answer:
The mean of a set of numbers is the sum divided by the number of terms.
mean: 21.9
Arrange the data in an ascending order and the median is the middle value. If the number of values is an even number, the median will be the average of the two middle numbers.
median: 22
The mode is the element that occurs most in the data set. In this case, 5 occurs 3 times
mode: 5
Subtract the minimum data value from the maximum data value to find the data range. In this case, the data range is
48-5=43
Range: 43
A couple of two-way radios were purchased from different stores. Two-way radio A can reach 6 miles in any direction. Two-way radio B can reach 12.88 kilometers in any direction.
Part A: How many square miles does two-way radio A cover? Use 3.14 for π and round to the nearest whole number. Show every step of your work. (3 points)
Part B: How many square kilometers does two-way radio B cover? Use 3.14 for π and round to the nearest whole number. Show every step of your work. (3 points)
Part C: If 1 mile = 1.61 kilometers, which two-way radio covers the larger area? Show every step of your work. (3 points)
Part D: Using the radius of each circle, determine the scale factor relationship between the radio coverages. (3 points)
A. Two-way radio A covers 113 square miles.
B. Rounded to the nearest whole number, two-way radio B covers 523 square kilometers.
C. Comparing the areas, we can see that radio B covers the larger area with 523 square kilometers.
D. The coverage area of radio B is approximately 1.33 times larger than the coverage area of radio A.
What is radius?Radius is a term used in geometry to describe the distance from the center of a circle or sphere to any point on its circumference or surface, respectively. It is usually denoted by the letter "r" and is measured in units of length, such as inches, centimeters, or meters. The radius of a circle is half of its diameter, while the radius of a sphere is one-half of its diameter.
Part A:
The area covered by two-way radio A can be calculated using the formula for the area of a circle:
Area = π x radius²
Radius of radio A = 6 miles
Area = 3.14 x 6²
Area = 113.04 square miles
Rounded to the nearest whole number, two-way radio A covers 113 square miles.
Part B:
The area covered by two-way radio B can also be calculated using the same formula:
Area = π x radius²
Radius of radio B = 12.88 kilometers
Area = 3.14 x (12.88)²
Area = 523.14 square kilometers
Rounded to the nearest whole number, two-way radio B covers 523 square kilometers.
Part C:
To compare the areas covered by the two-way radios, we need to convert the area covered by radio A from square miles to square kilometers, using the conversion factor given:
1 mile = 1.61 kilometers
Therefore, 1 square mile = (1.61)² square kilometers
Area covered by radio A = 113 square miles
Area covered by radio A in square kilometers = 113 x (1.61)²
Area covered by radio A in square kilometers = 290.22 square kilometers
Comparing the areas, we can see that radio B covers the larger area with 523 square kilometers.
Part D:
To determine the scale factor relationship between the radio coverages, we can divide the radius of radio B by the radius of radio A:
Scale factor = radius of radio B / radius of radio A
Scale factor = 12.88 kilometers / 6 miles
Scale factor = 12.88 kilometers / 9.66 kilometers (since 1 mile = 1.61 kilometers)
Scale factor = 1.33
This means that the coverage area of radio B is approximately 1.33 times larger than the coverage area of radio A.
To learn more about distance from the given link
https://brainly.com/question/12356021
#SPJ1
Yolanda wants to replace the grass in this triangular section of her yard with mulch. A bag of mulch costs $4.85 and covers 3 square feet. Which of the following statements accurately describe this situation? Select all that apply.
Yolanda wants to replace the grass in this triangular section of her yard with mulch. A bag of mulch costs $4.85 and covers 3 square feet. Which of the following statements accurately describe this situation? Select all that apply.
Answer:
Step-by-step explanation:
help me by answering this math question!!! i’ll mark brainliest
Answer:
30
because 1=3 so each of them are 30
PLS HELP ASAP I DONT UNDERSTAND SLOPE
Answer:
get a ruler, draw a line trough a to b and count the rise and run
Step-by-step explanation:
Edwin's soccer team has a tradition of going out for pizza after each game. Last week, the team ordered 2 medium pizzas and 4 large pizzas for a total of 56 slices. This week, the team ordered 3 medium pizzas and 3 large pizzas for a total of 54 slices.
an observer views the space shuttle from a distance of x = 2 mi from the launch pad.(a) Express the height of the space shuttle as a function of the angle of elevation θ. (b) Express the angle of elevation as a function of the height h of the space shuttle.
The angle of elevation is a function of the height of the space shuttle given by θ = arctan(h / 2).
Angle of elevation calculation.
(a) To express the height of the space shuttle as a function of the angle of elevation θ, we can use trigonometry. Let h be the height of the space shuttle above the launch pad. Then, we have:
tan(θ) = h / x
Solving for h, we get:
h = x * tan(θ)
Substituting x = 2 mi, we get:
h = 2 * tan(θ) mi
Therefore, the height of the space shuttle is a function of the angle of elevation θ given by h = 2 * tan(θ) mi.
(b) To express the angle of elevation as a function of the height h of the space shuttle, we rearrange the equation we found in part (a) as follows:
tan(θ) = h / x
tan(θ) = h / 2
Taking the inverse tangent of both sides, we get:
θ = arctan(h / 2)
Therefore, the angle of elevation is a function of the height of the space shuttle given by θ = arctan(h / 2).
Learn more about angle of elevation below.
https://brainly.com/question/88158
#SPJ1
Match the word(s) with the descriptive phrase.
1. a polyhedron with two congruent faces that lie in parallel planes
2. the sum of the areas of the faces of a polyhedron
3. the faces of a prism that are not bases
4. the sum of the areas of the lateral faces
5. a solid with two congruent circular bases that lie in parallel planes
A. lateral area
. B. lateral faces
C. prism
D. surface area
E. cylinder
Answer:
Step-by-step explanation:
1. B. lateral faces
2. D. surface area
3. B. lateral faces
4. A. lateral area
5. E. cylinder
Chelsea has 2. 24 pounds of meat. She uses 0. 16 pound of meat to make one hamburger. How many hamburgers can Chelsea make with the meat she has?
Answer:
14 hamburgers
Step-by-step explanation:
The problem uses division, but we can create a proportion to see how the division works.
Since we know that Chelsea can make 1 hamburger with 0.16 pounds and allow x to represent the number of burgers Chelsea can make with 2.24 lbs of meat, we have:
[tex]\frac{2.24}{x}=\frac{0.16}{1}[/tex]
[tex]2.24=0.16x[/tex]
As the proportion shows, we can divide 2.24 by 0.16 to get x = 14.
Check: 0.16 lbs * 14 patties = 2.24 lbs
determine the identity to (1 - (sin(x) - cos(x))^2)/(2 cos(x))a. tan (x) b. cos (x)c. sec (a)d. sin(x) e. none of these
The identity is (d) sin(x).
We can start by expanding the numerator:
(1 - (sin(x) - cos(x))^2) = 1 - (sin^2(x) - 2sin(x)cos(x) + cos^2(x))
= 1 - (1 - sin(2x))
= sin(2x)
Therefore, the expression simplifies to:
sin(2x)/(2cos(x))
Using the double angle formula for sine, sin(2x) = 2sin(x)cos(x), we get:
2sin(x)cos(x)/(2cos(x)) = sin(x)
So the identity is (d) sin(x).
To learn more about expression visit:
https://brainly.com/question/14083225
#SPJ11
The figure below shows a rectangle prism. One base of the prism is shaded
1. The volume of the prism is 144 cubic units
2. The area of the shaded base is 16units²
What is a prism?A prism is a solid shape that is bound on all its sides by plane faces. A prism can have a rectangular base( rectangular prism) or a triangular base( triangular prism) or a circular base ( cylinder) e.t.c
Generally the volume of a prism is expressed as;
V = base area × height.
base area = l × w
therefore volume = l× w ×h
The base area = l× w
= 8× 2 = 16 square units
therefore the volume of the prism = 16 × 9
= 144 cubic units
Therefore the volume of the prism is 144 cubic units and the shaded base area is 16 units².
learn more about prisms from
https://brainly.com/question/23963432
#SPJ1
a tree grows in height by 21% per
year. it is 2m tall after one year.
After how many more years will the
tree be over 20m tall
Answer:
12.08 years
Step-by-step explanation:
to overcome this problem we will have to use the exponential growth formula A = P(1+r)^t
where a is the final amount
where p is the initial amount
where r is the rate per year
where t is the number of years
we can say
20= 2(1+0.21)^t
solve the equation for t
20/2 = 2(1.21)^t/2
10 = 1.21^t
take the log of both sides we get that
t = 12.08 years
which angle measure is coterminal with the angle 7pi/12? a. 15 degrees b. 125 degrees c. 285 degrees d. 465 degress
The angle 7π/12 is coterminal with 465.5 degrees.
How to find the coterminal angle of 7π/12?To find the coterminal angle of 7π/12, we can add or subtract any multiple of 2π until we get an angle between 0 and 2π.
First, we can convert 7π/12 to degrees:
7π/12 = (7/12) * 180 ≈ 105.5 degrees
Next, we can add or subtract 360 degrees to get an angle between 0 and 360 degrees:
105.5 + 360 = 465.5
So the angle 7π/12 is coterminal with 465.5 degrees.
Therefore, the answer is d. 465 degrees.
Learn more about coterminal angle
brainly.com/question/29133154
#SPJ11
find a parametrization of the tangent line to ()=(ln()) −7 15r(t)=(ln(t))i t−7j 15tk at the point =1.
The parametrization of the tangent line to the function f(x) = ln(x) - 7/15x^3 at the point (1,-46/15) is r(t) = <1, -46/15> + t<1, -2/3>.
To find the tangent line at a point, we need the slope of the tangent line, which is the derivative of the function evaluated at that point. So, we first find the derivative of f(x):
f'(x) = 1/x - 7/5 x^2
Then, we evaluate f'(1) to find the slope at x = 1:
f'(1) = 1/1 - 7/5(1)^2 = -2/5
Thus, the slope of the tangent line is -2/5. We also know that the point of tangency is (1,-46/15), so we can use the point-slope form to find the equation of the tangent line:
y - (-46/15) = (-2/5)(x - 1)
Simplifying, we get:
y = (-2/5)x - 16/3
Now we can write the parametrization of the tangent line as r(t) = <1, -46/15> + t<1, -2/3>. This is because the direction vector of the tangent line is <1, -2/3>, which is the same as the slope of the line, and the point on the line is (1,-46/15).
So, to get the equation of the line in vector form, we start with the point <1, -46/15>, and add a scalar multiple of the direction vector <1, -2/3>. Thus, the parametrization of the tangent line is r(t) = <1, -46/15> + t<1, -2/3>.
To learn more about parametrization, visit:
https://brainly.com/question/20038346
#SPJ11
The parametrization of the tangent line to the function f(x) = ln(x) - 7/15x^3 at the point (1,-46/15) is r(t) = <1, -46/15> + t<1, -2/3>.
To find the tangent line at a point, we need the slope of the tangent line, which is the derivative of the function evaluated at that point. So, we first find the derivative of f(x):
f'(x) = 1/x - 7/5 x^2
Then, we evaluate f'(1) to find the slope at x = 1:
f'(1) = 1/1 - 7/5(1)^2 = -2/5
Thus, the slope of the tangent line is -2/5. We also know that the point of tangency is (1,-46/15), so we can use the point-slope form to find the equation of the tangent line:
y - (-46/15) = (-2/5)(x - 1)
Simplifying, we get:
y = (-2/5)x - 16/3
Now we can write the parametrization of the tangent line as r(t) = <1, -46/15> + t<1, -2/3>. This is because the direction vector of the tangent line is <1, -2/3>, which is the same as the slope of the line, and the point on the line is (1,-46/15).
So, to get the equation of the line in vector form, we start with the point <1, -46/15>, and add a scalar multiple of the direction vector <1, -2/3>. Thus, the parametrization of the tangent line is r(t) = <1, -46/15> + t<1, -2/3>.
To learn more about parametrization, visit:
https://brainly.com/question/20038346
#SPJ11
Mrs. Brown owns a cake shop where she bakes 30 cupcakes per day. In Christmas, as the demand for the cup cakes increases, she increased the number of cupcakes by 5 over the previous day.
Which equation can be used to find the recursive process that describes the number of cupcakes baked by Mrs. Brown after the mth day after 20th of December?
A.
To find the number of cupcakes baked by Mrs. Brown on the mth day, add 30 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 30, where Ao = 5
B.
To find the number of cupcakes baked by Mrs. Brown on the mth day, subtract 2 from the number of cupcakes baked on the (m-2)th day 20th of December. Am = A(m-2) - 2, where Ao = 5
C.
To find the number of cupcakes baked by Mrs. Brown on the mth day, subtract 5 from the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) - 5, where Ao = 30
D.
To find the number of cupcakes baked by Mrs. Brown on the mth day, add 5 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 5, where Ao = 30
The correct equation is D. To find the number of cupcakes baked by Mrs. Brown on the mth day, add 5 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 5, where Ao = 30.
This is because Mrs. Brown increases the number of cupcakes by 5 over the previous day, so each day the number of cupcakes baked increases by 5. The initial value is 30, which is Ao. Therefore, to find the number of cupcakes baked on any given day, we add 5 to the number baked on the previous day.
Therefore, the correct answer is D.
To know more about number of cupcakes:
https://brainly.com/question/13006008
#SPJ1
Use logarithmic differentiation to find the derivative of the function. y = (x^3 + 2)^2(x^4 + 4)^4
The derivative of the function y = (x^3 + 2)^2(x^4 + 4)^4 using logarithmic differentiation is: y' = 2(x^3 + 2)(x^4 + 4)^3[3x^2(x^4 + 4) + 8x(x^3 + 2)^2]
To use logarithmic differentiation, we take the natural logarithm of both sides of the equation and then differentiate with respect to x using the rules of logarithmic differentiation.
ln(y) = ln[(x^3 + 2)^2(x^4 + 4)^4]
Now, we use the product rule and chain rule to differentiate ln(y):
d/dx [ln(y)] = d/dx [2ln(x^3 + 2) + 4ln(x^4 + 4)]
Using the chain rule, we get:
d/dx [ln(y)] = 2(1/(x^3 + 2))(3x^2) + 4(1/(x^4 + 4))(4x^3)
Simplifying this expression, we get:
d/dx [ln(y)] = 6x^2/(x^3 + 2) + 16x^3/(x^4 + 4)
Finally, we use the fact that d/dx [ln(y)] = y'/y to solve for y':
y' = y(d/dx [ln(y)])
Substituting in the expression for d/dx [ln(y)], we get:
y' = (x^3 + 2)^2(x^4 + 4)^4 [6x^2/(x^3 + 2) + 16x^3/(x^4 + 4)]
Simplifying this expression, we get:
y' = 2(x^3 + 2)(x^4 + 4)^3[3x^2(x^4 + 4) + 8x(x^3 + 2)^2]
Learn more about derivatives here: brainly.com/question/25324584
#SPJ11
If the shaded region is 1/6 of the perimeter of the circle with 10cm of the radius then find the measure of the angle inscribed in the circle.
The measure of the inscribed angle is determined as 150⁰.
What is the perimeter of the circle?
The perimeter of the circle is calculated as follows;
P = 2πr
where;
r is the radius of the circleP = 2π x 10 cm
P = 62.832 cm
The length of the shaded regions calculated as follows;
S = 1/6 x 62.832
S = 10.47 cm
The angle inscribed is calculated as follows;
θ/360 x 2πr = 10.47
2πrθ = 360 x 10.47
θ = ( 360 x 10.47 )/(2π x 10)
θ = 60⁰
angle at center = 360 - 60 = 300
inscribed angle = ¹/₂ x 300 (angle at center is twice angle at circumference)
inscribed angle = 150⁰
Learn more about inscribed angle here: https://brainly.com/question/3538263
#SPJ1
G'day!
Can anyone please explain taking LCM of 2/t + 1/1+t = -3/2+t
Answer:
To solve the equation 2/t + 1/(1+t) = -3/(2+t), we first need to find the least common multiple (LCM) of the denominators, which are t and 1+t, and then rewrite each fraction with the LCM as its denominator.
The LCM of t and 1+t is (t)(1+t) or t(t+1). To rewrite the fractions with this common denominator, we need to multiply the first fraction by (t+1)/(t+1) and the second fraction by t/t:
2/t * (t+1)/(t+1) + 1/(1+t) * t/t = -3/(2+t)
Simplifying each fraction, we get:
2(t+1)/(t(t+1)) + t/(t(t+1)) = -3/(2+t)
Combining the fractions on the left side, we get:
(2t+2+t)/(t(t+1)) = -3/(2+t)
Simplifying further:
(3t+2)/(t(t+1)) = -3/(2+t)
Now, we can cross-multiply and simplify:
(3t+2)(2+t) = -3t(t+1)
6t^2 + 11t + 4 = -3t^2 - 3t
9t^2 + 14t + 4 = 0
To solve this quadratic equation, we can use the quadratic formula:
t = (-b ± sqrt(b^2 - 4ac)) / 2a
where a = 9, b = 14, and c = 4.
Plugging in these values, we get:
t = (-14 ± sqrt(14^2 - 4(9)(4))) / 2(9)
t = (-14 ± sqrt(136)) / 18
t = (-14 ± 2sqrt(34)) / 18
Simplifying the expression, we get:
t = (-7 ± sqrt(34)) / 9
These are the two possible solutions for t that satisfy the original equation.
for what values of b are the given vectors orthogonal? (enter your answers as a comma-separated list.) −11, b, 2 , b, b2, b
The given vectors are:
Vector A = (-11, b, 2)
Vector B = (b, b^2, b)
The values of b for which the given vectors are orthogonal are 0, -3, and 3.
Dot product:
To find the values of b for which the given vectors are orthogonal, we need to use the dot product of the vectors.
To determine if two vectors are orthogonal, their dot product should be equal to zero.
The dot product is calculated as follows:
Dot Product (A, B) = A1 * B1 + A2 * B2 + A3 * B3
Substituting the components of Vector A and Vector B:
(-11 * b) + (b * b^2) + (2 * b) = 0
Now, simplify the equation:
-11b + b^3 + 2b = 0
b^3 - 9b = 0
Factor the equation:
b(b^2 - 9) = 0
Now, we can find the values of b:
b = 0
b^2 - 9 = 0
b^2 = 9
b = ±3
So, the values of b for which the given vectors are orthogonal are 0, -3, and 3.
To know more about Dot product:
https://brainly.com/question/29097076
#SPJ11
There are seven people fishing at Lake Connor three have fishing license and four do not an inspector chooses to do two of the people are random what is the probability that the first person chosen does not have a license and the second one does
In a case whereby There are seven people fishing at Lake Connor three have fishing license and four do not an inspector chooses to do two of the people are random probability that the first person chosen does not have a license and the second one does is 2/7
How can the probability be determined?Based on the given information, total number of the people = 7
those with fishing license =3
those without fishing license =4
chance of choosing someone without a license=4/7
chance of choosing someone with a license=3/6
Theerefore probability that the first person chosen does not have a license and the second one does= 4/7 * 3/6 =2/7
Learn more about probability at:
https://brainly.com/question/13604758
#SPJ1
Session 3
(Calculator)
David just bought six more baseball cards. The new baseball cards represent 30% of
David's special edition baseball card collection.)
Number of Baseball Cards
6
++
0
+
25 30
+
50
+
75
?
+
100
What is the total number of cards in David's baseball card collection?
Enter your answer in the box.
Answer:
If the new baseball cards represent 30% of David's special edition baseball card collection, then the original collection represents 70%. Let's represent the total number of cards in David's collection with the variable x. Then we can set up the following equation:
6 = 0.3x
To solve for x, we can divide both sides by 0.3:
x = 6 ÷ 0.3 = 20
Therefore, the total number of cards in David's baseball card collection is 20.
(1 point) find the interval of convergence for the given power series. ∑n=1[infinity](x−9)nn(−5)n
Answer :-The interval of convergence for the given power series is (4, 14).
The power series in question is ∑n=1 to infinity [(x−9)^n]/[n(-5)^n].
To find the interval of convergence, we will use the Ratio Test:
1. Compute the absolute value of the ratio between the (n+1)th term and the nth term:
|(a_(n+1))/a_n| = |[((x-9)^(n+1))/((n+1)(-5)^(n+1))]/[((x-9)^n)/(n(-5)^n)]|
2. Simplify the ratio:
|(a_(n+1))/a_n| = |(x-9)/((-5)(n+1))|
3. Take the limit as n approaches infinity:
lim (n→∞) |(x-9)/((-5)(n+1))|
4. For the Ratio Test, if the limit is less than 1, then the series converges. In this case:
|(x-9)/(-5)| < 1
5. Solve the inequality to find the interval of convergence:
-1 < (x-9)/(-5) < 1
Multiply each side by -5 (and reverse the inequalities since we're multiplying by a negative number):
5 > x-9 > -5
Add 9 to each side:
14 > x > 4
So, the interval of convergence for the given power series is (4, 14).
learn more about "series converges":-https://brainly.com/question/15415793
#SPJ11
Combining independent probabilities. fair six-sided die. You want to roll it enough times to en- sure that a 2 occurs at least once. What number of rolls k is required to ensure that the probability is at least 2/3 that at least one 2 will appear?
We need to roll the die at least 5 times to ensure that the probability is at least 2/3 that at least one 2 will appear.
To calculate the probability of rolling a 2 on a fair six-sided die, we first need to know the probability of rolling any number on a single roll, which is 1/6.
Since each roll of the die is independent of the previous roll, we can use the formula for the probability of independent events occurring together to find the probability of rolling a 2 at least once in a certain number of rolls.
Let's call the probability of rolling a 2 at least once in n rolls "P(n)". We can find P(n) using the complement rule, which states that the probability of an event occurring is equal to 1 minus the probability of the event not occurring. So, the probability of not rolling a 2 in n rolls is (5/6)^n, since there are 5 possible outcomes (1, 3, 4, 5, or 6) on each roll that is not 2. Therefore, we can write:
P(n) = 1 - (5/6)^n
We want to find the minimum number of rolls needed to ensure that P(n) is at least 2/3, or 0.667. In other words, we want to find the smallest value of n that satisfies the inequality:
P(n) ≥ 2/3
Substituting the formula for P(n), we get:
1 - (5/6)^n ≥ 2/3
By multiplying both sides by -1 and rearranging, we get:
(5/6)^n ≤ 1/3
Taking the natural logarithm of both sides, we get:
n ln(5/6) ≤ ln(1/3)
Dividing both sides by ln(5/6), we get:
n ≥ ln(1/3) / ln(5/6)
Using a calculator, we find that:
n ≥ 4.81
learn more about the probability: https://brainly.com/question/13604758
#SPJ11
consider all 5 letter "words" made from the letters a through h. (recall, words are just strings of letters,not necessarily actual english words.)(a) how many of these words are there total?
There are a total of 32768 (8) 5-letter "words" made from the letters a through h when all possible combinations are considered.
Consider all 5-letter "words" made from the letters A through H. There are a total of 8 unique letters, and since repetition is allowed, you can form 8 different possibilities for each of the 5 positions in the word. To calculate the total number of these words, simply multiply the possibilities for each position: 8 * 8 * 8 * 8 * 8 = 32,768. So, there are 32,768 possible 5-letter "words" using the letters A through H.
Know more about combinations here:
https://brainly.com/question/19692242
#SPJ11
pls help me i’m struggling!!
How many lines can be
constructed through point P
that are perpendicular to AB?
Answer:
A. 2
Step-by-step explanation:
It would be a triangle. There's no other way unless you used a point in between a and b
if a is a square matrix there exists a matrix b such that ab equals the identity matrix. T/F
True. This is a true statement known as the invertible matrix theorem. If a square matrix is invertible, then there exists a matrix b such that ab equals the identity matrix. However, not all square matrices are invertible.
True. If matrix A is a square matrix and has an inverse matrix B, then the product of A and B (AB) equals the identity matrix. In other words, if A is invertible, there exists a matrix B such that AB = BA = I, where I is the identity matrix. This is a true statement known as the invertible matrix theorem. If a square matrix is invertible, then there exists a matrix b such that ab equals the identity matrix. However, not all square matrices are invertible.
True. If matrix A is a square matrix and has an inverse matrix B, then the product of A and B (AB) equals the identity matrix. In other words, if A is invertible, there exists a matrix B such that AB = BA = I, where I is the identity matrix.
To learn more about matrix, click here:
brainly.com/question/28180105
#SPJ11
A blood bank needs 10 people to help with a blood drive. 18 people have volunteered. Find how many different groups of 10 can be formed from the 18 volunteers.
The solution of the given problem of Permutation and Combination is .There are38,760 different groups of 10 can be formed from the 18 volunteers.
What is Permutation and Combination ?A permutation is a way of arranging a set of objects or events in a specific order. The number of possible permutations of a set of n objects taken r at a time is given by the formula nPr = n!/(n-r)!, where n! (n factorial) is the product of all positive integers up to n.
A combination, on the other hand, is a way of selecting a subset of objects or events from a larger set, where the order of the elements does not matter. The number of possible combinations of a set of n objects taken r at a time is given by the formula nCr = n!/r!(n-r)!.
According to given informationThe number of different groups of 10 that can be formed from 18 volunteers can be calculated using the formula for combinations:
C(18, 10) = 18! / (10! * 8!)
where "C(18, 10)" represents the number of ways to choose 10 volunteers out of 18.
Simplifying the expression:
C(18, 10) = (18 * 17 * 16 * 15 * 14 * 13 * 12 * 11 * 10!) / (10! * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)
The 10! in the numerator and denominator cancel out, leaving:
C(18, 10) = (18 * 17 * 16 * 15 * 14 * 13 * 12 * 11) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)
Simplifying further, we get:
C(18, 10) = 38,760
Therefore, there are 38,760 different groups of 10 that can be formed from 18 volunteers.
To know more about Permutation and Combination Visit:
brainly.com/question/28720645
#SPJ1
evaluate the line integral, where c is the given curve. c xey dx, c is the arc of the curve x = ey from (1, 0) to (e9, 9)
The line integral ∫C xey dx on the arc of the curve x = ey from (1, 0) to (e^9, 9) is (1/3)(e^27 - 1).
How to evaluate the line integral on the given curve?Hi! I'd be happy to help you evaluate the line integral on the given curve. To evaluate the line integral ∫C xey dx, where C is the arc of the curve x = ey from (1, 0) to (e^9, 9), follow these steps:
1. Parameterize the curve: Since x = ey, let y = t, so x = e^t. Thus, the parameterization of the curve is r(t) = (e^t, t), with t ranging from 0 to 9.
2. Compute the derivative of the parameterization: dr/dt = (de^t/dt, dt/dt) = (e^t, 1).
3. Substitute the parameterization into the integrand: xey = (e^t)(e^t) = e^(2t).
4. Compute the dot product of the integrand and dr/dt: (e^(2t)) * (e^t, 1) = e^(3t).
5. Integrate the dot product with respect to t from 0 to 9: ∫(e^(3t)) dt from t = 0 to t = 9.
6. Evaluate the integral: [1/3 * e^(3t)] from t = 0 to t = 9 = [1/3 * e^(27)] - [1/3 * e^0] = (1/3)(e^27 - 1).
So, the line integral ∫C xey dx on the arc of the curve x = ey from (1, 0) to (e^9, 9) is (1/3)(e^27 - 1).
Learn more about Line Integrals and Parametrization
brainly.com/question/31472762
#SPJ11
You make a pudding for a dinner party and put it in the refrigerator at 5 P.M. (t — 0). Your refrigerator maintains a constant temperature Of 400. The pudding will be ready to serve when it cools to 450. When you put the pudding in the refrigerator you measure its temperature to be 1900, and when the first guest arrives at 6 P.M., you measure it again and get a temperature reading of 1000. Based on Newton's Law of Cooling, when is the earliest you can serve the pudding?
The earliest time you can serve the pudding is t = (-ln(30)) / k.
Where k is the constant value.
We have,
To find the earliest time you can serve the pudding, we need to determine the time at which the temperature of the pudding reaches 450.
Using Newton's Law of Cooling, the equation for the temperature of the pudding at time t is given by:
[tex]T(t) = T_{ambient} + (T_{initial} - T_{ambient} \times e^{-kt}[/tex]
Where:
T(t) is the temperature of the pudding at time t,
T_ambient is the ambient temperature (400),
T_initial is the initial temperature of the pudding (1900),
k is the cooling constant,
t is the time.
To find the earliest time, we set T(t) equal to 450 and solve for t:
[tex]450 = 400 + (1900 - 400) \times e^{-kt}[/tex]
Simplifying the equation, we get:
[tex]e^{-kt} = (450 - 400) / (1900 - 400)\\e^{-kt} = 50 / 1500\\e^{-kt} = 1 / 30[/tex]
Taking the natural logarithm of both sides:
-ln(30) = -kt
Solving for t, we have:
t = (-ln(30)) / k
Without the specific value of the cooling constant k, we cannot determine the exact value of the earliest time to serve the pudding.
Thus,
The earliest time you can serve the pudding is t = (-ln(30)) / k.
Where k is the constant value.
Learn more about Newton's law of cooling here:
https://brainly.com/question/29207423
#SPJ12
for each positive integer n, let p(n) be the formula 12 22 ⋯ n2=n(n 1)(2n 1)6. write p(1). is p(1) true?
The formula for p(n) is not valid for n = 1.
How to find p(1) is true?For each positive integer n, using the formula given, we can find p(1) by plugging in n = 1:
p(1) = 1(1-1)(2(1)-1)/6 = 0/6 = 0
So, according to the formula, p(1) is equal to 0.
However, we can see that this is not a true statement.
Because the product in the formula is defined as the product of the squares of the odd integers from 1 to n, and when n = 1, there is only one odd integer, which is 1.
Thus, p(1) should be equal to [tex]1^2 = 1.[/tex]
Therefore, the formula for p(n) is not valid for n = 1.
Learn more about positive integer
brainly.com/question/18380011
#SPJ11