The probability of drawing a blue socks and white socks is 1/12.
Given that, a drawer contains 10 red socks, 6 white socks and 8 blue socks.
What is probability of an event?Probability is a type of ratio where we compare how many times an outcome can occur compared to all possible outcomes.
As we know the probability of an event = Number of favorable outcomes/Total number of outcomes
Total number of outcomes = 10+6+8=24
Probability of getting blue socks = 8/24 = 1/3
Probability of getting white socks = 6/24 =1/4
Now, probability of an event = 1/3 × 1/4 = 1/12
Therefore, the probability of drawing a blue socks and white socks is 1/12.
To learn more about an probability visit:
https://brainly.com/question/11234923.
#SPJ1
I need help finding
The proeprty of rhombus is that
The diagnol of a rhombus VX bisect the angle WVY in two equal parts .
Therefore, the angle YVX = angle XVW.
[tex]\angle YVX=(9n+4)^{\circ}[/tex]The another property of rhombus is that the diagnol are perpendicular .
[tex]3n^2-0.75=90[/tex]Robert has two more than three times the number of cards that Amanda has which expression represents the number of cards that Robert has
To state the equation that represents the given situation, we take x as the number of cards Amanda has. Three times the number of cards is 3x, two more is +2. It means that the expression that represents this situation is:
[tex]3x+2[/tex]4. During a long weekend, Devon paid a total of x dollars for a rental car so he could visit his family. He rented the care for 4 days at a rate of $36 per day. There was an additional charge of $0.20 per mile after the first 200 miles.
a. Write an expression to represent the amount Devon paid for additional mileage.
b. Write an expression to represent the number of miles over 200 miles that Devon drove.
c. How many miles overall did Devon drive overall if he paid $174 for the car rental? Show work.
Answer:
A)
c = 0.20m + 144
Where c is total cost and m is miles driven.
B)
c = (200 + 0.20m) + 144
C)
174 = 0.20m + 36x4
174 = 0.20m + 144
30 = 0.20m
30/0.20 = m
m = 150+200
m = 350miles
Hope that helps
triangle p undergoes a sequence of tranformations resultig in triangle Q which sequence of transformations could be used to show that triangle Q is similar but not congruent to triangle p
The most appropriate choice for Similar and congruent triangles will be given by
Third Option dilation is correct.
What are Similar and congruent triangles?
Two triangles are similar if their angles are equal but their sides are proportional
The different axioms of similarity are SAS, SSS, AA
Two triangles are congruent if their sides and angles are both equal
The different axioms of congruency are ASA, SAS, AAS, RHS, SSS
Here, A stands for angle, S stands for side R stands for right angle, H stands for hypotenuse.
Here,
Two Similar triangle means corrosponding sides are proportional and two congruent triangle means corrosponding sides and angles and angles are same
The triangle after rotation and reflection do not change any length of side or angle. So the triangles will be same after reflection or rotation. So congruency will not be disturbed here.
Now, in case of dilation, length of each side will change but in same proportion.
So dilation can make two similar triangles but not congruent triangles
So third option is correct.
To learn more about similar and congruent triangles, refer to the link
https://brainly.com/question/1675117
#SPJ9
Complete Question
Triangle P undergoes a sequence of tranformations resultig in triangle Q which sequence of transformations could be used to show that triangle Q is similar but not congruent to triangle P
a) Rotation
b) Reflection
c) Dilation
d) Any of these could be the transformation
−8(2) +5(2 − 12)+ (−2)(5 −2) +(−3)(3)
Answer:
The answer is -81.
Step-by-step explanation:
Let me know if I got it wrong.
estimate the difference of 1 1/5 - 9/10
estimate the difference of 1 1/5 - 9/10
we have
1 1/5=1+1/5=6/5
6/5=12/10
so
12/10-9/10=3/10=0.3
answer is 0.3
estimete
1 1/5 is about 1
9/10=0.9
so
1-0.9=0.10
the estimate is 0.10
steps
Rounded 1 1/5------> 1
we know that
9/10=0.9
so
substitute
1-0.9=0.10
f(x) = (x-1.5)^2 find the vertex
The given function is
[tex]f(x)=(x-1.5)^2[/tex]It is important to know that the function is in vertex form
[tex]f(x)=a(x-h)^2+k[/tex]Where h and k are the coordinates of the vertex.
Having said that, we can deduct that the vertex of the given function is (1.5, 0) because those are the values for h and k.
Hence, the answer is V(1.5, 0).Jay had 60 tickets he could turn in at the end of the year for extra-credit points he had earned during the year. Some tickets were worth two points and others were worth five points. If he was entitled to a total of 231 extra-credit points, how many two-point tickets did he have?
Answer:
23 2-points + 37 5-points = 231
Step-by-step explanation:
Answer:
53 two-point tickets.
Step-by-step explanation:
This is a system of equations:
x + y = 60
2x + 5y = 231
Then..
-2x - 2y = -120
2x + 5y = 231
Then...
3y = 111
y=7
All you need to do now is plug it in:
x + 7 = 60
60-7 = x
x = 53
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
2x - 3y = 18
Answer:
y = (2/3)x - 6Step-by-step explanation:
Slope-intercept form is:
y = mx + bConvert the given equation as following:
2x - 3y = 18 Isolate the term with y3y = 2x - 18 Divide all terms by 3y = (2/3)x - 6Solve the inequality and draw the solution |r|-3>2
We want to solve the following inequality
[tex]|r|\text{ -3 >2}[/tex]To solve this inequality, we first add 3 on both sides, so we get
[tex]|r|>2+3=5[/tex]So we have the inequality
[tex]|r|>5[/tex]Recall that the absolute value represents the distance from a number to 0. So this means that the number r is greater than 5 or it is less than -5. So we have the following two inequalities
[tex]r>5[/tex][tex]r<\text{ -5}[/tex]This could be drawn on the number line as follows. Greater than (>) means that the number 5 is on the left, and the less than (<) means that the number -5 is on the right side. So we get the following
Geometric properties of the section are
Answer:
The geometric properties of sections, which are indicators of the structural performance and load resistance capacity of sections, are characterized by the section shape and dimensions, regardless of material properties.
chords AB and CD intersect as shown nelow find the length of CD
We are asked to determine the length of CD, to do that we will use the following relationship:
[tex]\begin{gathered} CD=21+x+1 \\ CD=22+x \end{gathered}[/tex]Therefore, we need to determine the value of "x". To do that we will use the intersecting chords theorem, that is:
[tex](21)(x+1)=(9)(3x-9)[/tex]Now we solve for "x" first by applying the distributive law:
[tex]21x+21=27x-81[/tex]Now we will subtract 21 to both sides:
[tex]\begin{gathered} 21x=27x-81-21 \\ 21x=27x-102 \end{gathered}[/tex]Now we will subtract 27x to both sides:
[tex]\begin{gathered} 21x-27x=-102 \\ -6x=-102 \end{gathered}[/tex]Dividing both sides by -6:
[tex]x=-\frac{102}{-6}=17[/tex]Now we replace the value of "x" in the expression for segment CD:
[tex]\begin{gathered} CD=22+17 \\ CD=39 \end{gathered}[/tex]Therefore, the length of CD is 39.
Create your own quadratic equation whilst explaining how to use the quadratic formula to solve it. Be specific, using a, b, and c of your equation and give solutions to theequation you chose.
Let the quadratic equation is
[tex]x^2-8x+16=0[/tex]Here, a is the coefficient of x^2, b is the coefficient of x and c is the constant.
For the equation we have a = 1, b = -8 and c = 16.
We know that the quadratic formula is given by:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]So, the solution of the quadratic equation is:
[tex]\begin{gathered} x=\frac{-(-8)\pm\sqrt[]{(-8)^2-4(1)(16)}}{2(1)} \\ x=\frac{8\pm\sqrt[]{64-64}}{2} \\ x=\frac{8\pm\sqrt[]{0}}{2} \\ x=\frac{8}{2} \\ x=4 \end{gathered}[/tex]Thus, there are two real and equal solutions for the given quadratic equation that is x = 4 and x = 4.
The scatterplot shows the average miles per gallon
versus the age, in years, of cars at a used car dealership.
Fuel Efficiency
Miles per Gallon
35
30
25
20
15
10
5
●
0 1 2 3 4 5 6 7 8 9 10
Age (Years)
Select the most likely value of r for this data set.
O-0.78
O-0.35
O 0.15
O 0.88
Answer:
-0.78
Step-by-step explanation:
The close to 1 or -1 it is the straight the line will be. 0 will be no correlation.
Expressing the relationship between two quantities with a linear equation. A stationary store sells large and small packages of greeting cards. Each large package contains h greeting cards. Each small package contains k greeting cards., which is 4 less than the larger package. Express h in terms of k
large = h greeting cards
small = k greeting cards this is four less
h = k + 4 This is the answer
a model of a skyscraper is made so that 1 inch represents 75 feet what is the height of the actual building if the height of the model is 20 1/4 inches
Given the proportional relationship:
1 in = 75 feet
To get feet, of 20 1/4th inches, we have to multiply the inches by 75:
[tex]\begin{gathered} 20\frac{1}{4}\times75 \\ =\frac{81}{4}\times75 \\ =\frac{6075}{4} \\ =1518\frac{3}{4}\text{ fe}et \end{gathered}[/tex]Note: we converted 20 1/4th to improper fraction, then did the mulitplication.
The answer is:
[tex]1518\frac{3}{4}\text{ feet}[/tex]please help me please
It's a line that slopes down
The second choice is the answer because the slope is negative.
the equation of line m is y =9/5x +9. line n is parallel to line m. what is the slope of line n?
the slope for the line n is 9/5
Let d represent the number of $2 decreases i price. Let r be the company’s revenue. Write a quadratic function that reflects the company’s revenue.
Answer:
Let d be the number of $2 decreases, and r be the company´s revenue, then the company can sell:
[tex]800+40d[/tex]cellphones per week at a price of:
[tex]80-2d[/tex]dollars.
Therefore, the quadratic equation that represents the revenue is:
[tex](800+40d)(80-2d)\text{.}[/tex]Now, graphing the above equation we get:
From the above graph, we can determine the vertex and the vertex gives us for which value of d the company gets the maximum revenue.
The company should charge $80-10($2)=$80-$20=$60.
Write the equation of the circle given the following information
Given;
There are given that points are:
[tex](1,13)\text{ and \lparen-3,-9\rparen}[/tex]Explanation:
From the standard form of the circle:
[tex](x-a)^2+(y-b)^2=r^2[/tex]Where
a and b represent the center.
Now,
To establish the equation, we require to know it is center and radius.
Since we are given the endpoints of the diameter
Then,
The center will be at the midpoint and the radius will be the distance from the center to either of the two given points.
Then,
From the formula of midpoint to calculate the midpoint:
[tex](x,y)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]Then,
From the given two points:
[tex]\begin{gathered} (x,y)=(\frac{1-3}{2},\frac{13-9}{2}) \\ (x,y)=(-\frac{2}{2},\frac{4}{2}) \\ (x,y)=(-1,2) \end{gathered}[/tex]The midpoint is ( -1, 2).
Now,
We need to find the value of the radius.
So,
To calculate the radius, we need to use the distance formula:
Then,
From the formula of distance, here we will use the points: (-1, 2) and (1, 13)
[tex]\begin{gathered} r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ r=\sqrt{\left(1+1\right)^2+\left(13-2\right)^2} \\ r=\sqrt{4+121} \\ r=\sqrt{125} \end{gathered}[/tex]Now,
We have the value of radius and the point of center.
Then,
Put the value of radius and point of the center into the standard form of the circle:
So,
From the standard form of the circle:
[tex]\begin{gathered} (x-a)^{2}+(y-b)^{2}=r^{2} \\ (x-\left(-1\right))^2+(y-2)^2=\lparen\sqrt{125}^)^2 \\ (x+1)^2+(y-2)^2=125 \end{gathered}[/tex]Final answer:
Hence, the equation of the circle is shown below;
[tex](x+1)^{2}+(y-2)^{2}=125[/tex]Question 10(Multiple Choice Worth 1 points)
(08.01 LC)
Susan wants to conduct a survey to find how much time the students of her school spent eating in a local cafeteria. Which of the following is an appropriate statistical question for this survey?
Who eats at the cafeteria on weekends?
How many students eat in the cafeteria on Mondays?
How many students eat in the cafeteria once a week?
How many hours during the week do you eat in the cafeteria?
Evaluate x^3 - 6y + 2 for x = 4 and y= 6.
The given expression is x^3 - 6y + 2
We are gven x = 4 and y = 6
Substituting the given values into the expression, it becomes
4^3 - 6*6 + 2
= 12 - 36 + 2
= - 22
solve the equations and verify the answer
6.6 is value t in of linear equation .
What is linear equation with example?
Ax+By=C represents a two-variable linear equation in its standard form. A standard form linear equation is, for instance, 2x+3y=5. Finding both intercepts of an equation in this format is rather simple (x and y).A linear equation with one variable has the conventional form Ax + B = 0. x is a variable, A is a coefficient, and B is constant in this situation.2t + 3/3 = 3t - 8/2
2( 2t + 3 ) = 3( 3t - 8 )
4t + 6 = 9t - 24
9t - 4t = 9 + 24
5t = 33
t = 33/5
t = 6.6
Learn more about linear equation
brainly.com/question/11897796
#SPJ13
Consider the following graph. Does a graph represent a function? Yes or no?
Concept
A technical definition of a function is a relation from a set of inputs to a set of possible outputs where each input is related to exactly one output.
Next
The graph is a function because every input has unique output.
Final answer
It is a function
Help me please in need of it
Answer:
-2
Step-by-step explanation:
Substituting the points (0,2) and (1,0) into the slope formula, [tex]m=\frac{2-0}{0-1}=-2[/tex].
Which set of ordered pairs (x,y) could represent a linear function?A. {(-7,3), (-2,1), (3,-1), (8,-3)}B. {(-2,8), (-1,4), (1,0), (3,-4)}C. {(-3,-6), (0,-5), (3,-3) (6,-2)}D. {(0,-8), (3,-5), (5,-2), (8,1)}
Answer:
A. {(-7,3), (-2,1), (3,-1), (8,-3)}
Explanation:
A linear function has a constant slope.
To determine the set of ordered pairs (x,y) that could represent a linear function, we find the slope for two pairs of points.
[tex]\text{Slope}=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}[/tex]Option A
Using points (-7,3) and (-2,1).
[tex]\text{Slope}=\frac{3-1}{-7-(-2)}=\frac{2}{-7+2}=-\frac{2}{5}[/tex]Using points (-7,3) and (3,-1).
[tex]\text{Slope}=\frac{3-(-1)}{-7-3}=\frac{4}{-10}=-\frac{2}{5}[/tex]We see that the slopes are the same.
Therefore, the set of ordered pairs in Option A represent a linear function.
Determine the slope of any line perpendicular to the line illustrated in the graph below.
Points (2, -1) and (1,-4)
Finding slope
[tex]m=\frac{-4+1}{1-2}=\frac{-3}{-1}=3[/tex]For slope for the perpendicular line
[tex]m=\frac{-1}{3}[/tex]One positive integer is 2 less than twice another. The sum of their squares is 745.
The numbers are 13 and 24
What is Integers?
The negative numbers are the additive inverses of the corresponding positive numbers.[2] In the language of mathematics, the set of integers is frequently denoted by the boldface Z or blackboard bold displaystyle mathbb Z mathbb Z.[3][4][5] An integer is the number zero (0), a positive natural number (1, 2, 3, etc.), or a negative integer with a minus sign
y=first number
x=2y-2 (second number)
y^2+(2y-2)^2=745
y^2+4y^2-8y+4=745
5y^2-8y+4-745=0
5y^2-8y-741=0
Now, from the equation we can solve
5y^2 -65y +57y - 741 = 0
5y(y - 13) + 57(y - 13) = 0
(5y + 57)(y - 13)= 0
now, since the Integers are positive so the value obtained from (5y + 57) = 0 can't hold true.
So, y-13 = 0
y = 13
The first number is : 13
The second number is :
x = 2(13) - 2
x = 26 - 2
x = 24
The second number is : 24
Hence, the numbers are 13 and 24
To learn more about Integers click on the link
https://brainly.com/question/17695139
#SPJ9
How many pairs of parallel edges are there in a rectangular prism
Answer:
A rectangular prism has 3 pairs of congruent parallel faces.
all you need is in the photo please answer all the 3 questions
a) y =2^x
b) Exponential
c)
a) According to that graph, we have point (1,2) and (2,4) since that exponential function is
[tex]\begin{gathered} y=a(b)^x \\ 1=a(b)^0\rightarrow a\text{ =1} \\ 4=ab^2\text{ }\rightarrow4\text{ =}b^2\rightarrow\text{ }b=2 \\ y=2^x \end{gathered}[/tex]Since the function is increasing, due to its direction, we can write y =2^x
b)The type of function is exponential, since x= 0, y = 1, and due to its shape.
3) As we can see the shape of the graph is curve,