What is the molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt? molar mass: 282.1 g/mol Incorrect

Answers

Answer 1

The molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt is 270.29 g/mol.

To determine the molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt, we first need to find the molecular formula of this compound and then calculate its molar mass.

Step 1: Identify the molecular formula
(S)-phenylethylammonium-(2R,3R) tartrate salt is a complex compound, and its molecular formula is (C₈H₁₂N)(C₄H₄O₆). This formula consists of one phenylethylammonium ion (C₈H₁₂N) and one tartrate ion (C₄H₄O₆).

Step 2: Calculate the molar mass
To calculate the molar mass, we will add the molar masses of each element in the molecular formula, multiplied by their respective counts:

Molar mass of C: 12.01 g/mol
Molar mass of H: 1.01 g/mol
Molar mass of N: 14.01 g/mol
Molar mass of O: 16.00 g/mol

(C₈H₁₂N)(C₄H₄O₆) = [(8 x 12.01) + (12 x 1.01) + (1 x 14.01)] + [(4 x 12.01) + (4 x 1.01) + (6 x 16.00)]

= [96.08 + 12.12 + 14.01] + [48.04 + 4.04 + 96.00]

= 122.21 + 148.08

The molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt is 270.29 g/mol.

For learn more about molar mass, visit: https://brainly.com/question/25879634

#SPJ11


Related Questions

How does the size of ice affect the rate of melting?

Answers

The larger ice cubes require more heat from the water to melt. To transfer more heat from the water requires more time. Therefore, it takes longer for the larger ice cubes to melt.

Methyl alcohol. CH_3OH_3 reacts with benzoic acid C_6H_5CO_2H. to form an ester Using structural formulas, write the aquation for the reaction What is the name of this ester?

Answers

The reaction between methyl alcohol (CH3OH) and benzoic acid (C6H5CO2H) is CH3OH + C6H5CO2H → C6H5CO2CH3 + H2O and The ester formed in this reaction is called methyl benzoate.

The reaction between these two compounds ethyl alcohol and benzoic acid is known as esterification. In this reaction, the hydroxyl group (OH) of the methyl alcohol reacts with the carboxyl group (CO2H) of benzoic acid, resulting in the formation of an ester and water as a byproduct. The structural formula for the reaction is as follows:

CH3OH + C6H5CO2H → C6H5CO2CH3 + H2O

The ester formed in this reaction is called methyl benzoate, and its structural formula is C6H5CO2CH3. Methyl benzoate is a common ester that is often used as a flavoring agent or in the manufacture of perfumes due to its pleasant, fruity odor. Esterification reactions are essential in organic chemistry, as they allow for the formation of a wide variety of ester compounds with diverse properties and applications.

Learn more about esterification at:

https://brainly.com/question/31041190

#SPJ11

How much heat is released or absorbed when 0.09 moles of hydrogen gas are formed from gaseous ammonia in the process represented by the chemical equation below. NH3(g) → N2(g) + 3 H2(g) AH = 90 kJ/mol A. 0.9 kJ are released B. 0.9 kJ are absorbed C. 2.7 kJ are released D. 2.7 kJ are absorbed

Answers

The heat released is equal to 90 kJ/mol x 0.09 mol, which is equal to 2.7 kJ.

What is heat?

eat is a form of energy transferred from one object to another due to a difference in temperature. Heat moves from a hotter object to a cooler object, and can be transferred by conduction, convection, or radiation.

The heat released or absorbed in a chemical reaction can be calculated using the following equation:

heat released or absorbed = (moles of reactants) x (enthalpy of reaction).

In this case, the enthalpy of reaction (AH) is 90 kJ/mol. Therefore, the amount of heat released or absorbed when 0.09 moles of hydrogen gas are formed from gaseous ammonia is:

heat released or absorbed = (0.09 moles) x (90 kJ/mol)
= 2.7 kJ.

Since the reaction is exothermic (releases energy), 2.7 kJ of heat are released.

To learn more about heat
https://brainly.com/question/30738335
#SPJ1

the mass of calcium sulfite that is dissolved in 175 ml of a saturated solution is

Answers

The mass of calcium sulfite dissolved in 175 mL of a saturated solution is approximately 0.366 grams.

To determine the mass of calcium sulfite dissolved in 175 mL of a saturated solution, we need to know the solubility of calcium sulfite in water.

The solubility of calcium sulfite (CaSO3) in water is approximately 0.209 grams per 100 mL at room temperature.

Now, we can use this solubility to calculate the mass of calcium sulfite in 175 mL of the saturated solution:

(0.209 grams CaSO3 / 100 mL) * 175 mL = 0.36575 grams

Therefore, the mass of calcium sulfite dissolved in 175 mL of a saturated solution is approximately 0.366 grams.

The solubility of calcium sulfite in water depends on various factors such as temperature and pressure. However, if you know the solubility of calcium sulfite at a given temperature and pressure, you can use the equation below to calculate the mass of calcium sulfite that is dissolved in 175 ml of a saturated solution:

Mass of calcium sulfite = Solubility of calcium sulfite x Volume of solution
Where the solubility of calcium sulfite is expressed in grams per milliliter (g/ml) or grams per liter (g/L), and the volume of the solution is expressed in milliliters (ml) or liters (L).

Visit here to learn more about pressure  : https://brainly.com/question/9270178
#SPJ11

Suppose the stockroom made mistake and Eave You mixture of potassium chlorate and potassium chlorite: Upon analysis of this mixture, would you obtain larger Or smaller mass percent of oxygen than you would for an equal mass of pure sample of potassiumn chlorate Explain vour Answer; which should include an analysis 0f the formulas of the compounds Involved:

Answers

If a mixture of potassium chlorate and potassium chlorite is analyzed for its oxygen content, the mass percent of oxygen obtained would be smaller than what would be obtained for an equal mass of pure potassium chlorate.

Why would this be the case ?

Potassium chlorate has the chemical formula KClO3, which contains three oxygen atoms in each molecule, while potassium chlorite has the formula KClO2 and contains only two oxygen atoms in each molecule. When the two compounds are mixed, the resulting mixture contains fewer oxygen atoms per unit mass than a pure sample of potassium chlorate.

Therefore, the mass percent of oxygen in the mixture would be smaller than what would be obtained for an equal mass of pure potassium chlorate. The exact difference in the mass percent of oxygen would depend on the relative proportions of potassium chlorate and potassium chlorite in the mixture.

Find out more on Potassium Chlorate at https://brainly.com/question/30954568

#SPJ1

hypochlorous acid, hclo, has a pka of 7.54. what are [h3o ], ph, [clo-], and [hclo] in 0.125 m hclo? [h3o ]

Answers

The solution is acidic (pH < 7), and the majority of the hypochlorous acid molecules have dissociated into H3O+ and ClO- ions.

What is the dissociation of hypochlorous acid (HClO) in water?

The dissociation of hypochlorous acid (HClO) in water can be represented as:

HClO + H2O ⇌ H3O+ + ClO-

The equilibrium constant expression for this reaction is:

Ka = [H3O+][ClO-]/[HClO]

We can use the following expressions to calculate the concentrations of the species in solution:

[H3O+] = Ka * [HClO] / [ClO-]

[ClO-] = [HClO] / (Ka/[H3O+])

[HClO] = 0.125 M (the initial concentration)

Substituting the given values, we get:

[ClO-] = [HClO] / (Ka/[H3O+]) = (0.125 M) / (10^(pKa - pH)) = (0.125 M) / (10^(7.54 - pH))

[H3O+] = Ka * [HClO] / [ClO-] = 10^(-pKa) * [HClO] / [ClO-] = 10^(-7.54) * [HClO] / [ClO-]

We can solve for pH by using the equation:

pH = -log[H3O+]

Substituting the expression for [H3O+], we get:

pH = -log(10^(-7.54) * [HClO] / [ClO-]) = -log(10^(-7.54)) + log([ClO-]/[HClO])

Simplifying the expression, we get:

pH = 7.54 + log([ClO-]/[HClO])

Substituting the given values, we get:

[ClO-] = (0.125 M) / (10^(7.54 - pH))

[H3O+] = 10^(-7.54) * (0.125 M) * (10^(pH - 7.54)) / (0.125 M / (10^(7.54 - pH)))

Simplifying, we get:

[ClO-] = 10^(-pH)

[H3O+] = 10^(-pH)

Finally, we can calculate the concentration of HClO using the expression:

[HClO] = [ClO-] * (Ka / [H3O+])

Substituting the calculated values, we get:

[HClO] = 10^(-pH) * (10^(7.54) / 10^(-pH)) = 10^(7.54 - 2pH)

Therefore, in 0.125 M HClO solution:

[H3O+] = [ClO-] = 10^(-pH)

[ClO-] = 10^(-pH)

[HClO] = 10^(7.54 - 2pH)

pH = 1/2(7.54 - log(0.125)) = 3.05

Substituting the pH into the expressions for [H3O+], [ClO-], and [HClO], we get:

[H3O+] = [ClO-] = 10^(-pH) = 9.13 × 10^(-4) M

[HClO] = 10^(7.54 - 2pH) = 1.98 × 10^(-4) M

This means that the solution is acidic (pH < 7), and the majority of the hypochlorous acid molecules have dissociated into H3O+ and ClO- ions.

Learn more about hypochlorous acid

brainly.com/question/16984896

#SPJ11

ΔH°transfer and ΔS°transfer of propyl red from the aqueous layer to the cyclohexane layer are both positive. For temperatures at which ΔG°transfer is negative, the transfer of the dye must be ______ .
a. nonspontaneous
b. enthalpy driven
c. entropy driven
d. exothermic

Answers

ΔH° (heat change) transfer and ΔS°transfer of propyl red from the aqueous layer to the cyclohexane layer are both positive. For temperatures at which ΔG°transfer is negative, the transfer of the dye must be entropy driven.

When both ΔH°transfer and ΔS°transfer are positive, it means that the transfer of propyl red from the aqueous layer to the cyclohexane layer is endothermic (requires energy input) and results in an increase in disorder or randomness.

For ΔG°transfer to be negative, the change in free energy during the transfer must be negative, which means that the process is spontaneous and thermodynamically favorable. In this case, since both ΔH°transfer and ΔS°transfer are positive, the transfer of the dye must be driven by an increase in entropy (disorder) rather than enthalpy (heat content). Therefore, the correct answer is c. entropy driven.

More on heat change: https://brainly.com/question/13981230

#SPJ11

Choose the most suitable negative or positive control for the test of each macromolecule. You may use one answer to more than one question; but, not to all questions with one answer.
Negative control for detection of protein Positive control for detection of starch Negative control for detection of starch
Positive control for detection of protein in food sample Positive control for detection of lipid in food sample Negative control for detection of lipid Negative control for detection of glucose Positive control for detection of glucose in food sample
1.water 2. glucose 3. Egg albumin 4. corn oil 5. corn starch
6. sucrose 7. cellulose
8. amino acid

Answers

The most suitable negative or positive controls for the test of each macromolecule are:
1.  Negative control for detection of protein: Water
2. Positive control for detection of starch: Corn starch
3. Negative control for detection of starch: Water
4. Positive control for detection of protein in food sample: Egg albumin
5. Positive control for detection of lipid in food sample: Corn oil
6. Negative control for detection of lipid: Water
7. Negative control for detection of glucose: Water
8. Positive control for detection of glucose in food sample: Glucose


Food Testing

The macromolecules include carbohydrate, protein, lipid and nucleic acid. To check the presence of this macromolecule within the food, can be examined by doing the food test. It involves adding the reagent into a food sample which changes the color.

Protein : using Biuret reagent, positive indicator is shown with purple color (For example, tofu, egg albumin, etc)Starch : using iodine reagent,  positive indicator is shown with blue black color (For example, corn starch, rice, etc)Lipid : using ethanol, positive indicator is shown with white emulsion (For example, oil, etc)Glucose : using Benedict reagent,  positive indicator is shown brick red precipitate (For example, glucose).

Water is commonly used as a negative control in chemical tests.


Learn more about food testing by clicking this link :

https://brainly.com/question/29751259
#SPJ11

select all central atoms that can form compounds with an expanded octet.
a. C
b. N
c. Se
d. I
e. P

Answers

The central atoms that can form compounds with an expanded octet are:
c. Se
d. I
e. P

Your answer: c, d, e.


Central atoms that can form compounds with an expanded octet are typically those found in period 3 or higher on the periodic table, as they have d-orbitals available for bonding. Based on the options given:


a. C (Carbon) - Cannot form an expanded octet, as it is in period 2.
b. N (Nitrogen) - Cannot form an expanded octet, as it is in period 2.
c. Se (Selenium) - Can form an expanded octet, as it is in period 4.
d. I (Iodine) - Can form an expanded octet, as it is in period 5.
e. P (Phosphorus) - Can form an expanded octet, as it is in period 3.

Learn more about Expanded octet here:

https://brainly.com/question/10535983

#SPJ11

if you reacted 450 gg of trimethylgallium with 300 gg of arsine, what mass of gaasgaas could you make?

Answers

By reacting 450 g of trimethylgallium with 300 g of arsine, we can make a maximum of 281.5 g of GaAs.

To answer your question, we need to use stoichiometry to determine the mass of GaAs that can be made from the given amounts of trimethylgallium and arsine.
The balanced chemical equation for the reaction between trimethylgallium and arsine is:
[tex]2 (CH_3)_3Ga[/tex] + 3 [tex]AsH_3[/tex] → GaAs + 3 [tex]CH_4[/tex]
This tells us that for every 2 moles of trimethylgallium (TMG) reacted, we can produce 1 mole of GaAs. Therefore, we need to convert the given masses of TMG and arsine into moles to determine the limiting reactant and the maximum amount of GaAs that can be produced.
Using the molar masses of TMG and arsine (M(TMg) = 114.95 g/mol and [tex]M(AsH_3)[/tex] = 77.95 g/mol), we can calculate the number of moles of each reactant:
n(TMg) = 450 gg / 114.95 g/mol = 3.91 mmol
n([tex]AsH_3[/tex]) = 300 gg / 77.95 g/mol = 3.85 mmol
Since the stoichiometric ratio of TMG to [tex]AsH_3[/tex] is 2:3, we can see that TMG is the limiting reactant because it has fewer moles available than [tex]AsH_3[/tex]. Therefore, we can use the amount of TMG to calculate the maximum amount of GaAs that can be produced:
n(GaAs) = 1/2 * n(TMg) = 1/2 * 3.91 mmol = 1.95 mmol
Finally, we can convert the number of moles of GaAs into a mass using the molar mass of GaAs (M(GaAs) = 144.64 g/mol):
mass(GaAs) = n(GaAs) * M(GaAs) = 1.95 mmol * 144.64 g/mol = 281.5 g
Therefore, by reacting 450 g of trimethylgallium with 300 g of arsine, we can make a maximum of 281.5 g of GaAs.

Learn more about stoichiometry :

https://brainly.com/question/30215297

#SPJ11

Balance the following redox reaction Sn4+ + Mn --> Mn2+ + Sn, how many electrons are transferred in the balanced reaction?

Answers

The balanced redox reaction is Sn⁴⁺ + 2Mn --> 2Mn²⁺ + Sn. A total of 4 electrons are transferred in the balanced equation.

1: Determine the oxidation states.
Sn⁴⁺ has an oxidation state of +4, Mn has an oxidation state of 0, Mn²⁺ has an oxidation state of +2, and Sn has an oxidation state of 0.

2: Determine the number of electrons transferred.
Sn⁴⁺ is reduced to Sn (0), so it gains 4 electrons.
Mn (0) is oxidized to Mn²⁺, so it loses 2 electrons.

3: Balance the electron transfer.
To balance the electron transfer, we need the same number of electrons gained and lost. Multiply the number of Mn atoms by 2 to match the 4 electrons gained by Sn⁴⁺.
2Mn (0) is oxidized to 2Mn²⁺, losing 4 electrons in total.

4: Write the balanced equation.
The balanced redox reaction is Sn⁴⁺ + 2Mn --> 2Mn²⁺ + Sn.
In this balanced reaction, 4 electrons are transferred in total.

Learn more about balanced reactions:

https://brainly.com/question/12497800

#SPJ11

The balanced redox reaction is Sn⁴⁺ + 2Mn --> 2Mn²⁺ + Sn. A total of 4 electrons are transferred in the balanced equation.

1: Determine the oxidation states.
Sn⁴⁺ has an oxidation state of +4, Mn has an oxidation state of 0, Mn²⁺ has an oxidation state of +2, and Sn has an oxidation state of 0.

2: Determine the number of electrons transferred.
Sn⁴⁺ is reduced to Sn (0), so it gains 4 electrons.
Mn (0) is oxidized to Mn²⁺, so it loses 2 electrons.

3: Balance the electron transfer.
To balance the electron transfer, we need the same number of electrons gained and lost. Multiply the number of Mn atoms by 2 to match the 4 electrons gained by Sn⁴⁺.
2Mn (0) is oxidized to 2Mn²⁺, losing 4 electrons in total.

4: Write the balanced equation.
The balanced redox reaction is Sn⁴⁺ + 2Mn --> 2Mn²⁺ + Sn.
In this balanced reaction, 4 electrons are transferred in total.

Learn more about balanced reactions:

https://brainly.com/question/12497800

#SPJ11

what is the pH of a 0.3 M HF solution (Ka = 7.2 x 10-4)

Answers

The pH of a 0.3 M HF solution with a Ka value of 7.2 x 10⁻⁴ is approximately 1.84.

To determine the pH of a 0.3 M HF solution with a Ka value of 7.2 x 10⁻⁴, you'll need to use the Ka expression and the equilibrium concentration calculations.

For the dissociation of HF:
HF ⇌ H⁺ + F⁻

Ka expression: Ka = [H⁺][F⁻] / [HF]

Let x represent the concentration of H⁺ ions formed:
[H⁺] = x, [F⁻] = x, and [HF] = 0.3 - x

Plug in the values into the Ka expression:
7.2 x 10⁻⁴ = x² / (0.3 - x)

Assuming x is small compared to 0.3, we can approximate:
7.2 x 10⁻⁴ ≈ x² / 0.3

Solve for x, which represents [H⁺]:
x = √(7.2 x 10⁻⁴ * 0.3) ≈ 0.0145

Now, to find the pH, use the formula:
pH = -log[H⁺]

pH ≈ -log(0.0145) ≈ 1.84

Therefore, the pH of the 0.3 M HF solution is approximately 1.84.

Learn more about pH here: https://brainly.com/question/26424076

#SPJ11

Describe and explain how crude oil is separated into fractions by fractional distillation

Answers

Answer: Firstly, crude oil is heated to a high temperature. This causes hydrocarbons to evaporate and turn into gas. The crude oil vapour is fed into a fractional distillation column. This column is hotter at the bottom and cooler at the top. The hydrocarbon vapour rises up the column. Hydrocarbons condense (turn back to liquid) when they reach their boiling point. They continue to rise until they condense and the liquid fractions are then removed. Very long chain hydrocarbons have high boiling points and do not condense and are removed at the bottom and very short chain hydrocarbons have very low boiling points and are removed as gases from the top.

Explanation: This process is done as crude oil is a mixture of hydrocarbons and different hydrocarbons have different boiling points.

Explanation:

At the beginning of the fractional distillation process, crude oil is heated and most of it evaporates. It enters the fractionating column as a gas. As the gas rises up the column, the crude oil fractions cool and condense out at different levels, depending on their boiling points. Fractions can be used as fuels.

please make me brainalist and keep smiling dude I hope you will be satisfied with my answer

a voltaic cell is constructed in which the following cell reaction occurs. the half-cell compartments are connected by a salt bridge. cl2(g) sn(s) 2cl-(aq) sn2 (aq)

Answers

The cell reaction in the voltaic cell is the oxidation of tin (Sn) at the anode and the reduction of chlorine (Cl₂) at the cathode.

The half-cell compartment containing Sn is the anode, while the half-cell compartment containing Cl₂ is the cathode. The salt bridge connects the two compartments and allows the flow of ions to maintain charge balance. The overall cell reaction can be represented as follows:

Sn(s) + 2Cl-(aq) → SnCl₂(aq) + 2e⁻ (anode)

Cl₂(g) + 2e → 2Cl⁻(aq) (cathode)

The cell potential for this reaction can be determined using the standard reduction potentials for the half-reactions. The standard reduction potential for the reduction of Cl₂ to 2Cl- is +1.36 V, while the standard reduction potential for the oxidation of Sn to Sn₂⁺ is -0.14 V. The cell potential can be calculated by subtracting the anode potential from the cathode potential:

Ecell = E°cathode - E°anode

Ecell = +1.36 V - (-0.14 V)

Ecell = +1.5 V

This positive cell potential indicates that the reaction is spontaneous and that the voltaic cell can produce electrical energy from the chemical reaction.

Learn more about voltaic cell: https://brainly.com/question/1370699

#SPJ11

how many moles of glucose are required to provide the carbon for the synthesis of one mole of palmitate? express your answer as an integer.

Answers

Three moles of glucose are required to provide the carbon for the synthesis of one mole of palmitate.

To determine the number of moles of glucose required to synthesize one mole of palmitate, follow these steps:
1. Identify the molecular formulas of glucose and palmitate. Glucose has the molecular formula C6H12O6, and palmitate (palmitic acid) has the molecular formula [tex]C_{16}H_{32}O_{2}[/tex].
2. Determine the number of carbon atoms in each molecule. Glucose has 6 carbon atoms, and palmitate has 16 carbon atoms.
3. Calculate the number of moles of glucose needed to provide the carbon atoms for one mole of palmitate. Since palmitate has 16 carbon atoms and glucose has 6 carbon atoms, divide the number of carbon atoms in palmitate by the number of carbon atoms in glucose:
16 carbon atoms (palmitate) ÷ 6 carbon atoms (glucose) = 2.67 moles of glucose
4. Round the answer to the nearest whole number. In this case, the number of moles of glucose needed is approximately 3 moles.

To learn more about palmitate click here https://brainly.com/question/30890676

#SPJ11

Be sure to answer all parts. Give the n and 1 values and the number of orbitals for sublevel Gg. n value l value number of orbitals

Answers

The sublevel Gg refers to the 4g sublevel. The n value for this sublevel is 4, as it is the fourth energy level. The l value for the g sublevel is 4, as it corresponds to the fourth orbital shape (g is the fourth letter of the alphabet). T

he number of orbitals in the 4g sublevel is 9, as there are 2l+1 orbitals in each sublevel. Therefore, 2(4) + 1 = 9 orbitals in the 4g sublevel.
The sublevel "G" does not exist in the current electron orbital model. Electron sublevels are represented by lowercase letters (s, p, d, and f), which correspond to l values of 0, 1, 2, and 3, respectively. Since the "G" sublevel is not a part of this model, it's not possible to provide the n and l values or the number of orbitals for it.

The number of sublevels in an energy level is equal to the principal quantum number, n. Therefore, the first energy level (n=1) has one sublevel (s), the second energy level (n=2) has two sublevels (s and p), the third energy level (n=3) has three sublevels (s, p, and d), and so on.

Visit here to learn more about Electron sublevels brainly.com/question/30065989

#SPJ11

Which one of the following compounds utilizes both ionic and covalent bonding?
A) Na2SO4 B) AlCl3 C) PO4-
D) NH4
E) CaO

Answers

Compounds utilize both ionic and covalent bonding A) Na2SO4, also known as sodium sulfate.

This compound utilizes both ionic and covalent bonding in its structure.

Ionic bonding occurs between the sodium (Na) cation and the sulfate (SO4) anion. Na has a positive charge, while SO4 has a negative charge. This attraction between opposite charges causes the two ions to bond together, forming an ionic bond.

Covalent bonding occurs within the sulfate anion itself. The sulfur (S) atom and the four oxygen (O) atoms share electrons  to achieve a stable electron configuration. This sharing of electrons is called a covalent bond.

In Na2SO4, the ionic and covalent bonding work together to form a stable compound. The ionic bonding between Na and SO4 creates a crystal lattice structure, while the covalent bonding within the SO4 anion helps to hold the molecule together.

It is important to note that not all compounds utilize both ionic and covalent bonding. Some compounds, such as AlCl3 (B), utilize only ionic bonding, while others, such as PO4- (C), utilize only covalent bonding. Therefore, it is important to understand the chemical properties of each element and ion in a compound to determine the type of bonding that is occurring. Therefore the correct option is A

Know more about covalent bonding  here:

https://brainly.com/question/3447218

#SPJ11

what is the ph of a 0.50 m h2se solution that has the stepwise dissociation constants ka1 = 1.3 × 10-4 and ka2 = 1.0 × 10-11?

Answers

To calculate the pH of a 0.50 M [tex]H_{2} Se[/tex] solution, we need to consider the dissociation of [tex]H_{2} Se[/tex] in water. [tex]H_{2} Se[/tex] can undergo two stepwise dissociations as follows: the pH of a 0.50 M [tex]H_{2} Se[/tex] solution with dissociation constants [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex] and [tex]Ka_{2}[/tex] = 1.0 ×[tex]10^{-11}[/tex] is approximately 2.51.

[tex]H_{2} Se[/tex]⇌ [tex]H^{+}[/tex] + [tex]HSe^{-}[/tex] ; [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex]

[tex]HSe^{-}[/tex] ⇌ [tex]H^{+}[/tex] + [tex]Se2^{-}[/tex] ; [tex]Ka_{2}[/tex] = 1.0 × [tex]10^{-11}[/tex]

The dissociation constant [tex]Ka_{1}[/tex] represents the equilibrium constant for the reaction [tex]H_{2} Se[/tex] ⇌ [tex]H^{+}[/tex] + [tex]HSe^{-}[/tex]. [tex]Ka_{1}[/tex] can be used to calculate the concentration of [tex]H^{+}[/tex] and [tex]HSe^{-}[/tex] at equilibrium using the following equations:

[tex]Ka_{1}[/tex] = [[tex]H^{+}[/tex]][[tex]HSe^{-}[/tex]]/[[tex]H_{2} Se[/tex]]

[[tex]H^{+}[/tex]] = sqrt(Ka1*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]))

[[tex]HSe^{-}[/tex]] = [tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]])

Now, we need to consider the dissociation of [tex]HSe^{-}[/tex] to calculate the concentration of [tex]Se2^{-}[/tex]and [tex]H^{+}[/tex] in solution. We can use the equilibrium constant [tex]Ka_{2}[/tex] for this reaction, as follows:

[tex]Ka_{2}[/tex] = [[tex]H^{+}[/tex]][[tex]Se2^{-}[/tex]]/[[tex]HSe^{-}[/tex]]

[[tex]Se_{2} ^{-}[/tex]] = [tex]Ka_{2}[/tex]*[[tex]HSe^{-}[/tex]]/[[tex]H^{+}[/tex]]

Putting these equations together, we can calculate the concentrations of all species in solution, and use the equation pH = -log[[tex]H^{+}[/tex]] to determine the pH:

[[tex]H_{2} Se[/tex]] = 0.50 M

[tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex]

[tex]Ka_{2}[/tex] = 1.0 × [tex]10^{-11}[/tex]

[[tex]H^{+}[/tex]] = sqrt([tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]])) = 3.06 × [tex]10^{-3}[/tex] M

[[tex]HSe^{-}[/tex]] = [tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]/(1+[tex]Ka_{1}[/tex]*[[tex]H_{2} Se[/tex]]) = 4.97 × [tex]10^{-2}[/tex] M

[[tex]Se2^{-}[/tex]] = [tex]Ka_{2}[/tex]*[[tex]HSe^{-}[/tex]]/[[tex]H^{+}[/tex]] = 4.01 × [tex]10^{-17}[/tex] M

pH = -log[[tex]H^{+}[/tex]] = 2.51

Therefore, the pH of a 0.50 M [tex]H_{2} Se[/tex] solution with dissociation constants [tex]Ka_{1}[/tex] = 1.3 × [tex]10^{-4}[/tex] and [tex]Ka_{2}[/tex] = 1.0 ×[tex]10^{-11}[/tex] is approximately 2.51.

Learn more about pH

https://brainly.com/question/27945512

#SPJ4

according to the given equation, how many moles of o2 are required to react with 3.6 moles of h2? 2h2 o2⟶2h2o

Answers

There are 1.8 moles of O2 required to react with 3.6 moles of H2. According to stoichiometry, the coefficients in a balanced equation represent the mole ratio of reactants and products. Therefore, for every 2 moles of H2, 1 mole of O2 is required to react completely.

To determine how many moles of O2 are required to react with 3.6 moles of H2 according to the given equation

2H2 + O2 ⟶ 2H2O, follow these steps:

1. Write down the balanced equation: 2H2 + O2 ⟶ 2H2O
2. Identify the mole ratio of H2 to O2 from the balanced equation, which is 2:1.
3. Divide the given moles of H2 (3.6 moles) by the mole ratio (2) to find the required moles of O2.

So, the calculation is:
3.6 moles H2 × (1 mole O2 / 2 moles H2) = 1.8 moles O2

To learn more about  stoichiometry please visit:

https://brainly.com/question/30215297

#SPJ11

calculate the volume in milliliters of 3.00 m potassium hydroxide that contains 49.6 g of solute.

Answers

The amount of 3.00 m potassium hydroxide that contains 49.6 g of solute, measured in millilitres, is 294 mL.

To calculate the volume in milliliters of 3.00 m potassium hydroxide that contains 49.6 g of solute, we need to use the formula:
moles = mass/molar mass
First, we need to determine the number of moles of potassium hydroxide present in the solution. The molar mass of potassium hydroxide (KOH) is 56.11 g/mol.
moles = 49.6 g / 56.11 g/mol
moles = 0.883 moles
Next, we can use the definition of molarity to find the volume of the solution:
molarity = moles / volume (in liters)
Rearranging the equation, we get:
volume (in liters) = moles / molarity
Since the molarity is 3.00 m, we can substitute the values and convert the volume to milliliters:
volume (in liters) = 0.883 moles / 3.00 mol/L
volume (in liters) = 0.294 L
volume (in milliliters) = 294 mL
Therefore, the volume in milliliters of 3.00 m potassium hydroxide that contains 49.6 g of solute is 294 mL.

To learn more about potassium hydroxide visit;

https://brainly.com/question/21904397

#SPJ11

What is more water soluble, N-butyl or tbutyl alcohol and why

Answers

N-butyl alcohol is more water-soluble than t-butyl alcohol. This is due to the difference in their molecular structure, which affects their ability to form hydrogen bonds with water molecules.

The solubility of a substance in water depends on its ability to form hydrogen bonds with water molecules. Hydrogen bonding occurs between hydrogen atoms of water molecules and polar functional groups, such as -OH, -NH, and -COOH, of the solute molecules. The stronger the hydrogen bonding between the solute and water molecules, the more soluble the solute will be in water.

N-butyl alcohol has a linear structure with a primary -OH group attached to a four-carbon chain. The primary -OH group can form strong hydrogen bonds with water molecules, and the four-carbon chain can also interact with water through dipole-dipole interactions and van der Waals forces. This allows n-butyl alcohol to dissolve readily in water.

In contrast, t-butyl alcohol has a branched structure with a tertiary -OH group attached to a three-carbon chain. The tertiary -OH group cannot form strong hydrogen bonds with water molecules due to its hindered location, and the three-carbon chain also has limited interaction with water molecules.

Therefore, t-butyl alcohol is less soluble in water compared to n-butyl alcohol.

to learn more about N-butyl alcohol click here:

brainly.com/question/30035247

#SPJ11

Use the calculated molecular weight of the protein to determine the amount of your protein required to make 5 mL of a 10 μM solution solution for further fictitious spectroscopic analysis?What absorbance would you predict for this solution at 280 nm based on the calculated extinction coefficient (using the Beer -Lambert law) ?mw:42685.15ext.coeff: 79535 

Answers

We predict an absorbance of 0.795 at 280 nm for this 10 μM solution of the protein. In chemistry, a solution is a homogeneous mixture of two or more substances, where the substances are completely dissolved in each other.

To determine the amount of protein required to make a 10 μM solution in 5 mL, we need to first calculate the number of moles of the protein needed.
10 μM means 10 micromoles per liter or 0.01 millimoles per liter. Therefore, for 5 mL (0.005 L) of solution, we need 0.005 x 0.01 = 0.00005 millimoles of the protein.
To convert millimoles to grams, we need to multiply by the molecular weight (mw) of the protein:
0.00005 mmol x 42,685.15 g/mol = 2.134 mg of protein is required to make 5 mL of a 10 μM solution.
Now, to predict the absorbance of this solution at 280 nm using the Beer-Lambert law, we need to know the path length (distance that light travels through the solution) and the extinction coefficient (ext. coeff) of the protein at 280 nm.
Assuming a path length of 1 cm, we can use the following equation:
A = εcl
where A is the absorbance, ε is the ext. coeff (79,535), c is the concentration in mol/L (0.01 mM = 0.00001 mol/L), and l is the path length in cm (1 cm).
Plugging in these values, we get:
A = 79,535 x 0.00001 x 1 = 0.795

Learn more about solution here:

https://brainly.com/question/13481147

#SPJ11

What is the de Broglie wavelength (in m) of a 25 g object moving at a speed of 5.0 m/s? O 5.3 x 10-33 m O 1.3 x 10-34m O 5.3 x 10-36 m O 1.3 x 10-37 m O 6.0x 107 m

Answers

The de Broglie wavelength of the 25 g object moving at a speed of 5.0 m/s is 5.3 x 10^-34 m.

How to calculate the wavelength of an object?

The de Broglie wavelength (in m) of an object is given by the equation λ = h/mv, where h is Planck's constant (6.626 x 10^-34 J*s), m is the mass of the object, v is the velocity of the object.

First, convert the mass from grams to kilograms:
25 g = 0.025 kg

Next, plug the values into the formula:
λ = (6.626 x 10^-34 Js) / (0.025 kg * 5.0 m/s)

Calculate the wavelength:
λ = (6.626 x 10^-34 Js) / (0.125 kg*m/s)
λ = 5.3 x 10^-34 m

To know more about de-broglie wavelength:

https://brainly.com/question/16629783

#SPJ11

The de Broglie wavelength of the 25 g object moving at a speed of 5.0 m/s is 5.3 x 10^-34 m.

How to calculate the wavelength of an object?

The de Broglie wavelength (in m) of an object is given by the equation λ = h/mv, where h is Planck's constant (6.626 x 10^-34 J*s), m is the mass of the object, v is the velocity of the object.

First, convert the mass from grams to kilograms:
25 g = 0.025 kg

Next, plug the values into the formula:
λ = (6.626 x 10^-34 Js) / (0.025 kg * 5.0 m/s)

Calculate the wavelength:
λ = (6.626 x 10^-34 Js) / (0.125 kg*m/s)
λ = 5.3 x 10^-34 m

To know more about de-broglie wavelength:

https://brainly.com/question/16629783

#SPJ11

What would happen to the optimal amount of pollution if studies found dangerous effects of SO2 cause cancer and the government takes away subsidies to companies for cleaning up their pollution? Multiple Choice Increase Decrease Uncertain Stay the same

Answers

The optimal amount of pollution would most likely decrease if studies found dangerous effects of [tex]SO_2[/tex]  causing cancer and the government takes away subsidies to companies for cleaning up their pollution.

Discovery of dangerous effects of [tex]SO_2[/tex] : This new information about [tex]SO_2[/tex] causing cancer would increase public awareness and demand for cleaner air, which would pressure companies to reduce their pollution levels. Removal of subsidies: Without financial incentives from the government to clean up pollution, companies would need to bear the full cost of pollution control measures. As a result, they would have a stronger motivation to reduce their pollution levels to minimize their expenses.

Therefore, Considering these factors, the optimal amount of pollution would decrease as companies would have to take responsibility for pollution control costs and public demand for cleaner air increases.

To know more about  pollution refer here :

https://brainly.com/question/30366736

#SPJ11

Using only the periodic table arrange the following elements in order of increasing ionization energy: tellurium, sulfur, polonium, selenium .

Answers

Answer: Polonium, Tellurium, Selenium, Sulfur

Explanation:

In our periodic trend, we know the ionization energy increases as we go left --> right and bottom --> top. In this example, in Group 16, sulfur is above the other 3.

How many moles of NaOH are needed to react with 14.0 g of KHC,H,o

Answers

The number of moles of NaOH that are needed to react with 14.0 g of KHC₈H₄O₄ is 0.0688 moles.

To determine the number of moles of NaOH needed to react with 14.0 g of KHC₈H₄O₄, we will use stoichiometry.

First, find the molar mass of KHC₈H₄O₄:
K = 39.10 g/mol
C₈H₄O₄= 8(12.01) + 4(1.01) + 4(16.00) = 96.08 + 4.04 + 64.00 = 164.12 g/mol
Total molar mass = 39.10 + 164.12 = 203.22 g/mol

Now, convert the mass of KHC₈H₄O₄to moles:
14.0 g / 203.22 g/mol = 0.0688 moles of KHC₈H₄O₄

The balanced chemical equation for the reaction is:
KHC₈H₄O₄+ NaOH → NaKC₈H₄O₄+ H₂O

From the balanced equation, we see that 1 mole of NaOH reacts with 1 mole of KHC₈H₄O₄.

Therefore, 0.0688 moles of NaOH are needed to react with 14.0 g of KHC₈H₄O₄.

The problem seems incomplete, it must have been:

"How many moles of NaOH are needed to react with 14.0 g of KHC₈H₄O₄?"

Learn more about stoichiometry here: https://brainly.com/question/30820349

#SPJ11

How do you find pKa1 and pKa2 from a titration curve?

Answers

To get pKa1 and pKa2 from a titration curve, identify the buffering regions, locate the midpoints, determine the pH values at the midpoints, and assign the lower value to pKa1 and the higher value to pKa2.

To get pKa1 and pKa2 from a titration curve, follow these steps:
Step:1. Identify the two buffering regions on the titration curve: These are the relatively flat portions of the curve where pH changes minimally upon the addition of titrant. They correspond to the half-equivalence points where half of the acid has reacted with the base.
Step:2. Locate the midpoints of these buffering regions: The midpoints of the buffering regions correspond to the points where the pH is equal to the pKa values. To find these midpoints, look for the points in each buffering region where the slope is the least steep.
Step:3. Determine the pH values at the midpoints: Once you have located the midpoints, find the corresponding pH values on the y-axis of the titration curve. These pH values are equal to the pKa values.
Step:4. Assign pKa1 and pKa2: The lower pH value corresponds to pKa1, and the higher pH value corresponds to pKa2. This is because pKa1 is associated with the first ionizable proton (which is usually more acidic), and pKa2 is associated with the second ionizable proton.

Learn more about titration curve here, https://brainly.com/question/31030054

#SPJ11

Aluminum reacts with sulfur to form aluminum sulfide. If 31.9 g of Al reacted with 72.2 g of S, what is the theoretical yield of aluminum sulfide in grams? (A) 88.8 g (C) 57.2 g (B) 69.7 g (D) 113 g

Answers

The theoretical yield of aluminum sulfide in grams

To find the theoretical yield of aluminum sulfide, we first need to determine which reactant is limiting. This can be done by using the given masses of aluminum and sulfur to calculate their respective moles, and then comparing the mole ratios from the balanced chemical equation.
The balanced equation for the reaction is:
2 Al + 3 S → Al2S3
Using the given masses, we can calculate the moles of each reactant:
moles of Al = 31.9 g / 26.98 g/mol = 1.18 mol
moles of S = 72.2 g / 32.06 g/mol = 2.25 mol
The mole ratio from the equation is 2:3 for Al:S, so we can see that sulfur is the limiting reactant because there are more moles of S than required to react with the available Al.
To find the theoretical yield of Al2S3, we need to use the mole ratio from the equation to calculate the moles of product that should be formed, and then convert that to grams using the molar mass of Al2S3:
moles of Al2S3 = 1.18 mol Al x (1 mol Al2S3 / 2 mol Al) = 0.59 mol Al2S3
theoretical yield of Al2S3 = 0.59 mol x 150.17 g/mol = 88.8 g
Therefore, the correct answer is (A) 88.8 g.
To calculate the theoretical yield of aluminum sulfide, we first need to determine the limiting reactant. The balanced equation for the reaction is:
2 Al + 3 S → Al₂S₃
First, we find the moles of Al and S:
- Moles of Al = 31.9 g / (26.98 g/mol) = 1.183 mol
- Moles of S = 72.2 g / (32.07 g/mol) = 2.251 mo
Now, we determine the mole ratio of Al to S:
- Mole ratio = 1.183 mol Al / 2.251 mol S = 0.526
Since the mole ratio (0.526) is less than the stoichiometric ratio (2/3 = 0.667), Al is the limiting reactant.
Now, we can calculate the moles of Al₂S₃ produced:
- Moles of Al₂S₃ = (1.183 mol Al) * (1 mol Al₂S₃ / 2 mol Al) = 0.5915 mol
Finally, we can find the theoretical yield in grams:
- Theoretical yield = (0.5915 mol Al₂S₃) * (150.16 g/mol) = 88.8 g
The theoretical yield of aluminum sulfide is 88.8 g (Option A).

To learn more about theoretical yield, click here:

brainly.com/question/14966377

#SPJ11

the color of colbalt nitrate solution is red . would you be able to use your beer's law equation to calculate an unknown concentration of colbalt nitrate solution? justify your answer.

Answers

Yes, you can use the Beer's Law equation to calculate the unknown concentration of a cobalt nitrate solution. Beer's Law, also known as the Beer-Lambert Law, states that the absorbance of a solution is directly proportional to its concentration and the path length.

Mathematically, it is represented as A = εcl, where A is the absorbance, ε is the molar absorptivity, c is the concentration of the solution, and l is the path length.

In the case of cobalt nitrate, its red color indicates that it absorbs light in the visible spectrum. By measuring the absorbance of the solution at a specific wavelength where cobalt nitrate has a known molar absorptivity, you can determine the concentration of the unknown solution.

To apply Beer's Law, you would need a spectrophotometer to measure the absorbance of the cobalt nitrate solution. Additionally, you must have a set of known concentration samples, called calibration standards, to create a calibration curve. Plotting the absorbance values against the known concentrations, you can generate a linear relationship, which represents the Beer's Law equation for cobalt nitrate at the chosen wavelength.

With the established calibration curve, you can measure the absorbance of the unknown cobalt nitrate solution, locate its value on the curve, and determine its concentration. Thus, Beer's Law is a reliable and accurate method to calculate the unknown concentration of a cobalt nitrate solution.

For more such questions on Beer-Lambert Law.

https://brainly.com/question/30404288#

#SPJ11

If an electron and a hydrogen ion are removed from a structure during a chemical reaction, the structure is said to have been:

Answers

If an electron and a hydrogen ion are removed from a structure during a chemical reaction, the structure is said to have been oxidized. This means that it has lost electrons and/or gained oxygen atoms.

Oxidation is an important process in many chemical reactions, including the breakdown of organic molecules in cells during respiration. The loss of electrons and/or gain of oxygen atoms results in the formation of new chemical bonds and the release of energy.

Oxidation can also lead to the formation of free radicals, which can damage cells and tissues if not neutralized by antioxidants. Overall, oxidation plays a vital role in many chemical and biological processes and is essential for life as we know it.

To know more about Oxidation click on below link:

https://brainly.com/question/16976470#

#SPJ11

Other Questions
Help fast The back-end of an app is best described as: Choose the most suitable negative or positive control for the test of each macromolecule. You may use one answer to more than one question; but, not to all questions with one answer.Negative control for detection of protein Positive control for detection of starch Negative control for detection of starchPositive control for detection of protein in food sample Positive control for detection of lipid in food sample Negative control for detection of lipid Negative control for detection of glucose Positive control for detection of glucose in food sample1.water 2. glucose 3. Egg albumin 4. corn oil 5. corn starch6. sucrose 7. cellulose8. amino acid A sample of 81 items is taken from a population with a standard deviation of 45 kilograms. The sample mean is 112 kilograms. What weights are included in the 99.7% of confidence interval? Methyl alcohol. CH_3OH_3 reacts with benzoic acid C_6H_5CO_2H. to form an ester Using structural formulas, write the aquation for the reaction What is the name of this ester? Be sure to answer all parts. Give the n and 1 values and the number of orbitals for sublevel Gg. n value l value number of orbitals Can somebody help me with this? (Sin,Cos,Tan) With a 2.0-mm constriction:What is the platelet's speed before and after it passes through the constriction? What is the platelet's speed while it passes through the constriction? In a game of chance, players spin the pointer of a spinner with six equal-sized sections.The outcomes of the game are shown in the table below.Which outcome has a frequency closest to its expected frequency?A)1B)2C)3D)4 Can a man live in isolation what observations support the idea of a subsurface ocean on enceladus? Fountains of ice spray from surface vents. True or false? What is the term for the surrealist technique of painting on glass or paper and then pressing it directly onto the canvas to create a texture? how many moles of glucose are required to provide the carbon for the synthesis of one mole of palmitate? express your answer as an integer. Qu tipo de fracciones 5/5 Find the measures of angle A and B. Round to the nearest degree. Compare and contrast the epics of Dausi and Sundiata. Check image down below. Very urgent Can you answer this please Find the solution for each equation. A particular star is d = 56.1 light-years (ly) away, with a power output of P = 3.00 x 1026 W. Note that one light-year is the distance traveled by the light through a vacuum in one year. (a) Calculate the intensity of the emitted light at distance d (in nW/m2). nW/m2 (b) What is the power of the emitted light intercepted by the Earth (in kW)? (The radius of Earth is 6.37 x 10 m.) kw What If? Look at the situations below and determine which ones are examples of weathering. Select ALL that apply.Wind blows rocks, sand, and dirt awayA river carries rocks and sand downstream,Plant roots break rocks apartRain wears rocks downWind wears rocks downWater dissolves limestoneRainwater washes dirt and rock downhill