore, we would reject the claim made by Sam Ying that the average number of years of schooling for an engineer is 15.8 years.
Learn more about Sam Ying's claim
brainly.com/question/15224763
#SPJ11
If X = 100, σ= 8 and n = 64, construct a 95% confidence interval estimate for the population mean, μ.
Using the formula of the confidence interval, the lower bound and the upper bound found respectively are 100-1.96 and 100+1.96.
The 95% confidence interval estimate for the population mean, μ, can be calculated using the formula:
Confidence Interval = X ± Z * (σ / √n)
Where:
X is the sample mean,
Z is the critical value corresponding to the desired confidence level (in this case, for a 95% confidence level, Z = 1.96),
σ is the population standard deviation, and
n is the sample size.
Given X = 100, σ = 8, and n = 64, we can substitute these values into the formula to calculate the confidence interval.
Confidence Interval = 100 ± 1.96 * (8 / √64)
Simplifying the expression:
Confidence Interval = 100 ± 1.96 * (1)
The critical value 1.96 is multiplied by the standard error, which is equal to the population standard deviation divided by the square root of the sample size. Since the sample size is 64, the square root of 64 is 8, resulting in a standard error of 1.
Therefore, the 95% confidence interval estimate for the population mean, μ, is:
Confidence Interval = 100 ± 1.96
This interval represents the range within which we can be 95% confident that the true population mean falls. The lower bound of the interval is 100 - 1.96, and the upper bound is 100 + 1.96.
Learn more about standard deviation here:
https://brainly.com/question/29115611
#SPJ11
Respond to one of the following situations. 1. Sabastian wanted to compare how much time his neighbors spend on the Internet to how much mail they receive in a week. He gathered data by surveying his neighbors. Explain the steps Sabastian should take in order to analyze the data. 2. Orion is working with a data set that compares the outside temperature, in degrees Celsius, to the number of gallons of ice cream sold per day at a local grocery store. The data has a line of best fit modeled by the function f(x) = 3x + 4. Orion determines that when the temperature is 25°C, the store should sell about 79 gallons of ice cream. The correlation coefficient of the data is 0.39 Explain how accurate Orion expects the prediction to be.
1. Sabastian should organize the data, calculate descriptive statistics, create visualizations, analyze the relationship, perform statistical tests, and draw conclusions.
2. Orion expects the prediction to have moderate accuracy based on the correlation coefficient of 0.39.
1. To analyze the data on Internet usage and mail received, Sabastian should follow these steps:
- Step 1: Organize the data: Compile the survey responses into a spreadsheet or data table, with one column for the amount of time spent on the Internet and another column for the amount of mail received.
- Step 2: Calculate descriptive statistics: Calculate the mean, median, and standard deviation for both variables to understand the central tendency and variability in the data.
- Step 3: Create visualizations: Plot a histogram or bar chart to visualize the distribution of Internet usage and mail received. Additionally, create a scatter plot to observe the relationship between the two variables.
- Step 4: Analyze the relationship: Examine the scatter plot to determine if there is any apparent relationship between Internet usage and mail received. Look for any trends or patterns.
- Step 5: Perform statistical tests: If necessary, conduct statistical tests such as correlation analysis to quantify the strength and direction of the relationship between the variables.
- Step 6: Draw conclusions: Based on the analysis, draw conclusions about the relationship between Internet usage and mail received. Determine if there is a significant association or correlation between the two variables.
2. Orion expects the prediction to have moderate accuracy based on the correlation coefficient of 0.39. The correlation coefficient measures the strength and direction of the linear relationship between two variables. A value of 0.39 suggests a weak to moderate positive linear relationship between the outside temperature and the number of gallons of ice cream sold.
To know more about statistics, refer here:
https://brainly.com/question/31538429
#SPJ4
Apply the composite rectangle rule to compute the following integral. No need to perform the computation but guarantee that the absolute error is less than 0.2. The integral from 0 to 10 of [x*cos(x)] dx.
To compute the integral ∫[tex]\int\limits^0_{10} }x *cos(x)} \, dx[/tex]ousing the composite rectangle rule, we divide the interval into subintervals and approximate the integral as the sum of the areas of the rectangles.
To apply the composite rectangle rule, we start by dividing the interval [0, 10] into smaller subintervals of equal width. Let's assume we choose n subintervals. The width of each subinterval will be Δx = (10 - 0) / n = 10/n.
Next, we evaluate the function x*cos(x) at the right endpoint of each subinterval and multiply it by the width Δx to get the area of each rectangle. We then sum up the areas of all the rectangles to approximate the integral.
To guarantee that the absolute error is less than 0.2, we need to choose an appropriate number of subintervals. The error of the composite rectangle rule decreases as the number of subintervals increases. By increasing the value of n, we can make the error smaller and ensure it is less than 0.2.
In practice, we would perform the computation by choosing a specific value for n and calculating the sum of the areas of the rectangles. However, without performing the computation, we can guarantee that the absolute error will be less than 0.2 by selecting a sufficiently large value of n.
Learn more about integral here:
brainly.com/question/31059545
#SPJ11
60 papers cost $27. Find the cost of 16 papers. $0.72 The answer is not among the choices provided. $7.00 $7.25 O $72.00 $7.02
The cost of 16 papers is $7.2.
To find the cost of 16 papers, we can use the concept of proportionality. If 60 papers cost $27, we can set up a proportion to find the cost of 16 papers.
Let's set up the proportion:
60 papers / $27 = 16 papers / x
Cross-multiplying, we get:
60 × x = 16 × $27
Simplifying:
60x = $432
Dividing both sides by 60:
x = $432 / 60
x ≈ $7.20
Therefore, the cost of 16 papers is approximately $7.20.
To learn more about cost: https://brainly.com/question/19104371
#SPJ11
Test at α= 0.01 and state the decision.
H_o: p = 0.75
H_a: p ≠0.75
x= 306
n=400
At α = 0.01, with x = 306 and n = 400, the calculated test statistic of 1.426 does not exceed the critical values. Thus, we fail to reject the null hypothesis. There is insufficient evidence to support that p is different from 0.75.
To test the hypothesis at α = 0.01, we will perform a two-tailed z-test for proportions.
The null hypothesis (H₀) states that the proportion (p) is equal to 0.75, and the alternative hypothesis (Hₐ) states that the proportion (p) is not equal to 0.75.
Given x = 306 (number of successes) and n = 400 (sample size), we can calculate the sample proportion:
p = x / n = 306 / 400 = 0.765
To calculate the test statistic, we use the formula:
z = (p - p₀) / √(p₀ * (1 - p₀) / n)
where p₀ is the proportion under the null hypothesis.
Substituting the values into the formula:
z = (0.765 - 0.75) / √(0.75 * (1 - 0.75) / 400)
z ≈ 1.426
Next, we compare the test statistic with the critical value(s) based on α = 0.01. For a two-tailed test, we divide the α level by 2 (0.01 / 2 = 0.005) and find the critical z-values that correspond to that cumulative probability.
Looking up the critical values in a standard normal distribution table, we find that the critical z-values for α/2 = 0.005 are approximately ±2.576.
Since the calculated test statistic (1.426) does not exceed the critical values of ±2.576, we fail to reject the null hypothesis.
Decision: Based on the test results, at α = 0.01, we do not have sufficient evidence to reject the null hypothesis (H₀: p = 0.75) in favor of the alternative hypothesis (Hₐ: p ≠ 0.75).
To know more about null and alternative hypotheses:
brainly.com/question/28331914
#SPJ4
7 A radiograph technique is set at: 40 mAs, 200 cm SSD, at tabletop, and produces 4 mGya. What will the new exposure be in mR if you substitute 100 cm SSD, with 5:1 grid, and keep mAs constant?
When substituting a 100 cm SSD with a 5:1 grid while keeping the mAs constant at 40 mAs, the new exposure will be 40 mR.
To calculate the new exposure in milliroentgens (mR) when substituting different parameters while keeping the milliampere-seconds (mAs) constant, we can use the inverse square law and the grid conversion factor.
The inverse square law states that the intensity of radiation is inversely proportional to the square of the distance (SSD in this case). So, by changing the SSD from 200 cm to 100 cm, we need to calculate the change in exposure due to the change in distance.
First, let's calculate the inverse square factor (ISF):
ISF = (SSD1 / SSD2)²
ISF = (200 cm / 100 cm)² = 2² = 4
The ISF value is 4, meaning the new exposure will be four times higher due to the decreased distance.
Next, we need to consider the grid conversion factor. A 5:1 grid typically has a conversion factor of 2.5, which means it increases the exposure by a factor of 2.5.
Now, let's calculate the new exposure in mR:
New Exposure (mR) = (Original Exposure in mGya)× (ISF) ×(Grid Conversion Factor)
New Exposure (mR) = 4 mGya× 4× 2.5
New Exposure (mR) = 40 mR
Therefore, when substituting a 100 cm SSD with a 5:1 grid while keeping the mAs constant at 40 mAs, the new exposure will be 40 mR.
Learn more about inverse square factor here:
https://brainly.com/question/14456531
#SPJ11