what is the mass of a mallard duck whose speed is 8.2 m/s and whose momentum has a magnitude of 10 kg⋅m/s ?

Answers

Answer 1

The mass of the mallard duck whose speed is 8.2 and has a momentum of 10 kg.m/s is 1.22 kg.

To find the mass of the mallard duck, we will use the formula for momentum:

Momentum = Mass × Velocity

In this case, we are given the momentum (10 kg⋅m/s) and the velocity (8.2 m/s) and need to find the mass. We can rearrange the formula to solve for mass:

Mass = Momentum ÷ Velocity

Now, we can plug in the given values:

Mass = (10 kg⋅m/s) ÷ (8.2 m/s)

Mass = 1.22 kg

So, the mass of the mallard duck is approximately 1.22 kg.

Learn more about momentum:

https://brainly.com/question/18798405

#SPJ11


Related Questions

a force f is applied to a 2.0 kg, radio-controlled model car parallel to the x- axis as it moves along a straight track. the x-component of the force varies with the x-coordinate of thecar.
The work done by the force when the car moves from x=0.0m to x=7.0m is?
What is the speed of the car at x=4.0m?

Answers

To calculate the work done by the force when the car moves from x=0.0m to x=7.0m, we need to integrate the force over the distance traveled.W = ∫Fdx



Since the force varies with the x-coordinate of the car, we need to know the equation for the force as a function of x. Without that information, we can't calculate the work done.

To calculate the speed of the car at x=4.0m, we need to use the equations of motion. Assuming that the force is the only external force acting on the car, we can use:

F = ma

where F is the force, m is the mass of the car (2.0 kg), and a is the acceleration of the car.

Since the force varies with x, we need to know the equation for the force as a function of x. Without that information, we can't calculate the acceleration of the car, and therefore we can't calculate the speed at x=4.0m.

To know more about force:https://brainly.com/question/12785175

#SPJ11

what is the sensitivity (in µa) of the galvanometer (that is, what current gives a full-scale deflection) inside a voltmeter that has a 1.00 mω resistance on its 30.5 v scale?

Answers

The sensitivity of the galvanometer inside the voltmeter is 30,500,000 µA.

Hi! To find the sensitivity (in µA) of the galvanometer inside a voltmeter with a 1.00 mΩ resistance on its 30.5 V scale, you can follow these steps:

1. First, note the full-scale voltage, V = 30.5 V, and the internal resistance of the voltmeter, R = 1.00 mΩ.
2. Use Ohm's law to calculate the current for full-scale deflection, I = V/R.
3. Convert the calculated current to microamperes (µA).

Now, let's calculate the sensitivity of the galvanometer:

1. V = 30.5 V, R = 1.00 mΩ = 0.001 Ω (since 1 mΩ = 0.001 Ω).
2. I = V/R = 30.5 V / 0.001 Ω = 30500 A.
3. Convert the current to µA: 1 A = 1,000,000 µA, so 30500 A = 30,500,000 µA.

So, the sensitivity of the galvanometer inside the voltmeter is 30,500,000 µA.

To know more about galvanometer refer here:

https://brainly.com/question/17247518

#SPJ11

An astronaut wishes to visit the Andromeda galaxy, making a one-way trip that will take 30.0 years in the spaceship's frame of reference. Assume the galaxy is 2.00 million light-years away and his speed is constant. (a) How fast must he travel relative to Earth? (b) What will be the kinetic energy of his spacecraft, which has a mass of 1.00 x 10^6 kg? (c) What is teh cost of this energy if it is purchased at a typical consumer price for electric energy, 13.0 cents per kWh? The following approximation will prove useful:
For x <<1

Answers

(a)the astronaut must travel at a speed of 0.999999999998 times the speed of light relative to Earth.

(b)the kinetic energy of the spacecraft is 4.499 x 10^23 Joules.

(c) the cost of this energy is $165,643,646,517,000,000,000,000 (over 165 sextillion dollars).

(a) To determine the speed of the astronaut relative to Earth, we can use the formula for time dilation in special relativity: t_0 = t / sqrt(1 - v^2/c^2)

where t_0 is the proper time (i.e. the time experienced by the astronaut), t is the time measured by observers on Earth, v is the velocity of the spacecraft relative to Earth, and c is the speed of light. Solving for v, we get: v = c * sqrt(1 - (t/t_0)^2)

Plugging in the given values, we get: v = c * sqrt(1 - (30.0 years / t_0)^2)

where t_0 is the proper time experienced by the astronaut. We know that the distance to the Andromeda galaxy is 2.00 million light-years, so we can use the distance formula to find t_0: t_0 = d/v

where d is the distance to the Andromeda galaxy. Plugging in the given values, we get:

t_0 = (2.00 million light-years) / c = (2.00 million light-years) / (299,792,458 m/s) = 6.32 x 10^15 s

Substituting this value into the formula for v, we get:

v = c * sqrt(1 - (30.0 years / 6.32 x 10^15 s)^2)

v = 0.999999999998 c

Therefore, the astronaut must travel at a speed of 0.999999999998 times the speed of light relative to Earth.

(b) To find the kinetic energy of the spacecraft, we can use the formula:

K = (1/2) * m * v^2

where K is the kinetic energy, m is the mass of the spacecraft, and v is the velocity of the spacecraft relative to Earth. Plugging in the given values, we get:

K = (1/2) * (1.00 x 10^6 kg) * (0.999999999998 c)^2

K = 4.499 x 10^23 J

Therefore, the kinetic energy of the spacecraft is 4.499 x 10^23 Joules.

(c) To find the cost of this energy, we need to convert Joules to kilowatt-hours (kWh) and then multiply by the price per kWh. We can use the following conversion factor:

1 J = 2.77778 x 10^-7 kWh

Plugging in the given values, we get:

cost = (4.499 x 10^23 J) * (2.77778 x 10^-7 kWh/J) * (13.0 cents/kWh)

cost = $165,643,646,517,000,000,000,000

Therefore, the cost of this energy is $165,643,646,517,000,000,000,000 (over 165 sextillion dollars). This highlights the fact that the amount of energy required for intergalactic travel is immense, and that our current understanding of physics may not allow for such journeys to be feasible.

To learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

(1 pt) how would reducing the surface pressure affect the power required to operate the pumps (answer qualitatively)?

Answers

Reducing the surface pressure would lead to a decrease in the power required to operate the pumps. This is because reducing the pressure at the surface of a liquid lowers the boiling point of the liquid.

As a result, less energy is required to move the liquid through the pumps. This is because the lower boiling point means the liquid is less resistant to flow, and the pumps can move it more easily.

Additionally, reducing the surface pressure can reduce the amount of air in the liquid, which can also decrease the power required to operate the pumps. When there is air in the liquid, the pumps have to work harder to move the liquid through the system.

By reducing the surface pressure, the amount of air in the liquid can be reduced, and the pumps can work more efficiently.

Overall, reducing the surface pressure can lead to a decrease in the power required to operate the pumps, making the system more energy efficient.

to know more about power refer here:

https://brainly.com/question/29883444#

#SPJ11

It is important to note that reducing the surface pressure may also affect the flow rate of the fluid, which could in turn affect the power required by the pump.

Surface pressure, also known as atmospheric pressure, is the force exerted by the weight of the Earth's atmosphere on the surface below. It is the result of the constant collisions between air molecules and the surface they come into contact with.

The unit of measurement for surface pressure is typically expressed in millibars (mb) or inches of mercury (inHg). It varies depending on factors such as temperature, altitude, and weather conditions. The standard sea-level pressure is around 1013 mb or 29.92 inHg. Surface pressure is an important parameter for meteorology and weather forecasting. It is used to determine areas of high and low pressure, which influence wind patterns, air masses, and precipitation.

To learn more about Surface pressure visit here:

brainly.com/question/12950024

#SPJ4

Complete Question:-

How would reducing the surface pressure affect the power required to operate the pumps (answer qualitatively)?

You will need to design a cascode amplifier, which should be built and tested to meet the following requirements:1. Magnitude of the voltage gain = 12*SQRT(Z+35):± 10%, where Z is the sum of the last 3 digits of yourstudent number.2. The load resistance RL = 6*(Z+40)2 Ω, rounded up to the nearest standard value stocked in the lab, i.e.,decade multiples of 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, and 8.2 kΩ. As an example, if yourRL is 67.4 kΩ, you will round this to 68 kΩ.3. The high frequency cutoff fH is to be maximized. It must exceed 1 MHz.4. The output voltage should be able to get to 2 V peak-peak without appreciable distortion[1]. To ensurethis, the AC base-emitter voltage must be kept under 10 mV peak-peak for such an output.5. No DC current may flow in RL and no DC current may flow into or out of the signal generator.6. The low frequency fL must be less than 200 Hz.7. The input and output impedances are left to the discretion of the designer, but their magnitudes at 1kHz are to be determined by calculation and then measured.8. Total circuit power is not to exceed 50 mW.9. The transistors are all to be 2N3904.10. Collector currents in the transistors are to be 1.0 mA ±10%.11. Power-supply voltages are to be limited to +5 volts and/or +15 volts and/or -15 volts.12. No adjustable components, e.g. a trimmer potentiometer, will be allowed.13. Available capacitors are limited to: 1 x 100 µF, 1 x 33 µF, 1 x 10 µF, 2 x 1 µF, 1 x 0.1 µF [2].14. The choice of all other components is left up to the designer.

Answers

To design a cascode amplifier meeting the specified requirements, follow these steps:

1. Calculate the voltage gain (Av) using the formula Av = 12 * SQRT(Z + 35), where Z is the sum of the last 3 digits of your student number.
2. Determine the load resistance (RL) using the formula RL = 6 * (Z + 40)² Ω, and round up to the nearest standard value stocked in the lab.
3. Use a high-pass filter at the input to achieve the low frequency cutoff (fL) of less than 200 Hz.
4. Design the cascode amplifier using 2N3904 transistors with collector currents set to 1.0 mA ±10%. The power supply voltages should be limited to +5V, +15V, or -15V.
5. Maximize the high frequency cutoff (fH) to exceed 1 MHz by carefully selecting component values and minimizing parasitic capacitances.
6. Ensure the output voltage can reach 2 V peak-peak without distortion by keeping the AC base-emitter voltage below 10 mV peak-peak.
7. Prevent DC current from flowing in RL and the signal generator by using coupling capacitors.
8. Calculate and measure the input and output impedances at 1 kHz.
9. Limit the total circuit power to 50 mW.
10. Use the available capacitors (1 x 100 µF, 1 x 33 µF, 1 x 10 µF, 2 x 1 µF, 1 x 0.1 µF) in the design.
11. Choose all other components as needed to achieve the desired performance while adhering to the constraints.

By following these steps, you will design a cascode amplifier that meets the given requirements. Remember, no adjustable components are allowed, and all transistors must be 2N3904.

For more such questions on cascode amplifier, visit:

brainly.com/question/14869225

#SPJ11

for a particular process at 300 k, δg δ g = -10.0 kj and δh δ h = -7.0 kj. if the process is carried out reversibly, the amount of useful work (in kj) that .

Answers

The amount of useful work that can be obtained for this particular process at 300 K is -3.0 kJ.

For a reversible process, the amount of useful work (in kJ) that can be obtained is given by the equation:

w = -δg = δh - Tδs

where δs is the change in entropy of the system.

Since the process is carried out reversibly, δs can be calculated using the equation:

δs = δqrev / T

where δqrev is the heat absorbed by the system during a reversible process.

Since δh = -7.0 kJ and δg = -10.0 kJ, we know that the process is exothermic (δh < 0) and spontaneous (δg < 0). Therefore, δqrev must be negative, indicating that heat is released from the system.

We can calculate δqrev using the equation:

δqrev = -Tδs = -T(δh / T) = -δh = 7.0 kJ

Substituting this value into the equation for work, we get:

w = -δg = δh - Tδs = -10.0 kJ - (-7.0 kJ) = -3.0 kJ

Therefore, the amount of useful work for this particular process at 300 K is -10.0 kJ.

Learn more about work here: brainly.com/question/31050706

#SPJ11

An automobile dealer calculates the proportion of new cars sold that have been returned a various numbers of times for the correction of defects during the warranty period. The results are shown in the following table. Number of returns 0 Proportions 0.28 0.36 0.23 0.09 0.04 (a) Graph the probability distribution function. (b) Calculate and graph the cumulative probability distribution. (b) Calculate and graph the cumulative probability distribution. Find the mean of the number of returns of an automobile for corrections for defects during the warranty period. (d) Find the variance of the number of returns of an automobile for correc- tions for defects during the warranty period.

Answers

(a) Bar graph with x-axis showing the number of returns and y-axis showing the proportion of new cars sold with that number of returns.

(b) Line graph with x-axis showing the number of returns and y-axis showing the cumulative proportion of new cars sold with up to that number of returns.

(c) Mean = 0.95 returns, calculated as (00.28)+(10.36)+(20.23)+(30.09)+(40.04).

(d) Variance = 1.715 returns^2, calculated as [(0-0.95)^20.28]+[(1-0.95)^20.36]+[(2-0.95)^20.23]+[(3-0.95)^20.09]+[(4-0.95)^20.04].

In part (a), we represent the probability distribution function using a bar graph. The x-axis shows the number of returns, and the y-axis shows the proportion of new cars sold with that number of returns. In part (b), we plot the cumulative probability distribution using a line graph. The x-axis shows the number of returns, and the y-axis shows the cumulative proportion of new cars sold with up to that number of returns.

learn more about returns here:

https://brainly.com/question/29569139

#SPJ11

A current of 0.8 A passes through a lamp with a resistance of 5 Ohms. What is the power supplied to the lamp in Watts? Round your answer to 2 decimal places. Question 32 of 33 3.0 Points A hair dryer uses 578 W of power. If the hair dryer is using 7 A of current, what is the voltage (in Volts) that produces this current ? Round your answer to 1 decimal place. Question 33 of 33 3.0 Points A 2.1 V battery supplies energy to a simple circuit at the rate of 59 W. What is the resistance of the circuit in Ohms? Round your answer to 1 decimal place.

Answers

1) Power in lamp 3.2 Watts, 2) Current in hair dryer is 82.6 Volts, 3) Resistance in circuit is 0.1Ω


To find the power supplied to the lamp, you can use the formula P = I²R, where P is power, I is current, and R is resistance.
1. Plug in the given values: P = (0.8 A)² × 5 Ohms
2. Calculate: P = 0.64 × 5
3. Get the result: P = 3.2 Watts
Answer: The power supplied to the lamp is 3.2 Watts.
Question 33:
To find the voltage of the hair dryer, you can use the formula P = IV, where P is power, I is current, and V is voltage.
1. Rearrange the formula to solve for voltage: V = P / I
2. Plug in the given values: V = 578 W / 7 A
3. Calculate: V = 82.5714
4. Round to 1 decimal place: V = 82.6 Volts
Answer: The voltage that produces the current for the hair dryer is 82.6 Volts.
Question 34:
To find the resistance of the circuit, you can use the formula P = V²/R, where P is power, V is voltage, and R is resistance.
1. Rearrange the formula to solve for resistance: R = V² / P
2. Plug in the given values: R = (2.1 V)² / 59 W
3. Calculate: R = 4.41 / 59
4. Get the result: R = 0.07475
5. Round to 1 decimal place: R = 0.1 Ω
Answer: The resistance of the circuit is 0.1 Ohms.

Learn more about current here

https://brainly.com/question/30114440

#SPJ11

determine the characteristic impedance of two 1-oz cu lands 100 mils in width that are located on opposite sides of a 47-mil glass epoxy board

Answers

The characteristic impedance of the two 1-oz cu lands 100 mils in width that are located on opposite sides of a 47-mil glass epoxy board is approximately 47.4 ohms.

The characteristic impedance (Z0) of a transmission line depends on the geometry of the line and the dielectric constant of the material between the conductors. The formula for the characteristic impedance of a microstrip transmission line is:

Z0 = (87.3 + 100*(w/h)ln(4w/h)) * (h/w)

where w is the width of the trace, h is the height of the substrate, and ln is the natural logarithm.

Assuming a standard FR-4 epoxy substrate with a dielectric constant of 4.5, and using the formula above with w = 100 mils (0.1 inch) and h = 47 mils (0.047 inch), we get:

Z0 = (87.3 + 100*(0.1/0.047)ln(40.1/0.047)) * (0.047/0.1) = 47.4 ohms

Therefore, the characteristic impedance of the two 1-oz cu lands 100 mils in width that are located on opposite sides of a 47-mil glass epoxy board is approximately 47.4 ohms.

Learn more about impedance

https://brainly.com/question/30040649

#SPJ4

Starting at t = 0s, a horizontal net force F = (0.275N/s)ti+(-0.460N/s2)t^2j is applied to a box that has an initial momentum p = (-2.90kg?m/s)i+(3.95kg?m/s)j. What is the momentum of the box at t = 2.05s?

Answers

The momentum of the box at t = 2.05s is (-2.3345375i - 1.131034j) kgm/s.

To find the momentum of the box at t = 2.05s, we need to use the equation:

p(t) = p(0) + ∫Fnet(t)dt

where p(0) is the initial momentum of the box, Fnet(t) is the net force acting on the box at time t, and ∫ represents the definite integral.

First, let's find the net force at t = 2.05s:

Fnet(2.05s) = (0.275N/s)(2.05s)i + (-0.460N/s²)(2.05s)²j

= 0.563875i - 4.86195j N

Next, let's integrate the net force from t = 0s to t = 2.05s:

∫Fnet(t)dt = ∫(0.275t)i + (-0.460t²)j dt

= (0.138t²)i - (0.153333t³)j from t = 0s to t = 2.05s

= (0.5654625)i - (5.081034j) Ns

Finally, we can find the momentum of the box at t = 2.05s:

p(2.05s) = p(0) + ∫Fnet(t)dt

= (-2.90kgm/s)i + (3.95kgm/s)j + (0.5654625)i - (5.081034j) Ns

= (-2.3345375)i - (1.131034j) kgm/s

To know more about definite integral click on below link:

https://brainly.com/question/29974649#

#SPJ11

Students measure velocity as a function of changing time for an object moving at a constant rate. The following math model was generated, but the students had to linearize the data first to create this math model. What relationship originally existed between velocity and time? velocity(m/s) = (10(m))/(t(s))

Answers

Inverse proportional relationship between velocity and time originally existed for the measured data of an object moving at a constant rate, which was linearized to obtain the equation: velocity(m/s) = (10(m))/(t(s)).

The original relationship between velocity and time was inverse proportional. This can be seen in the equation given: velocity = (10m)/(t), where m is a constant of proportionality representing the distance travelled by the object. As time increases, velocity decreases, and vice versa. This is a characteristic of motion at a constant rate, where the object covers equal distances in equal time intervals, resulting in a uniform decrease in velocity over time. To linearize the data, the students likely plotted velocity versus the inverse of time, which would give a straight line with a negative slope.

To know more about velocity, here

brainly.com/question/17127206

#SPJ1

Sound A has a high pitch and sound B has a low pitch. Which of the following statements about these two sounds are correct? (There could be more than one correct choice.) a. The frequency of A is greater than the frequency of B. The period of A is shorter than the period of c. The amplitude of A is larger than the amplitude of d. Sound B travels faster than sound B through air. e. The wavelength of A is longer than the wavelength of B.

Answers

Answer: a. The frequency of A is greater than the frequency of B.

c. The period of A is shorter than the period of B.

e. The wavelength of A is longer than the wavelength of B.

Explanation:

The frequency of a sound, or the number of waves or cycles per second, determines its pitch. Sounds with higher pitches have a higher frequency than those with lower pitches.

The length of time it takes for a sound wave to complete one full cycle is known as its period. The relationship between the period and frequency is inverse. This implies that the time shortens as the frequency lengthens.

The distance between two successive wave points that are in phase, or have the same displacement and velocity, is known as the wavelength of a sound wave. The wavelength has an inverse relationship with sound speed and a direct relationship with frequency. Accordingly, if the sound speed remains constant, the wavelength will decrease as the frequency rises.

The maximum displacement of particles from their resting state is the amplitude of a sound wave. The pitch and frequency of the sound are unaffected by the amplitude. It solely controls the sound's volume or intensity.

The medium that sound travels through determines its speed. In general, sound moves more quickly through solids than through liquids and through liquids than through gases. A sound wave's frequency or pitch have no bearing on how quickly it travels.

For ease of installation, a cabin that is used occasionally is supplied with baseboard electric heating. These are 30 amp circuits powered with 220 volts. To supply 70,000Btu/h (about 20kW)1. How many circuits are needed, and2. What is the resistance of each baseboard "strip" in a single circuit?

Answers

To supply 70,000 BTU/h (about 20 kW) of baseboard electric heating to the cabin, you would need 4 circuits, and the resistance of each baseboard strip in a single circuit would be approximately 7.3 ohms.

To determine how many circuits are needed and the resistance of each baseboard strip in a single circuit for a cabin with 70,000 BTU/h (about 20 kW) of baseboard electric heating, we'll need to follow these steps:

1. Convert the desired heating capacity to watts:
70,000 BTU/h * (1 kW / 3412.14 BTU/h) ≈ 20,500 W

2. Calculate the power per circuit:
Power per circuit = Voltage x Current = 220 V x 30 A = 6,600 W

3. Determine the number of circuits needed:
Number of circuits = Total Power / Power per circuit = 20,500 W / 6,600 W ≈ 3.1
Since you can't have a fraction of a circuit, you'll need 4 circuits to supply the required power.

4. Calculate the total resistance for each circuit:
Resistance (R) = Voltage² / Power = (220 V)² / 6,600 W ≈ 7.3 ohms.

Learn more about resistance:

https://brainly.com/question/17563681

#SPJ11

What eclipse occurs when the Moon is in between the Sun and the Earth and the Moon partially or completely blocks out the Sun?

Answers

The eclipse that occurs when the Moon is in between the Sun and the Earth and partially or completely blocks out the Sun is known as a solar eclipse.

During a solar eclipse, the Moon casts a shadow on the Earth's surface, creating a path of totality where the Sun is completely blocked out, and a partial eclipse where only part of the Sun is covered. Solar eclipses occur only during a new moon when the Moon passes between the Sun and the Earth.

During a solar eclipse, the Moon's shadow falls on the Earth's surface, causing the Sun to appear as if it is being covered or "eclipsed" by the Moon. Depending on the alignment of the Sun, Moon, and Earth, a solar eclipse can be either partial or total.

Therefore,  A total solar eclipse occurs when the Moon completely covers the Sun, and only the Sun's corona (outer atmosphere) is visible as a glowing ring around the Moon.

To know more about solar eclipse refer here :

https://brainly.com/question/1077760

#SPJ11

Johnny, of mass 65 kg, and Lucy, of mass 45 kg, are facing each other on roller blades. The coefficient of kinetic friction between the roller blades and concrete surface is 0.20. When Johnny pushes Lucy from rest he applies a force for 1.0 s. Lucy then slows down to a stop in another 8.0 s. Calculate:
a. The applied force exerted by Johnny on Lucy.
b. How long it takes Johnny to come to rest.

I tried calculated the force exerted but I would need acceleration which I don't have...any tips on how to solve this one??? help is appreciated!!

Answers

Answer:

John applied a force of approximately [tex]795\; {\rm N}[/tex] (on average, rounded) on Lucy.

John slows down to a stop after approximately another [tex]5.37\; {\rm s}[/tex].

(Assuming that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].)

Explanation:

Assuming that the surface is level. The normal force on Johnny will be equal to the weight of Johnny: [tex]N(\text{John}) = m(\text{John})\, g[/tex]. Similarly, the normal force on Lucy will be equal to weight [tex]N(\text{Lucy}) = m(\text{Lucy})\, g[/tex].

Multiply normal force by the coefficient of kinetic friction to find the friction on each person:

[tex]f(\text{John}) = \mu_{k}\, N(\text{John}) = \mu_{k}\, m(\text{John})\, g[/tex].

[tex]f(\text{Lucy}) = \mu_{k}\, N(\text{Lucy}) = \mu_{k}\, m(\text{Lucy})\, g[/tex].

Again, because the surface is level, the net force on each person after the first [tex]1.0\; {\rm s}[/tex] will be equal to the friction. Divide that the net force on each person by the mass of that person to find acceleration:
[tex]\displaystyle a(\text{John}) = \frac{\mu_{k}\, m(\text{John})\, g}{m(\text{John})} = \mu_{k}\, g[/tex].

[tex]\displaystyle a(\text{Lucy}) = \frac{\mu_{k}\, m(\text{Lucy})\, g}{m(\text{Lucy})} = \mu_{k}\, g[/tex].

(Note that the magnitude of acceleration is independent of mass and is the same for both John and Lucy.)

[tex]a = \mu_{k}\, g= (0.2)\, (9.81\; {\rm m\cdot s^{-2}}) = 1.962\; {\rm m\cdot s^{-2}}[/tex].

In other words, after the first [tex]1\; {\rm s}[/tex], both John and Lucy will slow down at a rate of [tex]1.962\; {\rm m\cdot s^{-2}}[/tex].

To find the speed of Lucy immediately after the first [tex]1.0\: {\rm s}[/tex], multiply this acceleration by the time [tex]t = 8.0\; {\rm s}[/tex] it took for Lucy to slow down to [tex]0\; {\rm m\cdot s^{-1}}[/tex]:

[tex]\begin{aligned}& (8.0\; {\rm s})\, (1.962\; {\rm m\cdot s^{-2}}) \\ =\; & (8.0)\, (1.962)\; {\rm m\cdot s^{-1}} \\ =\; & 15.696\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Thus, in the first [tex]1.0\; {\rm s}[/tex], Lucy accelerated (from [tex]0\; {\rm m\cdot s^{-1}}[/tex]) to [tex]15.696\; {\rm m\cdot s^{-1}}[/tex].

The average acceleration of Lucy in the first [tex]1.0\; {\rm s}[/tex] would be [tex](15.696) / (1) = 15.696\; {\rm m\cdot s^{-2}}[/tex]. Multiply this average acceleration by the mass of Lucy to find the average net force on Lucy during that [tex]1.0\; {\rm s}[/tex]:

[tex]\begin{aligned}F_{\text{net}}(\text{Lucy}) &= m(\text{Lucy})\, a \\ &= (45)\, (15.696)\; {\rm N} \\ &= 706.320\; {\rm N}\end{aligned}[/tex].

This net force on Lucy during that [tex]1.0\; {\rm s}[/tex] is the combined result of both the push from Johnny and friction:

[tex]F_{\text{net}}(\text{Lucy}) = F(\text{push}) - f(\text{Lucy})[/tex].

Since [tex]f(\text{Lucy}) = \mu_{k}\, N(\text{Lucy}) = \mu_{k}\, m(\text{Lucy})\, g[/tex]:

[tex]\begin{aligned}F(\text{push}) &= F_{\text{net}}(\text{Lucy}) + f(\text{Lucy}) \\ &= F_{\text{net}}(\text{Lucy}) + \mu_{k}\, m(\text{Lucy})\, g \\ &= (706.320) \; {\rm N}+ (0.2)\, (45)\, (9.81)\; {\rm N} \\ &= 706.320\; {\rm N} + 88.290\; {\rm N} \\ &=794.610\; {\rm N}\end{aligned}[/tex].

In other words, Johnny would have applied a force of [tex]794.610\; {\rm N}[/tex] on Lucy.

By Newton's Laws of Motion, when Johnny exerts this force on Lucy in that [tex]1.0\; {\rm s}[/tex], Lucy would exert a reaction force on Johnny of the same magnitude: [tex]794.610\; {\rm N}[/tex].

Similar to Lucy, the net force on Johnny during that [tex]1.0\; {\rm s}[/tex] will be the combined effect of the push [tex]F(\text{push})[/tex] and friction [tex]f(\text{John}) = \mu_{k}\, m(\text{John})\, g[/tex]:

[tex]\begin{aligned}F_{\text{net}}(\text{John}) &= F(\text{push}) - f(\text{John}) \\ &= F(\text{push}) - \mu_{k}\, m(\text{John})\, g\\ &= 794.610\; {\rm N} - (0.2)\, (65)\, (9.81)\; {\rm N} \\ &= 667.080\; {\rm N}\end{aligned}[/tex].

Divide net force by mass to find acceleration:

[tex]\begin{aligned}\frac{667.080\; {\rm N}}{65\; {\rm kg}} \approx 10.2628\; {\rm m\cdot s^{-2}}\end{aligned}[/tex].

In other words, Johnny accelerated at a rate of approximately [tex]10.5406\; {\rm m\cdot s^{-2}}[/tex] during that [tex]1.0\; {\rm s}[/tex]. Assuming that Johnny was initially not moving, the velocity of Johnny right after that [tex]1.0\; {\rm s}\![/tex] would be:

[tex](0\; {\rm m\cdot s^{-1}}) + (10.2628\; {\rm m\cdot s^{-2}})\, (1.0\; {\rm s}) = 10.2628\; {\rm m\cdot s^{-1}}[/tex].

After the first [tex]1.0\; {\rm s}[/tex], the acceleration of both John and Lucy (as a result of friction) would both be equal to [tex]a = \mu_{k}\, g= (0.2)\, (9.81\; {\rm m\cdot s^{-2}}) = 1.962\; {\rm m\cdot s^{-2}}[/tex]. Divide initial velocity of Johnny by this acceleration to find the time it took for Johnny to slow down to a stop:

[tex]\displaystyle \frac{10.2628\; {\rm {m\cdot s^{-1}}}}{1.962\; {\rm m\cdot s^{-2}}} \approx 5.23\; {\rm s}[/tex].

Answer:

John applied a force of approximately [tex]795\; {\rm N}[/tex] (on average, rounded) on Lucy.

John slows down to a stop after approximately another [tex]5.37\; {\rm s}[/tex].

(Assuming that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].)

Explanation:

Assuming that the surface is level. The normal force on Johnny will be equal to the weight of Johnny: [tex]N(\text{John}) = m(\text{John})\, g[/tex]. Similarly, the normal force on Lucy will be equal to weight [tex]N(\text{Lucy}) = m(\text{Lucy})\, g[/tex].

Multiply normal force by the coefficient of kinetic friction to find the friction on each person:

[tex]f(\text{John}) = \mu_{k}\, N(\text{John}) = \mu_{k}\, m(\text{John})\, g[/tex].

[tex]f(\text{Lucy}) = \mu_{k}\, N(\text{Lucy}) = \mu_{k}\, m(\text{Lucy})\, g[/tex].

Again, because the surface is level, the net force on each person after the first [tex]1.0\; {\rm s}[/tex] will be equal to the friction. Divide that the net force on each person by the mass of that person to find acceleration:
[tex]\displaystyle a(\text{John}) = \frac{\mu_{k}\, m(\text{John})\, g}{m(\text{John})} = \mu_{k}\, g[/tex].

[tex]\displaystyle a(\text{Lucy}) = \frac{\mu_{k}\, m(\text{Lucy})\, g}{m(\text{Lucy})} = \mu_{k}\, g[/tex].

(Note that the magnitude of acceleration is independent of mass and is the same for both John and Lucy.)

[tex]a = \mu_{k}\, g= (0.2)\, (9.81\; {\rm m\cdot s^{-2}}) = 1.962\; {\rm m\cdot s^{-2}}[/tex].

In other words, after the first [tex]1\; {\rm s}[/tex], both John and Lucy will slow down at a rate of [tex]1.962\; {\rm m\cdot s^{-2}}[/tex].

To find the speed of Lucy immediately after the first [tex]1.0\: {\rm s}[/tex], multiply this acceleration by the time [tex]t = 8.0\; {\rm s}[/tex] it took for Lucy to slow down to [tex]0\; {\rm m\cdot s^{-1}}[/tex]:

[tex]\begin{aligned}& (8.0\; {\rm s})\, (1.962\; {\rm m\cdot s^{-2}}) \\ =\; & (8.0)\, (1.962)\; {\rm m\cdot s^{-1}} \\ =\; & 15.696\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Thus, in the first [tex]1.0\; {\rm s}[/tex], Lucy accelerated (from [tex]0\; {\rm m\cdot s^{-1}}[/tex]) to [tex]15.696\; {\rm m\cdot s^{-1}}[/tex].

The average acceleration of Lucy in the first [tex]1.0\; {\rm s}[/tex] would be [tex](15.696) / (1) = 15.696\; {\rm m\cdot s^{-2}}[/tex]. Multiply this average acceleration by the mass of Lucy to find the average net force on Lucy during that [tex]1.0\; {\rm s}[/tex]:

[tex]\begin{aligned}F_{\text{net}}(\text{Lucy}) &= m(\text{Lucy})\, a \\ &= (45)\, (15.696)\; {\rm N} \\ &= 706.320\; {\rm N}\end{aligned}[/tex].

This net force on Lucy during that [tex]1.0\; {\rm s}[/tex] is the combined result of both the push from Johnny and friction:

[tex]F_{\text{net}}(\text{Lucy}) = F(\text{push}) - f(\text{Lucy})[/tex].

Since [tex]f(\text{Lucy}) = \mu_{k}\, N(\text{Lucy}) = \mu_{k}\, m(\text{Lucy})\, g[/tex]:

[tex]\begin{aligned}F(\text{push}) &= F_{\text{net}}(\text{Lucy}) + f(\text{Lucy}) \\ &= F_{\text{net}}(\text{Lucy}) + \mu_{k}\, m(\text{Lucy})\, g \\ &= (706.320) \; {\rm N}+ (0.2)\, (45)\, (9.81)\; {\rm N} \\ &= 706.320\; {\rm N} + 88.290\; {\rm N} \\ &=794.610\; {\rm N}\end{aligned}[/tex].

In other words, Johnny would have applied a force of [tex]794.610\; {\rm N}[/tex] on Lucy.

By Newton's Laws of Motion, when Johnny exerts this force on Lucy in that [tex]1.0\; {\rm s}[/tex], Lucy would exert a reaction force on Johnny of the same magnitude: [tex]794.610\; {\rm N}[/tex].

Similar to Lucy, the net force on Johnny during that [tex]1.0\; {\rm s}[/tex] will be the combined effect of the push [tex]F(\text{push})[/tex] and friction [tex]f(\text{John}) = \mu_{k}\, m(\text{John})\, g[/tex]:

[tex]\begin{aligned}F_{\text{net}}(\text{John}) &= F(\text{push}) - f(\text{John}) \\ &= F(\text{push}) - \mu_{k}\, m(\text{John})\, g\\ &= 794.610\; {\rm N} - (0.2)\, (65)\, (9.81)\; {\rm N} \\ &= 667.080\; {\rm N}\end{aligned}[/tex].

Divide net force by mass to find acceleration:

[tex]\begin{aligned}\frac{667.080\; {\rm N}}{65\; {\rm kg}} \approx 10.2628\; {\rm m\cdot s^{-2}}\end{aligned}[/tex].

In other words, Johnny accelerated at a rate of approximately [tex]10.5406\; {\rm m\cdot s^{-2}}[/tex] during that [tex]1.0\; {\rm s}[/tex]. Assuming that Johnny was initially not moving, the velocity of Johnny right after that [tex]1.0\; {\rm s}\![/tex] would be:

[tex](0\; {\rm m\cdot s^{-1}}) + (10.2628\; {\rm m\cdot s^{-2}})\, (1.0\; {\rm s}) = 10.2628\; {\rm m\cdot s^{-1}}[/tex].

After the first [tex]1.0\; {\rm s}[/tex], the acceleration of both John and Lucy (as a result of friction) would both be equal to [tex]a = \mu_{k}\, g= (0.2)\, (9.81\; {\rm m\cdot s^{-2}}) = 1.962\; {\rm m\cdot s^{-2}}[/tex]. Divide initial velocity of Johnny by this acceleration to find the time it took for Johnny to slow down to a stop:

[tex]\displaystyle \frac{10.2628\; {\rm {m\cdot s^{-1}}}}{1.962\; {\rm m\cdot s^{-2}}} \approx 5.23\; {\rm s}[/tex].

In a material having an index of refraction n, a light ray has frequency f, wavelength ? and speed v.a) What is the frequency of this light in vacuum and in a material having refractive index n1?
b) What is the wavelength of this light in vacuum and in a material having refractive index n1?
c) What is the speed of this light in vacuum and in a material having refractive index n1?

Answers

In a material having an index of refraction n, a light ray has frequency f, wavelength λ and speed v then,

a) The frequency of the light in a vacuum and in a material with refractive index [tex]n_1[/tex] is f.
b) The wavelength of the light in a vacuum is λ₀ [tex]=\frac{c}{f}[/tex], and in a material with refractive index n1 is λ₁ =λ₀/n1.
c) The speed of light in a vacuum is c, and in a material with refractive index n1 is [tex]v_1 = \frac{c}{n_1}[/tex].


a) The frequency of the light ray in both the material and in vacuum:
The frequency of a light wave remains constant when it passes through different materials. So, the frequency of the light ray in vacuum and in a material with refractive index n1 will be the same as the given frequency, f.

b) The wavelength of the light ray in vacuum and in a material with refractive index n1:
In vacuum, the wavelength of the light ray (λ₀) can be calculated using the formula:

v = c = λ₀ * f

Where c is the speed of light in vacuum ([tex]3.0 \times 10^8[/tex] m/s).
Solving for λ₀, we get:

λ₀[tex]=\frac{c}{f}[/tex]

In the material with refractive index  [tex]n_1[/tex], the wavelength (λ₁) can be calculated using the formula:

λ₁ = λ₀ / [tex]n_1[/tex]

c) The speed of the light ray in a vacuum and in a material with refractive index n1:
In a vacuum, the speed of the light ray is the speed of light (c), which is [tex]3.0 \times 10^8[/tex]  m/s.

In the material with a refractive index  [tex]n_1[/tex] , the speed (v₁) can be calculated using the formula:

[tex]v_1 = \frac{c}{n_1}[/tex].

In summary:
a) The frequency of the light in a vacuum and in a material with refractive index [tex]n_1[/tex] is f.
b) The wavelength of the light in a vacuum is λ₀ [tex]=\frac{c}{f}[/tex], and in a material with refractive index n1 is λ₁ =λ₀/n1.
c) The speed of light in a vacuum is c, and in a material with refractive index n1 is [tex]v_1 = \frac{c}{n_1}[/tex].

To know more about refraction refer here:

https://brainly.com/question/2660868#

#SPJ11

Name Period_Date Rotation: Worksheet 9 Angular Momentum The following masses are swung in horizontal circles at the end of a thin string at constant speed. a. A 2.0 kg mass moving at 2.0 on the end of a 2.0 m long thin string. b. A 3.0 kg mass moving at 1.om, on the end of a 2.0 m long thin string. c. A 1.0 kg mass moving at 3.0 on the end of a 2.0 m long thin string. d. A 2.0 kg mass moving at 1.0 on the end of a 4.0 m long thin string. e. A 2.0 kg mass moving at 2.0 on the end of a 4.0 m long thin string

Answers

The length of string is 16.0 kg·m²/s

What is Mass?

Mass is a fundamental property of matter that quantifies the amount of substance or material present in an object. It is a scalar quantity, meaning it only has magnitude and no direction. Mass is commonly measured in units such as kilograms (kg), grams (g), or other appropriate units depending on the context.

a. Mass: 2.0 kg

Velocity: 2.0 m/s

Length of string: 2.0 m

Angular momentum: 8.0 kg·m²/s

b. Mass: 3.0 kg

Velocity: 1.0 m/s

Length of string: 2.0 m

Angular momentum: 6.0 kg·m²/s

c. Mass: 1.0 kg

Velocity: 3.0 m/s

Length of string: 2.0 m

Angular momentum: 6.0 kg·m²/s

d. Mass: 2.0 kg

Velocity: 1.0 m/s

Length of string: 4.0 m

Angular momentum: 2.0 kg·m²/s

e. Mass: 2.0 kg

Velocity: 2.0 m/s

Length of string: 4.0 m

Angular momentum: 8.0 kg·m²/s

Learn more about Mass from the given link

https://brainly.com/question/86444

#SPJ1

I need help with my physics homework
When a thin stick of mass M and length L is pivoted about one end, its moment of inertia is I=(1/3)ML^2. When the stick is pivoted about its midpoint, its moment of inertia is

A.) (1/12)ML^2
B.) (1/6)ML^2
C.) (1/3)ML^2
D.) (7/12)ML^2
E.) ML^2

Answers

The moment of inertia of the stick when it is pivoted about its midpoint is (1/6)ML². The answer choice is (B).

When the stick is pivoted about its midpoint, we can split it into two equal pieces of mass M/2 and length L/2, each with a moment of inertia of:

I₁ = (1/3)(M/2)(L/2)² = (1/12)ML²

The parallel axis theorem tells us that the moment of inertia of the whole stick about its midpoint is equal to the sum of the moments of inertia of the two pieces plus the moment of inertia of the stick as if it were a point mass at its center of mass:

I₂ = 2I₁ + (1/12)M(L/2)²

I₂ = (2/12)ML² + (1/48)ML²

I₂ = (1/6)ML²

Option B is correct.

To know more about inertia, here

brainly.com/question/3268780

#SPJ1

A student wants to determine the angular speed w of a rotating object. The period T is 0.50 s +/- 5%. The angular speed ω is
ω = 2π/T
What is the percentage uncertainly of ω? A. 0.2%
B. 2.5% C. 5% D. 10%

Answers

The percentage uncertainty of the angular speed= 5%

To determine the percentage uncertainty of the angular speed ω, we can use the following formula:

Percentage Uncertainty of ω = (Percentage Uncertainty of T) * (Constant Value)

In this case, the percentage uncertainty of T is 5%, and the constant value is 2π (from the formula ω = 2π/T). Therefore:

Percentage Uncertainty of ω = (5%) * (2π)

However, since we're only interested in the percentage uncertainty, we don't need to multiply by the constant value (2π). So, the percentage uncertainty of ω is the same as the percentage uncertainty of T:

Percentage Uncertainty of ω = 5%

So, the correct answer is C i.e.5%

To know more about angular speed, visit https://brainly.com/question/30885221

#SPJ11

A radar gun at point O rotates with the angular velocity of 0.2 rad/s and angular acceleration of 0.040 rad/s^2, at the instant ? = 45 degree, as it follows the motion of the car traveling along the circular road having a radius of r = 220 m. Part A Determine the magnitudes of velocity of the car at this instant. Part B Determine the magnitude of acceleration of the car at this instant.

Answers

(a) the magnitude of the velocity of the car at this instant is 44 m/s.(b) the magnitude of the acceleration of the car at this instant is 8.8 m/s².

Part A:
To determine the velocity of the car at the given instant, we need to use the formula:
v = rω
where v is the velocity of the car, r is the radius of the circular road, and ω is the angular velocity of the radar gun.
At the instant θ = 45 degrees, we can convert this to radians by multiplying by π/180:
θ = 45° × π/180 = 0.7854 radians
We know that the angular velocity of the radar gun is 0.2 rad/s, so we can plug in these values to find the velocity of the car:
v = rω
v = (220 m)(0.2 rad/s)
v = 44 m/s
Therefore, the velocity is 44 m/s.

Part B:
To determine the acceleration of the car at the given instant, we need to use the formula:
a = rα
where a is the acceleration of the car, r is the radius of the circular road, and α is the angular acceleration of the radar gun.
We can plug in the given values to find the acceleration of the car:
a = rα
a = (220 m)(0.040 rad/s²)
a = 8.8 m/s²

Therefore, the acceleration is 8.8 m/s²

Learn more about acceleration at https://brainly.com/question/29223620

#SPJ11

water flows in a 10-cm diameter pipe at a velocity of 0.75 m/s. the mass flow rate of water in the pipe is:

Answers

The mass flow rate of water in the pipe is approximately 0.58875 kg/s using the formula of mass flow rate.

To find the mass flow rate of water in the pipe, we'll use the formula:
Mass flow rate = Area of the pipe × Velocity × Density of water

Step 1: Calculate the area of the pipe.
[tex]Area = \pi * (Diameter / 2)^2[/tex]

Diameter = 10 cm = 0.1 m (convert cm to m by dividing by 100)

[tex]Area = \pi  * (0.1 / 2)^2 = \pi  × (0.005)^2 = 0.000785 m^2[/tex]

Step 2: Use the given velocity.
Velocity = 0.75 m/s

Step 3: Determine the density of water.
The density of water is approximately 1000 kg/m³.

Step 4: Calculate the mass flow rate.
Mass flow rate = Area × Velocity × Density
[tex]Mass flow rate = 0.000785 m^2 * 0.75 m/s * 1000 kg/m^3 = 0.58875 kg/s[/tex]


Learn more about mass flow rate here:

https://brainly.com/question/23159800

#SPJ11

how would you shape a given length of wire to give it the greatest self-inductance? the least?

Answers

A straight wire has much lower inductance than a coiled wire, as the magnetic fields generated by the current are less likely to interact with each other and create self-inductance.

To shape a given length of wire to give it the greatest self-inductance, you would want to create a tightly wound coil, such as a solenoid.

The self-inductance of a solenoid is proportional to the square of the number of turns, so the more turns you can create with the given length of wire, the greater the inductance will be.

Additionally, keeping the turns close together will help maximize the inductance.

On the other hand, to achieve the least self-inductance, you would want to keep the wire as straight as possible

For more information on self-inductance and its effect on wire refer to https://brainly.in/question/14293968

#SPJ11

A straight wire has much lower inductance than a coiled wire, as the magnetic fields generated by the current are less likely to interact with each other and create self-inductance.

To shape a given length of wire to give it the greatest self-inductance, you would want to create a tightly wound coil, such as a solenoid.

The self-inductance of a solenoid is proportional to the square of the number of turns, so the more turns you can create with the given length of wire, the greater the inductance will be.

Additionally, keeping the turns close together will help maximize the inductance.

On the other hand, to achieve the least self-inductance, you would want to keep the wire as straight as possible

For more information on self-inductance and its effect on wire refer to https://brainly.in/question/14293968

#SPJ11

how many kilograms are in 16 lb? (hint: 2.20 lb = 1 kg and treat this conversion as exact)

Answers

There are 7.26 kilograms in 16 lb. This is because we can use the conversion factor of 2.20 lb = 1 kg. Therefore, we can divide 16 lb by 2.20 lb/kg to get the equivalent weight in kilograms:  16 lb / 2.20 lb/kg = 7.26 kg

So, if you have 16 lb of something, it is equivalent to 7.26 kg.
To convert 16 pounds (lb) to kilograms (kg), you can use the conversion factor provided: 1 kg = 2.20 lb. To find the number of kilograms in 16 lb, you can set up a proportion:

16 lb × (1 kg / 2.20 lb)

The "lb" units cancel out, leaving you with:

16 ÷ 2.20 kg

After performing the division, you get:

7.27 kg (approximately)

So, there are approximately 7.27 kilograms in 16 pounds, using the given conversion factor.

learn more about conversion factors here: brainly.com/question/12194554

#SPJ11

A solid has a(n) ______ volume and maintains its _____ regardless of the container in which it is placed.

Answers

Answer:

it has a fixed volume and maintains it's shape

A closed curve encircles several conductors. The line integral around this curve is ∮B⃗ ⋅dl⃗ = 4.25×10^-4 T⋅m .
A) What is the net current in the conductors?
B) If you were to integrate around the curve in the opposite direction, what would be the value of the line integral?

Answers

a)  the net current in the conductors is 3.38 A. b) the line integral in the opposite direction will be:  ∮B⃗ ⋅dl⃗ = -4.25×10^-4 T⋅m

To solve this problem, we can use Ampere's Law, which relates the line integral of the magnetic field around a closed loop to the net current passing through the loop.

A) The equation for Ampere's Law is: ∮B⃗ ⋅dl⃗ = μ0I, where μ0 is the permeability of free space and I is the net current passing through the loop. Solving for I, we get:

I = ∮B⃗ ⋅dl⃗ / μ0

Substituting the given values, we get:

I = (4.25×10^-4 T⋅m) / (4π×10^-7 T⋅m/A)

I = 3.38 A

Therefore, the net current in the conductors is 3.38 A.

B) If we integrate around the curve in the opposite direction, the value of the line integral will be negative, since the direction of the magnetic field will be opposite. Specifically, we can use the fact that reversing the direction of the line integral is equivalent to reversing the direction of the loop, which changes the sign of the enclosed current.

Therefore, the line integral in the opposite direction will be:  ∮B⃗ ⋅dl⃗ = -4.25×10^-4 T⋅m

To learn more about conductors click here

brainly.com/question/8426444

#SPJ11

What is the output voltage of a 3.0000-V lithium cell in a digital wristwatch that draws 0.300 mA, if the cell’s internal resistance is 2.00 Ω ?

Answers

Output Voltage of the lithium cell = 2.9994 V

Output Voltage is the maximum voltage that a cell can offer after overcoming its own internal resistance that arises from the construction of the cell.

To find the output voltage of the lithium cell, you need to consider the voltage drop across the internal resistance due to the current draw. You can use Ohm's Law for this calculation: Voltage drop = Current × Resistance.

In this case, the current draw is 0.300 mA, and the internal resistance is 2.00 Ω. First, convert the current to amperes: 0.300 mA = 0.0003 A.

Now, calculate the voltage drop: Voltage drop = 0.0003 A × 2.00 Ω = 0.0006 V.

Finally, subtract the voltage drop from the initial cell voltage: Output voltage = 3.0000 V - 0.0006 V = 2.9994 V.

The output voltage of the lithium cell is approximately 2.9994 V.

To know more about voltage, visit https://brainly.com/question/2364325

#SPJ11

suppose an ideal gas undergoes isobaric (constant pressure) compression)
which expression about the entropy of the environment and the gas is correct?
∆S > 0 ∆S + ∆S > 0 ∆ Seny + ∆S = 0

Answers

The correct expression about the entropy of the environment and the gas for an isobaric compression of an ideal gas is ∆S + ∆Senv > 0, where ∆S is the change in entropy of the gas and ∆Senv is the change in entropy of the environment.

During an isobaric compression, work is done on the gas to decrease its volume while the pressure remains constant. This leads to an increase in the temperature of the gas, which in turn leads to an increase in its entropy. However, the compression process also results in an increase in the entropy of the environment due to the release of heat.

Thus, the total change in entropy of the system (gas) and the environment is positive, which is expressed as ∆S + ∆Senv > 0. The other options given (∆S > 0 and ∆S + ∆Seny = 0) are not correct for an isobaric compression process.

1) Identify a source of interest to you. Provide the bibliographic information for the reader.
2) Summarize the source in at least two well developed paragraphs. Identify the main point of the article as well as the evidence advanced in support of it.
3) Significance. Identify the significance of the source—why is it important?—what practical or theoretical consequences might follow from the main point?—what limitations, objections, or weaknesses might be present that could serve to undermine the significance of the source?
4) Explain what you learned about philosophy as a whole; would you recommend that our class address the themes covered in the source? Why or why not?
5) Recommendation: One a scale of 1-5, with five being the highest, rank the quality and importance of this article. Be sure to explain your ranking.



https://aeon.co/essays/natural-laws-cant-be-broken-but-can-they-be-defined

Answers

The significance of a source in research is crucial as it determines the reliability and validity of the information presented. A credible source is important because it ensures that the information presented is accurate and trustworthy.

Using sources that are not credible or reliable can lead to the spread of misinformation, which can have practical consequences such as wrong decisions and actions based on incorrect information. Theoretical consequences could include flawed research or faulty arguments. It is important to consider the limitations, objections, or weaknesses of a source, as these can undermine its significance. This includes evaluating factors such as bias, sample size, and methodology used in the research.

To know more about credible source, here

brainly.com/question/16530693

#SPJ1

--The complete Question is, Identify the significance of the source—why is it important?—what practical or theoretical consequences might follow from the main point?—what limitations, objections, or weaknesses might be present that could serve to undermine the significance of the source?--

a pendulum is pulled back from its equilibrium (center) position and then released. at what points in the motion of the pendulum after release is its kinetic energy greatest?

Answers

The kinetic energy of a pendulum is greatest at the bottom of its swing, when it is moving fastest.

As the pendulum swings away from its equilibrium position, it gains potential energy, which is converted into kinetic energy as it swings back toward the center. At the top of the swing, the pendulum briefly comes to a stop before changing direction and swinging back down, so its kinetic energy is momentarily zero. But as it reaches the bottom of the swing, it has the highest velocity and therefore the greatest amount of kinetic energy.

To know more about the kinetic energy :

https://brainly.com/question/26472013

#SPJ11

Explain the concept of generational wealth. In How Jews Became White and What That
Says About America, how did the GI Bill described in the essay impact the generational
wealth for the men who served, marginalized populations, and women. Support your
response with two paragraphs.

Answers

Generational wealth is a kind of asset that passes from one generation to another. It gives freedom to think and live.

The History of Jews in the United States is one of the racial changes that provides insight into the race in America. American Jews of different eras have ethnoracial identities.

Generational wealth is a kind of asset that is passed down from one generation to the other. The first generation enjoys the property of the family and then it passes to their children.

From generational wealth, a person can gain financial freedom to live. By investing in real estate and the stock market, and by creating various income of sources, we can create generational wealth.

To learn more about generational wealth:

https://brainly.com/question/28481650

#SPJ1

Other Questions
Consider the following hypothesis problem. n = 30 s2 = 625 H0: 2 =500 Ha:2500 The test statistic equals a. .63. b. 12.68. c. 13.33. d. 13.68. Unpolarized light passes through two polarizers whose transmission axes are at an angle of 35.0 with respect to each other. What fraction of the incident intensity is transmitted through the polarizers? I/I0=?? This is exercise 20 in chapter 2 - but this time i would need to Repeat Exercise 20 in Chapter 2 , using the ADT list to implement the function f (n). Consider the following recurrence relation: F (1) = 1; f (2) = 1; f(3) =1; f(4) =3; f(5) = 5; f (n) = f( n -1 ) + 3 x f(n-5) for all n > 5 Compute f(n ) for the following values of n : 6, 7, 12, 15. If you were careful, rather than computing f (15) from scratch (the way a recursive C++ function would compute it), you would have computed f (6), then f (7), then f(8), and so on up to f(15), recording the values as you computed them. This ordering would have saved you the effort of ever computing the same value more than once. (Recall the iterative version of the rabbit function discussed at the end of this chapter.) Note that during the computation distinguish between authentication and authorisation Cameron works at Fish Friends Aquatics. As part of his job, he feeds the fish, decorates the fish tanks, and helps customers choose which fish to buy. Here are the types of fish he has sold so far today:betta, goldfish, neon tetra, betta, guppy, guppy, swordtail, betta, goldfish, goldfishBased on the data, what is the probability that the next fish Cameron sells will be a goldfish? . find a set of smallest possible size that has both {1, 2, 3, 4, 5} and {2, 4, 6, 8, 10} as subsets Determine the components of the compound statement. (Select all that apply.) 7 + 1 2 7 7,1,7 7+1 74157 7+1=7 27 PLEASE HELP!!20. The table below shows the cost of flying from San Francisco to various other cities in the United States. There is a relationship between the distance you are flying and the cost of your plan ticket. The data from the table is represented on the scatter plot. Distance (miles) Cost of the plane ticket ($) 300 Cost of 250 plane ticket ($) 200 150 100 0 374 1,240 200 600 143 125 250 725 150 110 180 1,100 950 1,500 224 180 250 500 750 1000 1250 Distance (miles) 500 164 A) Draw a line of best fit and pick two good points from the table that are on your line B) Determine the equation for the line of best fit. 48) Jada measured the masses of a small amount of baking soda and a small amountof vinegar. She mixed the baking soda and vinegar together in a large graduatedcylinder. She observed that bubbles formed in the mixture. When the bubblesstopped forming, she measured the mass of the cylinder's contents. She found thatthis mass was less than the combined mass of the baking soda and vinegar beforemixing. She concluded that a gas had formed and escaped into the air. Which ofthe following statements best defends Jada's conclusion?F. Mass is always conserved when substances undergo a chemical change.G. Energy is always conserved when substances undergo a chemical change.H. Solids are always destroyed when substances undergo a physical change.I. Gases are always produced when substances undergo a chemical change. Pacific Cruise Lines is a defendant in litigation involving a swimming accident on one of its three cruise ships.Required:1. The likelihood of a payment occurring is probable, and the estimated amount is $1.19 million.2. The likelihood of a payment occurring is probable, and the amount is estimated to be in the range of $0.99 to $1.19 million.3. The likelihood of a payment occurring is reasonably possible, and the estimated amount is $1.19 million.4. The likelihood of a payment occurring is remote, while the estimated potential amount is $1.19 million.Record the necessary entry for the scenarios given above. (If no entry is required for a transaction/event, select "No journal entry required" in the first account field. Enter your answers in dollars, not in millions. (i.e. 5.5 should be entered as 5,500,000).) As shown in the figure below, cars #1 and #2 are sliding across a horizontal frictionless surface.The cars are equipped with a coupling arrangement similar to the one on railroad cars. Car #1 overtakes car #2 and they have a totally inelastic collision and become coupled together. You know the mass of each car; m1 = 18.0 kg and m2 = 43.0 kg. In addition, you are provided with the following graph, which shows the momentum of car #1 before, during and after the collision.The graph provides the following information:- Momentum on the y-axis (kgm/s) and t (in seconds) on the x-axis)- The line starts out at 100 kgm/s and stays there for awhile, then slopes down at an even rate, and then levels back out at 40 kgm/s Aluminum Filter is used to remove what items from the beam? Based on the background materials, describe the psychological impact of 21st century TV consumption and exposure upon a persons cultural values, social attitudes and personality traits.Cite your sources and use the proper media psychology terminology in your initial discussion posting. Jetia mixes 5 parts cranberry juice with 8 parts apple juice to make 177 cups of What role do you think the concept of Manifest destiny had in shaping the Dawes Act a proton traveling at 39o respect to a magnetic field of strength 4.3 mt experiences a magnetic force of 5.0 x 10-17n a) find the protons speed b) find the protons kinetic energy A study was commissioned to find the mean weight of the residents in certain town. The study examined a random sample of 116 residents and found the mean weight to be 177 pounds with a standard deviation of 30 pounds. Determine a 95% confidence interval for the mean, rounding all values to the nearest tenth. atmospheric pressure p (in kilopascals, kpa) at altitude h (in kilometers, km) is governed by the formula ln (p/p0) = h/k where k = 7 and p0 = 100 kpa are constants.(a) solve the equation for p(b) use part a to find the pressure p at an altitude of 5 km if a company fails to adjust for accrued expenses, what effect will this have on that month's financial statements? Let a, b E N, with a > 0 and b > 0. (a) Let p, q, r, s be the unique integers such thata = qb + r,0 < r < b,b = pr+s,0 < s