What is the dependent variable in this hypothesis?
After finding that objects of the same mass do not
always float or submerge the same way in a tub of
liquid, Alexis wrote a new hypothesis to test objects that
have the same mass.
o the mass of the object
O the surface area of the object
O the amount of water displaced
O the height at which the object floats
If the surface area of an object increases, then it
will float higher in the tub, because the object
would need to displace more liquid in order to sink
all the way down.

Answers

Answer 1

Answer:

The height at wich the object floats

Explain

took on edge 2020

Answer 2

Answer:

the height at which the object floats

Edge 2021


Related Questions

An object, initially at rest, moves 250 m in 17 s. What is its acceleration?

Answers

Answer:

1.73 m/s²

Explanation:

Given:

Δx = 250 m

v₀ = 0 m/s

t = 17 s

Find: a

Δx = v₀ t + ½ at²

250 m = (0 m/s) (17 s) + ½ a (17 s)²

a = 1.73 m/s²

The acceleration of this object is 1.730 meter per seconds square.

Given the following data:

Initial velocity = 2.5 m/s (since the object is starting from rest).Time = 17 seconds.

To find the acceleration of this object, we  would use the second equation of motion.

Mathematically, the second equation of motion is given by the formula;

[tex]S = ut + \frac{1}{2} at^2[/tex]

Where:

S is the displacement or distance covered.u is the initial velocity.a is the acceleration.t is the time measured in seconds.

Substituting the given values into the formula, we have;

[tex]250 = 0(17) + \frac{1}{2} (a)(17^2)\\\\250 = \frac{1}{2} (289)a\\\\250 = 144.5a\\\\a = \frac{250}{144.5}[/tex]

Acceleration, a = 1.730 [tex]m/s^2[/tex]

Therefore, the acceleration of this object is 1.730 meter per seconds square.

Read more: https://brainly.com/question/7998145

A bird flies 3.7 meters in 46 seconds, what is its speed?

Answers

Answer:

Speed is 0.08 m/s.

Explanation:

Given the distance that the bird flies = 3.7 meters

The time is taken by the bird to fly the 3.7 meters = 46 seconds  

We have given distance and time. Now we have to find the speed at which the bird flies. So, to calculate the speed of the bird we have to divide the distance by the time.  

Below is the formula to find the speed.

Speed = Distance / Time

Now insert the given value in the formula.

Speed = 3.7 / 46 = 0.08 m/s

(7%) Problem 14: A robot cheetah can jump over obstacles. Suppose the launch speed is vo = 4.74 m/s, and the launch angle is 0 = 25.5
degrees above horizontal.
What is the maximum height in meters?

Answers

Can you please help me with my school troubles grades are finalized tomorrow 13

A pendulum is 0.760 m long, and the bob has a mass of 1,00 kg. At the bottom of its swing, the bob's speed is 1.60 m/s. The tension is greater than the weight of the bob because Multiple Choice 0 its horizontal component is increasing from zero. O the bob has a downward acceleration, so the net Fy must be downward O O the bob has zero acceleration. O ( the bob has an upward acceleration, so the net Fy must be upward Required information A pendulum is 0.760 m long, and the bob has a mass of 1.00 kg. At the bottom of its swing, the bob's speed is 1.60 m/s. What is the tension in the string at the bottom of the swing?

Answers

Answer:

  T = 13.17 N

the correct one is there is a digested centripetal acceleration towards upward

Explanation:

For this exercise we can use Newton's second law at the bottom of the pendulum's path

we will assume that the upward direction is positive

              T - W = m a

in this case it is describing a circle the acceleration is central

              a = v² / R

where the radius of the trajectories equals the length of the pendulum

             R = L

we substitute

            T = mg + m v² / L

             T = m (g + v² / L)

When reviewing the different statements, the correct one is there is a digested centripetal acceleration towards upward

let's calculate the tension of the rope

             T = 1 (9.8 + 1.6 2 / 0.760)

             T = 13.17 N

A column of soldiers, marching at 100 steps per minute, keep in step with the beat of a drummer at the head of the column. It is observed that the soldiers in the rear end of the column are striding forward with the left foot when the drummer is advancing with the right. What is the approximate length of the column? (Take the speed of sound to be 343 m/s.)

Answers

Answer:

The value is [tex]D = 205.8 \ m [/tex]

Explanation:

The time taken for the column to take a step mathematically represented as

100 steps => 1 minutes => 60 seconds

1 step => t

=> [tex]t = 0.6 \ s [/tex]

Generally the length of the column is mathematically represented as

[tex]D = v * t[/tex]

substituting 343 m/s for v we have

        [tex]D =  343 * 0.6 [/tex]

  =>    [tex]D =  205.8 \  m  [/tex]

Air that initially occupies 0.22 m3 at a gauge pressure of 86 kPa is expanded isothermally to a pressure of 101.3 kPa and then cooled at constant pressure until it reaches its initial volume. Compute the work done by the air. (Gauge pressure is the difference between the actual pressure and atmospheric pressure.)

Answers

Answer:

total work done = -5960.8 J

Explanation:

given data

initial volume v1 = 0.22 m³

initial pressure  p1 = 86 kPa

final pressue p2 = 101.3 kPa

solution

we apply here  isothermal expansion that is express as

p1 × v1 = p2 × v2    ......................1

put here value

86 × 0.22 = 101.3 × v2

v2 = 0.1867 m³  

and

work done will be here

w1 = p1 × v1  × ln([tex]\frac{p1}{p2}[/tex])      ....................2

w1 = 86 × 10³ × 0.22 × [tex]ln(\frac{86}{101.3})[/tex]

w1 = -3.097  × 10³ J

and

it is cooled to initial volume at constant pressure  so here work done will be

w2 = p(v2 - v1)    .................3

w2 =  86 × 10³ × ( 0.1867 - 0.22 )

w2 = -2863.8 J

so

total work done is

total work done = w1 + w2

total work done = -3097 +  -2863.8

total work done = -5960.8 J

QUICK

a sound wave has a frequency of 85 Hz and a wavelength of 4.2 m. what is the wave speed of the sound wave?

A. 357 seconds

B. 89.2 m/s

C. 357 m/s

D. 20 m/s

Answers

Answer:C

Explanation:

I did the test

a sound wave has a frequency of 85 Hz and a wavelength of 4.2 m. Then the wave speed of the sound wave is 20.23 m/s.  Hence option D is correct.

What is wave ?

Wave is is a disturbance in a medium that carries energy as well as momentum . wave is characterized by amplitude, wavelength and phase. Amplitude is the greatest distance that the particles are vibrating. especially a sound or radio wave, moves up and down. Amplitude is a measure of loudness of a sound wave. More amplitude means more loud is the sound wave.

Wavelength is the distance between two points on the wave which are in same phase. Phase is the position of a wave at a point at time t on a waveform. There are two types of the wave longitudinal wave and transverse wave.

The wave speed is given by,

c = νλ

where λ is wavelength, ν is frequency.

Given,

frequency ν = 85 Hz

wavelength λ = 4.2 m

The speed of the wave,

c = 85 × 4.2 = 20.23 m/s

Hence option D is correct.

To know more about Speed :

https://brainly.com/question/28224010

#SPJ2.

You drop a ball from a window located on an upper floor of a building. It strikes the ground with speed v. You now repeat the drop, but you ask a friend down on the ground to throw another ball upward at speed v. Your friend throws the ball upward at the same moment that you drop yours from the window. At some location, the balls pass each other. Is this location.

Answers

Answer:

 y = y₀ (1 - ½ g y₀ / v²)

Explanation:

This is a free fall problem. Let's start with the ball that is released from the window, with initial velocity vo = 0 and a height of the window i

          y = y₀ + v₀ t - ½ g t²

          y = y₀ - ½ g t²

for the ball thrown from the ground with initial velocity v₀₂ = v

         y₂ = y₀₂ + v₀₂ t - ½ g t²

     

in this case y₀ = 0

         y₂2 = v t - ½ g t²

at the point where the two balls meet, they have the same height

         y = y₂

         y₀ - ½ g t² = vt - ½ g t²

         y₀i = v t

         t = y₀ / v

since we have the time it takes to reach the point, we can substitute in either of the two equations to find the height

         y = y₀ - ½ g t²

         y = y₀ - ½ g (y₀ / v)²

         y = y₀ - ½ g y₀² / v²

        y = y₀ (1 - ½ g y₀ / v²)

with this expression we can find the meeting point of the two balls

Drive-reduction theory states that motivation comes from a combination of both reinforcement and drive.
ОА.
True
OB. False

Answers

The correct answer is A) True

A watermelon is dropped from the edge of the roof of a build- ing and falls to the ground. You are standing on the sidewalk and see the watermelon falling when it is 30.0 m above the ground. Then 1.50 s after you first spot it, the watermelon lands at your feet. What is the height of the building

Answers

Answer:

The hight of the building is 38.16 m

Explanation:

These two pieces of information given, first, the watermelon is 30 m  above the ground and after 1.50 s the watermelon has been spotted. Now we are required to find the height of the building.

Use the below formula to find the height of buildings.

S = ut + ½ gt^2

30  =1.5u + (1/2) × 9.8 (1.5)^2

u = 12.65 m/sec

v^2 – u^2 = 2gs

(12.65)^2 = 2×9.8 s’

S’ = 8.16 m  

h = s + s’

h = 30 + 8.16 = 38.16 m

The hight of the building is 38.16 m.

The height of the building is 38.16 m.

Given data:

The height above the ground is, h = 30.0 m.

The time interval after observation of first spot is, t = 1.50 s.

We need to find the height of building. And since two pieces of information given, first, the watermelon is 30 m  above the ground and after 1.50 s the watermelon has been spotted. So, using the second kinematic equation of motion as,

[tex]h = ut + \dfrac{1}{2}gt^{2}[/tex]

Here, u is the initial speed. Solving as,

[tex]30 = (u \times 1.50) + \dfrac{1}{2} \times 9.8 \times (1.50)^{2}\\\\u =12.65 \;\rm m/s[/tex]

Now landing distance (s') is calculated using the third kinematic equation of motion as,

[tex]v^{2} =u^{2}+2(-g)s\\\\0^{2} =12.65^{2}+2(-9.8)s\\\\s = 8.16 \;\rm m[/tex]

Then the height of building is given as,

H = h + s

H = 30 m + 8.16 m

H = 38.16 m

Thus, we can conclude that the height of the building is 38.16 m.

Learn more about the kinematic equations of motion here:

https://brainly.com/question/16556016

When a piano tuner strikes both the A above middle C on the piano and a 440 Hz tuning fork, he hears 4 beats each second. The frequency of the piano's:____________.
A) 444 Hz
B) 880 Hz
C) 436 Hz
D) either 436 Hz or 444 Hz

Answers

Answer:

D) either 436 Hz or 444 Hz

Explanation:

frequency of the tuning fork, F₁ =  440 Hz

frequency of the piano, F₂ = ?

Beat frequency, F = 4 Hz

Beat frequency is given as the difference between the frequency of the two instruments  and it is given by;

F = F₂ - F₁                    or        F =  F₁ - F₂

F₂ = F + F₁                   or        F - F₁ = - F₂

F₂ = 4 Hz + 440 Hz    or       4 - 440 = - F₂

F₂ = 444 Hz                or      - 436 = - F₂

F₂ = 444 Hz               or         F₂ = 436 Hz

Therefore, the frequency of the piano is 444 Hz or 436 Hz

The hot reservoir for a Carnot engine has a temperature of 889 K, while the cold reservoir has a temperature of 657 K. The heat input for this engine is 4710 J. The 657-K reservoir also serves as the hot reservoir for a second Carnot engine. This second engine uses the rejected heat of the first engine as input and extracts additional work from it. The rejected heat from the second engine goes into a reservoir that has a temperature of 406 K. Find the total work delivered by the two engines.

Answers

Answer:

Explanation:

Efficiency of first engine

= T₁ - T₂ / T₁  where T₁ is temperature of hot reservoir , T₂ is temperature of cold reservoir

= (889 - 657 ) / 889

= ,261 or 26.1 %

output of work = .261 x 4710 = 1229.15 J .

Efficiency of second engine

=  (657 - 406 ) / 657

= .382

Heat rejected in engine one is heat input of second engine

heat input of second engine = 4710 - 1229.15 = 3480.85

output of work of second engine

=  .382 x 3480.85 = 1329.68 J

Total work delivered by two engine

= 1229.15  +  1329.68 J

= 2558.83 J

ou are walking down a straight path in a park and notice there is another person walking some distance ahead of you. The distance between the two of you remains the same, so you deduce that you are walking at the same speed of 1.05 m/s. Suddenly, you notice a wallet on the ground. You pick it up and realize it belongs to the person in front of you. To catch up, you start running at a speed of 2.75 m/s. It takes you 18.5 s to catch up and deliver the lost wallet. How far ahead of you was this person when you started running

Answers

Answer:

The value is [tex]d = 31.45 \ m [/tex]

Explanation:

Generally the relative speed at which you are moving with respect to the person ahead of you is mathematically represented as

[tex]v_r = v_s - v_c[/tex]

substituting 1.05 m/s for [tex] v_c [/tex] and 2.75 m/s for [tex]v_s[/tex]

So

[tex]v_r = 2.75 - 1.05[/tex]

=> [tex]v_r = 1.7 \ m/s [/tex]

Generally the distance by which the person is ahead of you is mathematically represented as

[tex]d = v_r * t[/tex]

substituting 18.5 s for [tex] t [/tex]

       [tex]d =  1.7  * 18.5[/tex]

=>      [tex]d  =  31.45 \  m [/tex]

A hockey puck initially travelling to the right at 34 m/s. It moves for 7 before
coming to a stop. How far did it move in 7 seconds?
You can use kinematic equations

Answers

Answer:

[tex]x=119m[/tex]

Explanation:

Hello,

In this case, since the hockey puck was moving at 34 m/s and suddenly stopped (final velocity is zero) in 7 seconds, we can first compute the acceleration via:

[tex]a=\frac{v_f-v_o}{t}=\frac{0m/s-34m/s}{7s}\\ \\a=-4.86m/s^2[/tex]

In such a way, we can compute the displacement via:

[tex]x=\frac{v_f^2-v_o^2}{2a}\\ \\x=\frac{0^2-(34m/s)^2}{2*-4.86m/s^2}\\ \\x=119m[/tex]

Best regards.

Two cylindrical resistors are made from the same material. The shorter one has a length LL and diameter DD . The longer one has a length 16L16L and diameter 4D4D . How do their resistances compare? The resistance of the longer resistor is four times the resistance of the shorter resistor. The resistance of the longer resistor is twice the resistance of the shorter resistor. The resistance of the longer resistor is the same as the resistance of the shorter resistor. The resistance of the longer resistor is half the resistance of the shorter resistor. The resistance of the longer resistor is a quarter of the resistance of the shorter resistor.

Answers

Answer:

The resistance of the longer resistor is a quarter of the resistance of the shorter resistor.

Explanation:

If Two cylindrical resistors are made from the same material, then their resistivity will be the same.  Formula for calculating resistivity of a material is expressed as;

[tex]\rho = \frac{RA}{L} \ where \ A = \frac{\pi d^2}{4}[/tex] where;

R is the resistance

A is the cross sectional area of the material

L is the length of the material

For the shorter cylinder:

Length = L

diameter = D

[tex]\rho = \dfrac{R_s(\frac{\pi D^2}{4})}{L} \\\\\rho = \dfrac{R_s{\pi D^2}}{4L}[/tex]

For the longer cylinder:

Length = 16L

diameter = 4D

[tex]\rho = \dfrac{R_l(\frac{\pi (4D)^2}{4})}{16L} \\\\\\\rho = \dfrac{R_l(\frac{\pi (16D^2)}{4})}{16L} \\\\\rho = \dfrac{R_l{16\pi D^2}}{16L}\\\\\rho = \dfrac{R_l{\pi D^2}}{L}[/tex]

Since their resistivity are the same then;

[tex]\dfrac{R_s{\pi D^2}}{4L} = \dfrac{R_l{\pi D^2}}{L} \\\\ \dfrac{R_s}{4} = {R_l} \\\\R_s = 4R_l\\\\R_l = \frac{R_s}{4}[/tex]

Hence the resistance of the longer resistor is a quarter of the shorter resistor.

A marble rolls 269cm across the floor with a constant speed of in 44.1cm/s.

Answers

Answer:

what's the question ,so I can answer it right ?

Whenever an object is moving at a constant rate, the value(s) that equal zero is (are):
a) Speed
b) Acceleration
c) Velocity
d) All of the above

Answers

Whenever an object is moving at a constant rate . . .

a).  its speed is that constant rate.

b).  Its acceleration MAY BE zero, if it's also moving in a straight line.

c).  Its velocity is that constant rate if it's moving in a straight line.  Otherwise, its velocity could have many different values, depending on the path it's following.  

True or false: points that lie on the same plane are Collinear

Answers

False , because collinear points lie on a line not on a plane.
Coplanar points on the other hand, lie on a plane.

If two tug boats are towing a ship with force of 5 tons each and the angle between the two ropes is 60 degrees, what is the resultant force on the ship? Explain how to use a force table to verify answer.

Answers

Answer:

8.6602 tons

Explanation:

We first draw the known vector forces.

2fcos30⁰

We have f to be equal to 5tons

Inserting into formula

Σfx = 2(5)cos30⁰

= 8.6602 tons

Σfy is equal to 0, this is because in the y direction, the forces cancel themselves out.

Therefore the resultant force on the ship is equal to 8.6602 tons

I hope this helps!

Please check attachment for diagram.

A basketball leaves a player's hands at a height of 2.20 m above the floor. The basket is 2.70 m above the floor. The player likes to shoot the ball at a 36.0 ∘ angle. Of the shot is made from a horizontal distance of 9.10 m and must be accurate to ±0.23m (horizontally), what is the range of initial speeds allowed to make the basket

Answers

Answer:

The range of initial speeds allowed to make the basket is: [tex]9.954\,\frac{m}{s}\leq v \leq 10.185\,\frac{m}{s}[/tex].

Explanation:

We must notice that basketball depicts a parabolic motion, which consists of combining a constant speed motion in x-direction and free fall motion in the y-direction. The motion is described by the following kinematic formulas:

x-Direction

[tex]x = x_{o} + v_{o}\cdot t \cdot \cos \alpha[/tex]

y-Direction

[tex]y = y_{o} + v_{o}\cdot t\cdot \sin \alpha +\frac{1}{2}\cdot g\cdot t^{2}[/tex]

Where:

[tex]x_{o}[/tex], [tex]y_{o}[/tex] - Initial position of the basketball, measured in meters.

[tex]x[/tex], [tex]y[/tex] - Final position of the basketball, measured in meters.

[tex]v_{o}[/tex] - Initial speed of the basketball, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]\alpha[/tex] - Tilt angle, measured in sexagesimal degrees.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

If we know that [tex]x_{o} = 0\,m[/tex], [tex]y_{o} = 2.20\,m[/tex], [tex]\alpha = 36^{\circ}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], [tex]x = (9.10\pm0.23)\,m[/tex] and [tex]y = 2.70\,m[/tex], the system of equation is reduce to this:

[tex](9.10\pm 0.23)\,m = 0\,m + v_{o}\cdot t \cdot \cos 36^{\circ}[/tex]

[tex]9.10\pm 0.23 = 0.809\cdot v_{o}\cdot t[/tex] (Ec. 1)

[tex]2.70\,m = 2.20\,m + v_{o}\cdot t \cdot \sin 36^{\circ} + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot t^{2}[/tex]

[tex]0.50 = 0.588\cdot v_{o}\cdot t-4.904\cdot t^{2}[/tex] (Ec. 2)

At first we clear [tex]v_{o}\cdot t[/tex] in (Ec. 1):

[tex]v_{o}\cdot t = \frac{9.10\pm 0.23}{0.809}[/tex]

[tex]v_{o}\cdot t = 11.248\pm 0.284[/tex]

(Ec. 1) in (Ec. 2):

[tex]0.5 = 0.588\cdot (11.248\pm 0.284)-4.904\cdot t^{2}[/tex]

Now we clear the time in the resulting expression:

[tex]4.904\cdot t^{2} = 0.588\cdot (11.248\pm 0.284)-0.5[/tex]

[tex]t = \sqrt{\frac{0.588\cdot (11.248\pm 0.284)-0.5}{4.904} }[/tex]

There are two solutions:

[tex]t_{1} = \sqrt{\frac{0.588\cdot (11.248- 0.284)-0.5}{4.904} }[/tex]

[tex]t_{1} \approx 1.101\,s[/tex]

[tex]t_{2} = \sqrt{\frac{0.588\cdot (11.248+ 0.284)-0.5}{4.904} }[/tex]

[tex]t_{2}\approx 1.131\,s[/tex]

The initial velocity is cleared within (Ec. 2):

[tex]v_{o}=\frac{0.50+4.904\cdot t^{2}}{0.588\cdot t}[/tex]

The bounds of the range of initial speed is determined hereafter:

[tex]t_{1} \approx 1.101\,s[/tex]

[tex]v_{o} = \frac{0.50+4.904\cdot (1.101)^{2}}{0.588\cdot (1.101)}[/tex]

[tex]v_{o} = 9.954\,\frac{m}{s}[/tex]

[tex]t_{2}\approx 1.131\,s[/tex]

[tex]v_{o} = \frac{0.50+4.904\cdot (1.131)^{2}}{0.588\cdot (1.131)}[/tex]

[tex]v_{o} = 10.185\,\frac{m}{s}[/tex]

The range of initial speeds allowed to make the basket is: [tex]9.954\,\frac{m}{s}\leq v \leq 10.185\,\frac{m}{s}[/tex].

A bucket is being lowered by a very light rope with a constant downward velocity. The tension in the rope must be

Answers

Answer:

The tension in the light rope must be equal to the weight of the bucket

Explanation:

Given that,

Constant velocity of bucket and direction of bucket in downward

We need to find the tension in the rope

Using given data,

When a bucket  moves downward with a constant velocity then the net force does not applied on the bucket.

So, The weight of the bucket will be equal to the tension in the light rope

In mathematically,

[tex]T=mg[/tex]

Where, T = tension

m = mass of bucket

g = acceleration due to gravity

Hence, The tension in the light rope must be equal to the weight of the bucket.

Using the equation for Impact, can you explain the following:
Why are car steering rods designed to collapse?
Why are highway guard rails designed to crumple up on impact?
Why are traffic saftey barrels filled with water or sand?

Answers

Explanation:

Equation for Impact

FΔt = ΔP,

F = force

Δt  = Impact of time

ΔP = Change in momentum

Car steering is engineered to fail in order to maximize the time of contact and hence reduce the initial impact and mitigate the damage incurred.

Road guard railing crumple on contact to maximize impact time and hence reduce impact intensity and mitigate damage.

Road safety containers are loaded with liquid or sand as they improve the period of impact.

What is the velocity of a plane to travel 3000 miles from New York to California in 5.0 hours

Answers

Answer:

10 miles per minute.

An airplane with a hot-wire anemometer mounted on its wing tip is to fly through the turbulent boundary layer of the atmosphere at a speed of 50 m/sec. The velocity fluctuations in the atmosphere are of order 0.5 m/sec, the length scale of the large eddies is about 100 m. The hot-wire anemometer is to be designed so that it will register the motion of the smallest eddies.What is the highest frequency the anemometer will encounter

Answers

Answer:

0.55 hz

Explanation:

Given that the plane fly through the turbulent boundary layer of the atmosphere at a speed of 50 m/sec. And the velocity fluctuations in the atmosphere are of order 0.5 m/sec, the length scale of the large eddies is about 100 m.

The maximum speed attained will be

Maximum speed = 50 + 0.5 = 5.5 m/s

The Length = 100m

Speed = FL

Where F = frequency

Substitute speed and distance length into the formula

55 = 100F

F = 55/100

F = 0.55 Hz

Therefore, the highest frequency the anemometer will encounter will be 0.55 Hz

Answer:

40079 Hz

Explanation:

1. The first step is to calculate energy dissipation ∈=u^3/l and here u is fluctuating velocity

∈=(0.5^3)/100 = 0.00125 m^2/s^3

2. Find out the length scale of the small eddies

η=(viscosity/∈)^1/4

η=(1.470e-5/0.00125)^1/4 = 0.00126 m

3. The frequency associated with these small-scale eddies will be the greatest frequency the anemometer will encounter, thus:

u_max=f_max * η

u_max = u + u' = 50+0.5=50.5 m/s

f_max = u_max/η = 50.5/0.00126 = 40079 Hz

This is the heighest frequency the anemometer will encounter.

Let's start by calculating what acceleration the rocket must produce to launch into earth orbit. In order to attain orbit around earth, the ATLAS V rocket must accelerate up to a speed of about 7700 meters per second in about 4.2 minutes. What average acceleration is required to accomplish this

Answers

Answer:

30.56 m/s^2

Explanation:

Given that In order to attain orbit around earth, the ATLAS V rocket must accelerate up to a speed of about 7700 meters per second in about 4.2 minutes.

The average acceleration that is required to accomplish this will be

Average acceleration = change in velocity / time

Average acceleration = 7700/ 4.2 × 60

Average acceleration = 7700/252

Average acceleration = 30.56 m/s^2

When the sun provides energy for photosynthesis, an interaction with the __________ takes place.

Answers

Answer: chloroplast

Explanation:
The chloroplast are organelles that conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight

You are trying to get to class on time using the UCF Shuttle. You are later than usual getting to the stop and see the shuttle pulling away from the stop while you are still 3.9 m behind the bus stop. In 40.9 m you will reach a barrier and you must catch the shuttle before that point. The shuttle has a constant acceleration of 4.5 m/s2. What is the minimum velocity you have to run at to catch the bus before it reaches the barrier

Answers

Answer:

20.1 m/s

Explanation:

Since You are later than usual getting to the stop and see the shuttle pulling away from the stop while you are still 3.9 m behind the bus stop. And In 40.9 m you will reach a barrier and you must catch the shuttle before that point.

Given that the shuttle has a constant acceleration of 4.5 m/s2. 

The total distance to cover is:

Total distance = 40.9 + 3.9 = 44.8 m

Assuming you are starting from rest. Then initial velocity U = 0

Using the 3rd equation of motion to calculate the minimum velocity.

V^2 = U^2 + 2as

V^2 = 0 + 2 × 4.5 × 44.8

V^2 = 403.2

V = sqrt (403.2)

V = 20.1 m/s

Therefore, the minimum velocity you have to run at to catch the bus before it reaches the barrier is 20.1 m/s

The chilled water system for a 27-story building has a pump located at ground level. The lost head in a vertical riser from the pump to an equipment room on the twenty-seventhfloor is 40ftof water, and the pump produces 270ft of head. What is the pressure on the suction side of the pump for a pressure of 8 psig to exist in the riser on the twenty-fifth floor

Answers

This question is incomplete, the complete question is;

The chilled water system for a 27-story building has a pump located at ground level. The lost head in a vertical riser from the pump to an equipment room on the twenty-seventh floor is 40ft of water, and the pump produces 270ft of head. What is the pressure on the suction side of the pump for a pressure of 8 psig to exist in the riser on the twenty-fifth floor

Assume 12ft of elevation per floor

Answer: 48.68 psig

Explanation:

First  we calculate the elevation of the building

hb = 27 story * 12ft per floor/story

hb =  324 ft

given that the head lost in the vertical riser hL = 40 ft

now the delivery head required in the riser on he 27th floor;

hd = 8 psig *  (2.31 ft / 1 psig)

hd = 18.46 ft

Now calculate the suction head required by balancing the energy per unit weight of water, considering pump as the control volume

hp = (hb + hL + hd) - hs

hs = hb + hL + hd - hp

where hp is the head developed by the pump (270 ft)

hb is the elevation of the 27th floor of the building ( 324 ft)

hL is the head lost in the vertical riser ( 40 ft)

hd is the head required to exist in the riser on the 27th floor (18.46 ft)

so we substitute

hs = 324 ft + 40 ft + 18.46 ft - 270 ft

hs = 112.46

so 112.46ft * (1 psig / 2.31 ft)

= 48.68 psig

Oppositely charged parallel plates are separated by 4.49 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 3.14 mm from the positive plate?

Answers

Answer:

A. Using

E=V/d

= 600/4.49*10^-3

= 1.336 x10^5 N/C

b) F = E*q = 1.33610^5 x 1.6*10^-19

= 2.17 x 10^-14 N

c) Work = Fs distance = 2.17 x 10^-14 N (4.49-3.14)*.001= 1.35 x 10^-17 J

Newtons Second Law of motion states that for acceleration to stay the same...​

Answers

Answer:

newton force is the state of gravity force they abstract when they came closer

Other Questions
Aaliyah bought 23 chicken wings for $39.10. If Aaliyah spent $32.30, how many chicken wings did she buy? Why is it important for scientists who study ecosystems to study more than the organisms that live there? An unbiased sample is one in which every member of the group has an equal chance of being chosen.TrueFalse Certain investments compound interest at different intervals. What effect does the size of the compounding interval haveon the yield of the investment?a. Investments with smaller compounding intervals have a higher yield, because the interestearned is reinvested more quickly and thus gains compound interest more quickly.b. Investments with smaller compounding intervals have a lower yield, because the interest earnedis smaller at each interval.c. The size of the compounding interval does not affect the total yearly interest percentage rate andonly exists for bookkeeping purposes.d. Investments with smaller compounding intervals have a lower yield, because the bank chargesa small fee every time interest is compounded. Please answer this question Ben buys bottles of sports drinks from the store for $2 each and takes them to his school's football games. He sellsthem to the crowd for $5 each.How many bottlesdoes he need to sell to make a profit of $75? WILL GIVE BRAINLIEST AND 20 POITNS!!!!! PLZ HHHHHEEELLLLLLLLPPPPP!!!!What was the quickest and most efficient way for Spain to grow its wealth in the Americas? A. holding captives for high ransom B. stealing American Indian artifacts C. securing land and charging high taxes D. finding treasure, mostly in the form of gold Which statement is true for the graph of f(x) = 2x2 - 6x2 - 48x + 24?(Answers attached) Which verb form correctly completes this sentence?Hoy hace fro pero maana ___________ un buen da.A. hacerB. haberC. harD. estar If a rectangle is 5 units wide and x units high what is its perimeter? 6. Convert 23% to a fraction and thena decimal. Which set of ordered pairs represents a function?O {(-4,9), (-4,7), (1, -5), (7, -8)}{(-5, -5), (-9,1), (8,-6), (-9,-4)}{(-6, -6), (-2,-2), (7,-6),(-5,0)}{(-7, -9), (-7, -7), (3,-7), (5,-5)}Submit Answer How does setting iniluence character? Select three optionsett can creale conflict for characters,It establishes a stark writing styleIt can influence a character's motivations,it can determine the rules that characters live by,It can reveal details about a character's physical appearance, What is the difference between the velocity and the speed of an object?-:---:-- Velocity is the change in distance over time, while speed is the change in velocity overtime.Velocity has a direction associated with it, while speed has no specific direction.Velocity has no direction associated with it, while speed has a specific direction.Velocity is the change in speed over time, while speed is the change in distance over time. que tipo de oracin es lvaro trajo recuerdos de su estancia en Australia In 2011, the average daily temperature in Darrtown was 65F. In 2012, the average daily temperature increased by 3% but then decreased by 4.5% in 2013.What was the daily average temperature in Darrtown in 2013? A. 62F B. 64F C. 68F D. 74F Who is the first discovered plants were made of cells? What is the MOST likely reason the author includedinformation about protests in 1992 and 1997?to compare the results of protests againstpolice brutality before and after the rise ofBlack Lives MatterBto describe the events that led to the creationof the Black Lives Matter movementto illustrate that Americans have beenspeaking out against police brutality for a longtimeDto show that police brutality was not a majorproblem until the last ten yearsBackNext make the graph using the data What is the linking verb in this sentence?Mrs. Gray's puppy is black and white.