What is the point that divides line DC into a ratio of 1:3, starting from point D C (-120, 83) D (156, -64)

Answers

Answer 1

Answer:

Step-by-step explanation:

What Is The Point That Divides Line DC Into A Ratio Of 1:3, Starting From Point D C (-120, 83) D (156,

Related Questions








9. Consider the following permutation. 2 3 4 5 (₂2 24 5 1 6 a. Decompose into a product of cycles b. Decompose into the product of transposition. C. Decide if o is even or odd. 6 7 3 3)

Answers

a. The decomposition into cycles is (2 5 6 3 4).

b. The decomposition into transpositions is (2 5)(5 6)(6 3)(3 4).

c. The permutation is even.

We have,

To decompose the given permutation into cycles, we start with the first element and follow its path:

Starting with 2, we see that it goes to 5.

5 goes to 6.

6 goes to 3.

3 goes to 4.

Finally, 4 goes back to 2, completing the cycle.

The cycle can be represented as (2 5 6 3 4).

To decompose the permutation into transpositions, we consider each adjacent pair of elements and write them as separate transpositions:

(2 5)(5 6)(6 3)(3 4)

Now, we can observe that the permutation has a total of four transpositions.

To determine if the permutation is even or odd, we need to count the number of transpositions.

In this case, there are four transpositions, which means the permutation is even since the number of transpositions is even.

Therefore,

a. The decomposition into cycles is (2 5 6 3 4).

b. The decomposition into transpositions is (2 5)(5 6)(6 3)(3 4).

c. The permutation is even.

Learn more about permutations here:

https://brainly.com/question/32683496

#SPJ1

Let X1 and X2 be independent random variables with mean μ and variance σ2. Suppose that we have two estimators of μ: Math and 1 = X1+X2/2 and math2=x1 + 3x2/4
(a) Are both estimators unbiased estimators of μ? (b) What is the variance of each estimator? Hint: Law of expected values

Answers

(a) Math2 is not an unbiased estimator of μ. (b)Math1 has a variance of

σ[tex]^{2}[/tex] and Math2 has a variance of  5σ[tex]^2[/tex]/8

(a) Neither of the estimators, Math1 or Math2, is an unbiased estimator of μ. An unbiased estimator should have an expected value equal to the parameter being estimated, in this case, μ.

For Math1,

the expected value is

E[Math1] = E[([tex]X_{1}[/tex] + [tex]X_{2}[/tex]) / 2]

= (E[[tex]X_{1}[/tex]] + E[[tex]X_{2}[/tex]]) / 2

= μ/2 + μ/2 = μ,

which means Math1 is an unbiased estimator of μ.

For Math2,

the expected value is

E[Math2] = E[([tex]X_{1}[/tex] + [tex]3X_{2}[/tex]) / 4]

= (E[[tex]X_{1}[/tex]] + 3E[[tex]X_{2}[/tex]]) / 4

= μ/4 + 3μ/4

= (μ + 3μ) / 4

= 4μ/4

= μ/2.

(b) To calculate the variances of the estimators, we'll use the property that the variance of a sum of independent random variables is the sum of their variances.

For Math1,

the variance is Var[Math1]

= Var[([tex]X_{1}[/tex] + [tex]X_{2}[/tex]) / 2]

= (Var[[tex]X_{1}[/tex]] + Var[[tex]X_{2}[/tex]]) / 4

= σ[tex]^2[/tex]/2 + σ[tex]^2[/tex]/2

= σ[tex]^2[/tex]

For Math2,

the variance is Var[Math2]

= Var[([tex]X_{1}[/tex] + [tex]3X_{2}[/tex]) / 4]

= (Var[[tex]X_{1}[/tex]] + 9Var[[tex]X_{1}[/tex]]) / 16

= σ[tex]^2[/tex]/4 + 9σ[tex]^2[/tex]/16

= 5σ[tex]^2[/tex]/8

Math1 has a variance of σ[tex]^2[/tex]

and Math2 has a variance of 5σ[tex]^2[/tex]/8

Learn more about parameter here:

https://brainly.com/question/31608396

#SPJ4

Find the value of the variable.
20
12

A. 10
В. 13
C. 16
D.18

Answers

Answer:

option c.

by Pythagoras theorem.

hypotenuse²=height ²+base²

20²=x²+12²

400=x²+144

400-144=x²

256=x²

256½=x

16=x

we used the Optional Stopping Theorem to solve the Gambler's Ruin Problem. Specifically, we showed that if Sn So +?=1X; is a biased random walk starting at So = 1, where the steps X; are independent and equal to +1 with probability p1/2 and equal to - 1 with the remaining probability q=1 – p, then the probability of hitting N (jackpot") before 0 ("bust") is (g/p) - 1 PJ So = 1) = (g/p)N-1 Recall that the key to this was the martingale Mn = (g/p)Sn, which is only useful when pq. (a) For any pe [0, 1], argue that P(T<) = 1, where T = inf{n> 1: Sne {0,1}} is the first time that the walk visits 0 or N. Hint: One way is to consider each time that the walk visits 1 before time T, and then compare with a geometric random variable. Note: This is the one condition in the Optional Stopping Theorem that we did not verify during the lecture. (b) Find P(J|So = n) when instead So = n, for some 1

Answers

(a) To argue that P(T < ∞) = 1, where T is the first time the walk visits 0 or N, we can consider each time the walk visits 1 before time T.

Suppose the walk visits 1 for the first time at time k < T. At this point, the random walk is in a state where it can either hit 0 before N or hit N before 0.

Let's define a new random variable Y, which represents the number of steps needed for the walk to hit either 0 or N starting from state 1. Y follows a geometric distribution with parameter p since the steps are +1 with probability p and -1 with probability q = 1 - p.

Now, we can compare the random variable T and Y. If T < ∞, it means that the walk has hit either 0 or N before reaching time T. Since T is finite, it implies that the walk has hit 1 before time T. Therefore, we can say that T ≥ Y.

By the properties of the geometric distribution, we know that P(Y = ∞) = 0. This means that there is a non-zero probability of hitting either 0 or N starting from state 1. Therefore, P(T < ∞) = 1, as the walk is guaranteed to eventually hit either 0 or N.

(b) To find P(J|So = n), where So = n, we need to determine the probability of hitting N before hitting 0 starting from state n.

Recall that the probability of hitting N before 0 starting from state 1 is given by (g/p)^(N-1), as shown in the Optional Stopping Theorem formula. In our case, since the walk starts at state n, we need to adjust the formula accordingly.

The probability of hitting N before 0 starting from state n can be calculated as P(J|So = n) = (g/p)^(N-n).

This probability takes into account the number of steps required to reach N starting from state n. It represents the likelihood of hitting the jackpot (N) before going bust (0) when the walk starts at state n.

It's worth noting that this probability depends on the values of p, q, and N.

To know more about Optional Stopping Theorem refer here:

https://brainly.com/question/31828935#

#SPJ11

Question is in picture

Answers

Step-by-step explanation:

you're multiple times a day po

the answer is c
hope it helps

What is the surface area of a cylinder with height 8 ft and radius 4 ft

Answers

The Surface area of the cylinder with a height of 8 ft and a radius of 4 ft is approximately 301.44 square feet.

The surface area of a cylinder, we need to consider the lateral surface area and the area of the two circular bases.

The lateral surface area of a cylinder can be determined by multiplying the height of the cylinder by the circumference of its base. The formula for the lateral surface area (A) of a cylinder is given by A = 2πrh, where r is the radius and h is the height of the cylinder.

In this case, the height of the cylinder is 8 ft and the radius is 4 ft. Therefore, the lateral surface area can be calculated as follows:

A = 2π(4 ft)(8 ft)

A = 64π ft²

The area of each circular base can be calculated using the formula for the area of a circle, which is A = πr². In this case, the radius is 4 ft. Therefore, the area of each circular base is:

A_base = π(4 ft)²

A_base = 16π ft²

Since a cylinder has two circular bases, the total area of the two bases is:

A_bases = 2(16π ft²)

A_bases = 32π ft²

the total surface area, we sum the lateral surface area and the area of the two bases:

Total surface area = Lateral surface area + Area of bases

Total surface area = 64π ft² + 32π ft²

Total surface area = 96π ft²

Now, let's calculate the numerical value of the surface area:

Total surface area ≈ 96(3.14) ft²

Total surface area ≈ 301.44 ft²

Therefore, the surface area of the given cylinder, with a height of 8 ft and a radius of 4 ft, is approximately 301.44 square feet.

In conclusion, the surface area of the cylinder with a height of 8 ft and a radius of 4 ft is approximately 301.44 square feet.

To know more about Surface area .

https://brainly.com/question/951562

#SPJ8

PLEASE HELPPPPPPPPPPPPPPPPPPPPPPPPPPP

Answers

Answer:

x = 5 ; z = 70

Step-by-step explanation:

Vertical angles have the same degree measure

(13x + 45) = 110

13x + 45 = 110

      -45     -45

13x = 65

/13     /13

x = 5

Complementary angles add up to 180°

110 + z = 180

-110         -110

z = 70

Answer:

X = 5º

Z = 70º

Step-by-step explanation:

So we know that vertical angles are congruent. So what we do to figure out x is set the equation equal to 110º because we are given that. And then we solve for x.

(13x + 45) = 110

13x + 45 = 110

      -45      -45

----------------------

13x = 65

÷13     ÷13

---------------

x = 5

Now, we plug x into the equation. (13x5 + 45) = 110 so we know that x = 5

Now, we also know that a straight line equals 180º so what we do is subtract 110 from 180.

180 - 110= 70º

z = 70º

in counseling and psychotherapy groups, member-to-member contact outside of group often results in _____ and _____. group of answer choices

Answers

In counseling and psychotherapy groups, member-to-member contact outside of the group often results in subgroups and hidden agendas

According to various research studies on Personal relationships among specialty group members, such as counseling and psychotherapy groups, which was concluded that member-to-member contact outside of the group often results in SUBGROUP and HIDDEN AGENDAS.

However, Most of the time, which can lead to damaging situations.

Therefore it is considered a sensible strategy to prevent the formation of such subgroups.

Learn more about the subgroups

https://brainly.com/question/18994351

#SPJ1

A hiker is lost in the forest, but has his cell phone with a weak signal. Cell phones with GPS can give an approximate location through triangulation, which works by giving distances from two known points. Suppose the hiker is within distance of two cell phone towers that are 22.5 miles apart along a straight highway (running east to west, double-dashed line). Based on the signal delay, it can be determined that the signal from the hiker's phone is 14.2 miles from Tower A and 10.9 miles from Tower B. Assume the hiker is traveling a straight path south reach the highway quickly. How far must the hiker travel to reach the highway

Answers

Answer:

The distance the hiker must travel is approximately 5.5 miles

Step-by-step explanation:

The distance between the two cell phone towers = 22.5 miles

The distance between the hiker's phone and Tower A = 14.2 miles

The distance between the hiker's phone and Tower B = 10.9 miles

The direction of the highway along which the towers are located = East to west

The direction in which the hiker is travelling to reach the highway quickly = South

By cosine rule, we have;

a² = b² + c² - 2·b·c·cos(A)

Let 'a', 'b', and 'c', represent the sides of the triangle formed by the imaginary line between the two towers, the hiker's phone and Tower A, and the hiker's hone and tower B respectively, we have;

a = 22.5 miles

b = 14.2 miles

c = 10.9 miles

Therefore, we have;

22.5² = 14.2² + 10.9² - 2 × 14.2 × 10.9 × cos(A)

cos(A) = (22.5² - (14.2² + 10.9²))/( - 2 × 14.2 × 10.9) ≈ -0.6

∠A = arccos(-0.6) ≈ 126.9°

By sine rule, we have;

a/(sin(A)) = b/(sin(B)) = c/(sin(C))

∴ sin(B) = b × sin(A)/a

∴ sin(B) = 14.2×(sin(126.9°))/22.5

∠B = arcsine(14.2×(sin(126.9°))/22.5) ≈ 30.31°

∠C = 180° - (126.9° - 30.31°) = 22.79° See No Evil

The distance the hiker must travel, d = c × sin(B)

∴ d = 10.9 × sin(30.31°) ≈ 5.5

Therefore, the distance the hiker must travel, d ≈ 5.5 miles.

The cost of a banquet at Nick's Catering is $215 plus $27.50 per person. If
the total cost of a banquet was $2827.50, how many people were invited?​

Answers

Answer:

x = 95

Step-by-step explanation:

Given that,

The cost of a banquet at Nick's Catering is $215 plus $27.50 per person

The total cost of a banquet was $2827.50

We need to find the number of people invited. Let there are x people. So,

215+27.5x = 2827.50

27.5x = 2827.50 -215

27.5x = 2612.5

x = 95

So, there are 95 people that were invited.

If f(x) = (x + 7)2 and g(x) = x2 +9,
which statement is true?
A fo) B f(-4) > g(-3)
C f(1) = g(1)
D f(2) > g(2)

Answers

ANSWER : D

EXPLANATION : 81 > 13 is true

To go from Seattle, Washington, to Los Angeles, California, using the Interstate Train Company, one must travel through San Francisco, California, or Salt Lake City, Utah. Using the information given in the table, which route is shorter and by how much?

Answers

Answer:

The answer is BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

To travel 1400miles from Seattle to Los Angeles it will take the train 35 hours

What is rate?

A rate is the ratio between two related quantities in different units. For example , the train travels 80 miles in 2hrs . the two quantities that are related here are distance and time

here, we have,

distance in miles and time in hours

the time to travel for 1 mile

= 2/80 = 1/40 miles

for the train to travel 1400 miles , it will take it

1/40× 1400

= 35 hours

learn more about rate from

brainly.com/question/25793394

#SPJ2

complete question:

There is a train that travels from Seattle, Washington, to Los Angeles, California. In its first 2 hours the train went about 80 miles including stops. At this rate, how longer will it take to travel the 1400 miles from Seattle to Los Angeles?

if a parametric surface given by r1 (u,v) = f(u,v)I + g(u,v)j + h(u,v)k and -5≤ u≤5, -4≤v≤4, has surface area equal to 2, what is the surface area of the parametric surface given by 22 (u,v) = 5r1 (,uv) with and -5≤ u≤5, -4≤v≤4?

Answers

To find the surface area of the parametric surface given by 22 (u,v) = 5r1 (u,v), where r1 (u,v) is a parametric surface with a known surface area of 2, we need to consider the scaling factor of 5. The surface area of the parametric surface given by 22 (u,v) = 5r1 (u,v) is 10.

The surface area of a parametric surface can be calculated using the formula ∬||ru x rv|| dA, where ru and rv are the partial derivatives of the position vector r with respect to u and v, and ||ru x rv|| is the magnitude of their cross product.

When we scale the original parametric surface by a factor of 5, the scaling applies to each component of the position vector, resulting in a scaling factor of 5 for ||ru x rv||. Therefore, the new surface area is 5 times the original surface area, i.e., 5 * 2 = 10.

Thus, the surface area of the parametric surface given by 22 (u,v) = 5r1 (u,v) is 10.

To learn more about parametric surface click here: brainly.com/question/28482933

#SPJ11

Bakery makes cupcakes and three different flavors chocolate, vanilla, and strawberry, with two choices of topics, butterscotch or pumpkin in two different sizes small or large how many different outcomes are there?

Answers

Answer:

24 or 12

Step-by-step explanation:

Multiplication

The ratio of boys to girls at the play was 4 to 3. If there were 15 girls, how many boys were there?

Answers

Answer:

20 boys

Step-by-step explanation:

If there are 4 boys for every 3 girls, multiply both numbers by 5 (3*5 = 15) to find the number of boys.

Answer:

20

Step-by-step explanation:

4/3 = ?/15

multiply both sides by 15

15*4/3 = ?

? = 20

b. If each square has a side length of 61 cm, write an expression for the surface area and another for the volume of the figure

Answers

Answer:

6*(61^2) and 61^3

Step-by-step explanation:

If the squares have a side length of 61 (assuming this is a cube) our surface area is 6*(61^2) because each side is a square and there are six sides.

As for the volume, we have 61^3.

Hope this was helpful.

~cloud

simplify the expression

Answers

Answer:

7m ^1÷2

Step-by-step explanation:

see attached joint

hope it helps

For f, g € L’[a,b], prove the Cauchy-Schwarz inequality |(f,g)| = ||$||||$||. = Hint: Define a function Q(t) = (f + tg, f + tg) for any real number t. Use the rules of inner product to expand this expression and obtain a quadratic polynomial in t; because Q(t) > 0 (why?), the quadratic polynomial can have at most one real root. Examine the discriminant of the polynomial.

Answers

Given that f, g ∈ L’[a, b], we need to prove the Cauchy-Schwarz inequality, |(f, g)| = ||$|| . ||$||.

The Cauchy-Schwarz inequality for inner product in L’[a, b] states that for all f, g ∈ L’[a, b],|(f, g)| ≤ ||$|| . ||$||Proof: Consider a function Q(t) = (f + tg, f + tg) for any real number t. Then, by using the rules of inner product, we can expand this expression and obtain a quadratic polynomial in t.$$Q(t) = (f + tg, f + tg) = (f, f) + t(f, g) + t(g, f) + t^2(g, g)$$$$ = (f, f) + 2t(f, g) + t^2(g, g)$$. Now, Q(t) > 0 because Q(t) is a sum of squares. So, Q(t) is a quadratic polynomial that can have at most one real root since Q(t) > 0 for all t ∈ R.

To find the discriminant of Q(t), we need to solve the equation Q(t) = 0.$$(f, f) + 2t(f, g) + t^2(g, g) = 0$$.

The discriminant of Q(t) is:$$D = (f, g)^2 - (f, f)(g, g)$$

Since Q(t) > 0 for all t ∈ R, the discriminant D ≤ 0.$$D = (f, g)^2 - (f, f)(g, g) ≤ 0$$$$\Right arrow (f, g)^2 ≤ (f, f)(g, g)$$$$\Right arrow |(f, g)| ≤ ||$|| . ||$||$$

Thus, |(f, g)| = ||$|| . ||$||, which proves the Cauchy-Schwarz inequality. Therefore, the given statement is true.

To know more about quadratic polynomial refer to:

https://brainly.com/question/26140455

#SPJ11

20 points for this!! thank you

Answers

Answer:

not a function becuz 2 repeats its self twice

Step-by-step explanation:

Answer:

You are welcome

Step-by-step explanation:

Please help me with this

Answers

Answer:

x = -2

Step-by-step explanation:

y = -4

2x -3y = 8

Substitute the first equation into the second equation

2x - 3(-4) = 8

2x +12 = 8

Subtract 12 from each side

2x+12-12 = 8-12

2x = -4

Divide by 2

2x/2 = -4/2

x = -2

What are the first four marks on the x-axis for the following graph?
Y= 3/4sin3x/2

Answers

Answer:

uhh i don't know the answer sorry

Step-by-step explanation:

ummm i Don't know

In the woods, a hunter is shooting at a hare. The probability of success for his first shot is 12. If he misses his first shot, the probability of success for his second shot is 1/4. If he misses his second shot, the probability of success for his third shot is 1/8. If he misses his third shot, the probability of success for his forth shot is 1/16. (1) The probability that he hits the hare within his first 2 shots is most nearly (a) 0.7 (b) 0.8 (c) 0.9 (d) 1 (2) The probability that he hits the hare within his first 3 shots is most nearly (a) 1 (b) 0.9 (c) 0.8 (d) 0.7 (3) The probability that he hits the hare within his first 4 shots is most nearly (a) 0.9 (b) 0.7 (c)1 (d) 0.8

Answers

The probability that he hits the hare within his first 4 shots is 0.8789.

Probability of success for the first shot = P1 = 12 Probability of missing the first shot = 1 – P1 = 1 – 12 = 12  Probability of

success for the second shot, given that the first shot missed = P2 = 14Hence, the probability that he hits the hare within

his first 2 shots is:P1 + (1 – P1)P2= 12+(12)×(14)= 12+16= 38(2) The probability that he hits the hare within his first 3 shots is

most nearly (a) 1 (b) 0.9 (c) 0.8 (d) 0.7We have to find the probability of hitting the hare within his first 3 shots. Probability

of success for the first shot = P1 = 12Probability of missing the first shot = 1 – P1 = 1 – 12 = 12Probability of success for the

second shot, given that the first shot missed = P2 = 14Probability of success for the third shot, given that the first two

shots missed = P3 = 18Hence, the probability that he hits the hare within his first 3 shots is:P1 + (1 – P1)P2 + (1 – P1)(1 –

P2)P3= 12+(12)×(14)+(12)×(34)×(18)= 12+16+18×(12)= 1316= 0.8125(3) The probability that he hits the hare within his first 4

shots is most nearly (a) 0.9 (b) 0.7 (c)1 (d) 0.8We have to find the probability of hitting the hare within his first 4

shots. Probability of success for the first shot = P1 = 12Probability of missing the first shot = 1 – P1 = 1 – 12 = 12Probability

of success for the second shot, given that the first shot missed = P2 = 14Probability of success for the third shot, given

that the first two shots missed = P3 = 18 Probability of success for the fourth shot, given that the first three shots missed

= P4 = 116Hence, the probability that he hits the hare within his first 4 shots is:P1 + (1 – P1)P2 + (1 – P1)(1 – P2)P3 + (1 – P1)

(1 – P2)(1 – P3)P4= 12+(12)×(14)+(12)×(34)×(18)+(12)×(34)×(78)×(116)= 12+16+18×(12)+18×(78)×(116)= 7892= 0.8789

Therefore, the answer is (d) 0.8.

Learn more about probability:https://brainly.com/question/13604758

#SPJ11

Plot the x-intercepts, the y-intercept, and the vertex of the graph (Must use Desmos!)

Answers

Answer:

x-intercept: (-1,0)

y-intercept: (0,3)

Vertex: (-2,-1)

Step-by-step explanation:

2/5+3/6 GETS BRAINLIEST​

Answers

Answer:

27/30

Step-by-step explanation:

yepyffghhhhgghjj

Answer:

9/10 or 0.9

Step-by-step explanation:

When adding fractions, you look at each of them as an equal number, or a whole.

25+36

91

So, now all we have to do is convert it to it's closest form. (In tenths, since we are adding tenths.)

90

And it would be 9/10, or 0.9

Hope this helps!

I wanted to find you a higher-order differential equation that had a real-life application. Here is what I found: a cylindrical shaft of length L is rotating with angular velocity w. Find a function y(x) that models the deformation of the cylinder. Of course this is a little bit more specialized to the field of dynamics than what we studied this semester, but what I learned was that this can be modeled: dºy dx4 - a4y = 0

Answers

The given differential equation d⁴y/dx⁴ - a⁴y = 0 models the deformation of a cylindrical shaft rotating with angular velocity ω. The function y(x) represents the deformation of the cylinder.

To solve the differential equation, we can assume a solution of the form y(x) = A*cos(ax) + B*sin(ax), where A and B are constants to be determined, and 'a' is a parameter related to the properties of the cylinder.

Taking the fourth derivative of y(x) and substituting it into the differential equation, we have:

d⁴y/dx⁴ = -a⁴(A*cos(ax) + B*sin(ax))

Substituting the fourth derivative and y(x) into the differential equation, we get:

-a⁴(A*cos(ax) + B*sin(ax)) - a⁴(A*cos(ax) + B*sin(ax)) = 0

Simplifying the equation, we have:

-2a⁴(A*cos(ax) + B*sin(ax)) = 0

Since the equation must hold for all x, the coefficient of each term (cos(ax) and sin(ax)) must be zero:

-2a⁴A = 0   (coefficient of cos(ax))

-2a⁴B = 0   (coefficient of sin(ax))

From these equations, we find that A = 0 and B = 0, which implies that the only solution is the trivial solution y(x) = 0.

Therefore, the solution to the differential equation d⁴y/dx⁴ - a⁴y = 0 is y(x) = 0.

To know more about higher-order differential equations , refer here:

https://brainly.com/question/30256978#

#SPJ11

Find three numbers whose sum is 21 and whose sum of squares is a minimum. The three numbers are________ (Use a comma to separate answers as needed.)

Answers

the three numbers whose sum is 21 and whose sum of squares is a minimum are 7, 7, and 7.

To find three numbers whose sum is 21 and whose sum of squares is a minimum, we can use a mathematical technique called optimization. Let's denote the three numbers as x, y, and z.

We need to minimize the sum of squares, which can be expressed as the function f(x, y, z) = x² + y² + z²

Given the constraint that the sum of the three numbers is 21, we have the equation x + y + z = 21.

To find the minimum value of f(x, y, z), we can use the method of Lagrange multipliers, which involves solving a system of equations.

First, let's define a Lagrange multiplier, λ, and set up the following equations:

1. ∂f/∂x = 2x + λ = 0

2. ∂f/∂y = 2y + λ = 0

3. ∂f/∂z = 2z + λ = 0

4. Constraint equation: x + y + z = 21

Solving equations 1, 2, and 3 for x, y, and z, respectively, we get:

x = -λ/2

y = -λ/2

z = -λ/2

Substituting these values into the constraint equation, we have:

-λ/2 - λ/2 - λ/2 = 21

-3λ/2 = 21

λ = -14

Substituting λ = -14 back into the expressions for x, y, and z, we get:

x = 7

y = 7

z = 7

Therefore, the three numbers whose sum is 21 and whose sum of squares is a minimum are 7, 7, and 7.

Learn more about Sum here

https://brainly.com/question/2292486

#SPJ4

help me find the answer please​

Answers

Answer:

A x<1125

Step-by-step explanation:

what is 21x+1 in simple form

Answers

Answer:

( 21 x X ) + 1

Step-by-step explanation:

Please answer correctly! I will mark you Brainliest!

Answers

Answer:

4.1 inches

I would appreciate Brainliest, but no worries.

Answer:

6

Step-by-step explanation:

the formula for the sphere's volume is [tex]\frac{4}{3} *\pi *r^3[/tex]

so when you set that equal to 288[tex]\pi[/tex], you get 6 as the radius

Nicole has a bag filed win 8 red marbles 6 blue marbles and 9 green marbles. What is the probability of her choosing a red marble, then a blue marble without replacing them​

Answers

Answer:

34.78

Step-by-step explanation:

8/23

Other Questions
TRUE / FALSE. "Astakeholder is defined as anyone with a vested interest in anorganization or process. 1. why does goldwater stress the connectivity of order and liberty? During 2015, USF Company self-constructed some specialized equipment. They incur the following expenses related to construction of the asset through 2015: Date Amount 2/28/2015 $1,200,000 4/30/2015 $2,100,000 6/30/2015 $1,000,000 8/31/2015 $3,000,000 12/31/2015 $2,000,000 The company had the following debt outstanding at December 31, 2015: 1.) $3,000,000, 10%, 5-year note specifically borrowed to finance construction of equipment dated January 1, 2015, with interest payable annually on December 31 2.) $5,000,000, 12%, ten-year bonds issued at par on December 31, 2009, with interest payable annually on December 31 3.) $2,500,000, 9%, 3-year note payable, dated January 1, 2014, with interest payable annually on December 31 Compute the weighted average accumulated expenditures: How does it affect the saving to a country when you put yourlottery winnings into your bank account? TRUE/FALSE for all : 14. A leftward shift of the aggregate demand curve causes both output and prices to fall. 15. Firms normally operate at less than 100 percent capacity utilization. 16. If aggregate demand increases, firms will increase output before they increase prices. Question 45 Which section of the Commonwealth Constitution is the reason Commonwealth tax laws are traditionally contained in several different acts, rather than a single statute? s51(i) s51 (ii) s53 Poulter Corporation will pay a dividend of $4.15 per share next year. The company pledges to increase its dividend by 6.25 percent per year, indefinitely.If you require a return of 9 percent on your investment, how much will you pay for the companys stock today? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) "Given sec = -s/s and the terminal arm of angle is in the third quadrant. Sketch a diagram using the cartesian plane. Write the double integral Rf(x,y)dA as an iterated integral (or a sum of multiple iterated integrals) using the order of integration DO NOT EVALUATE What do you understand by the term "SaaS based software"? With an example, explain the merits and demerits of using SaaS software over conventional software. using Saas software 1. Describe one of thecasesfraudin an investment area that you know. Why is negligence incalculating risk considered a fraud?2. Risk management is verynecessary in the implementation of investment A 3.0 kg block hanging from a spring scale is submerged in a beaker of water until the spring scale reads 20 N. What is the buoyant force on the block? (A) 10 N (B) 17 N (C) 37 N (D) 50 N (E) It cannot be determined without knowing the dimensions of the block. Lusk Corporation produces and sells 14,600 units of Product X each month. The selling price of Product X is $28 per unit, and variable expenses are $22 per unit. A study has been made concerning whether Product X should be discontinued. The study shows that $74,000 of the $101,000 in monthly fixed expenses charged to Product X would not be avoidable even if the product was discontinued. If Product X is discontinued, the annual financial advantage (disadvantage) for the company of eliminating this product should be: Multiple Choice ($60,600) $13,400 $40,400 ($40,400) If net operating income is $87,000, average operating assets are $522,000, and the minimum required rate of return is 13%, what is the residual income? Multiple Choice $106,140 $48,720 $19,140 $67,860 BR Company has a contribution margin of 20%. Sales are $622,000, net operating income is $124,400, and average operating assets are $141,000. What is the company's return on investment (ROI)? Multiple Choice 4.4% 20.0% 88.2% 0.2% It was in India where the group studied the art of war the music of Donovan American show tunes Transcendental Meditation Most of the songs were conceived after the band's study with Maharishi Mahesh Yogi Roy Orbison Yoko Ono George Martin This was the first album after Pete Best left the band George Harrison bought his Rickenbacker guitar Brian Epstein died Paul McCartney died One of the arguments against NAFTA is that it hurt organized labor in the US and prevented it from gaining more members. How is this possible? Please elaborate. (you can look up the rates of unionization in the US prior to and after NAFTA goes into effect and compare the two to support your argument) Halfway to the equivalence point in a titration curve of a weak acid with a strong base, __________a. nothing is happening yet.b. pH = pKa of the weak acid.c. pH = 3.5 exactly.d. pH = pKa of the indicator.e. the pH has not yet changed. An amortized loan is repaid with annual payments which start at $400 at the end of the first year and increase by $45 each year until a payment of $1,48 is made, after which they cease. If interest is 4% effective, find the amount of principal in the fourteenth payment. Solve by calculating outstanding balance after the 13th payment. Show work. The following set of data is from a sample of n = 6. 8 9 7 8 2 13 a. Compute the mean, median, and mode. b. Compute the range, variance, and standard deviation a. Compute the mean, median, and mode. Mean = ________Type an integer or decimal rounded to four decimal places as needed.) Compute the median Median= ________(Type an integer or a decimal. Do not round.) What is the mode? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mode(s) is/are _______ (Type an integer or a decimal. Do not round. Use a comma to separate answers as needed.) B. There is no mode for this data set. b. Compute the range Range = ____ (Type an integer or a decimal. Do not round.) Compute the variance. S^2= _______ (Round to three decimal places as needed.) Compute the standard deviation. S=______(Round to three decimal places as needed.) thinking about the paramilitary design of policing and corrections, in what ways does this structure inhibit organizational change? Given the initial value problem y = {v+te'. IS152, YO) = 0. t With exact solution y(t)=t? (e' e). 1) Use Taylor's method of order two with h=0.1 to approximate the solution, and compare it with the actual values of y. (4 Marks) 2) Use the answers generated in part (1) and linear interpolation to approximate y at the following I. y(1.04) II. y(1.55) III. y(1.97)