what does the term chemical bond mean

Answers

Answer 1

A chemical bond refers to the linking of atoms together to form molecules. Some key characteristics of chemical bonds:

1. They hold atoms together in a molecule. Chemical bonds keep the atoms together rather than having them float apart.

2. They involve the sharing or transfer of electrons between atoms. The bonds are formed due to the electrostatic attraction between positive and negative charges. For example, in an ionic bond, electrons are transferred from one atom to another. In a covalent bond, electrons are shared between atoms.

3. They determine many of the properties of a compound. The strength, polarity, directionality of bonds have a strong influence on properties such as melting point, solubility, conductivity, etc.

4. They can be made and broken. Chemical bonds can form during chemical reactions and break apart during other reactions.

5. They involve the sharing or redistribution of orbital density between atoms. Electrons in atomic orbitals redistribute to form molecular orbitals that surround the nuclei.

6. They align atoms into geometric arrangements. Chemical bonds orient atoms in specific spatial configurations, which determines the molecular geometry and polarity.

7. They influence chemical reactivity. The strength and stability of chemical bonds determine whether a molecule will readily react with other compounds. Weaker bonds are more reactive.

That covers the basic highlights of a chemical bond. Let me know if you have any other questions!


Related Questions

calculate the volume (in ml) of 0.550 m naoh (aq) required to completely neutralize 25.00 ml of 0.410 m hcl (aq).

Answers

Approximately[tex]18.64 mL of 0.550 M[/tex] NaOH is required to completely neutralize 25.00 mL of 0.410 M HCl.

To calculate the volume of [tex]0.550 M NaOH (aq)[/tex] required to completely neutralize[tex]25.00 mL of 0.410 M HCl (aq),[/tex] we can use the following equation:
[tex]M1V1 = M2V2[/tex]

Where M1 is the molarity of the [tex]NaOH[/tex]solution, V1 is the volume of the [tex]NaOH[/tex]solution we need to find, [tex]M2[/tex] is the molarity of the HCl solution, and V2 is the volume of the HCl solution we are given[tex](25.00 mL).[/tex]
Plugging in the given values, we get:

[tex](0.550 M) V1 = (0.410 M) (25.00 mL)[/tex]

Solving for V1, we get:

[tex]V1 = (0.410 M) (25.00 mL) / (0.550 M)\\[/tex]

[tex]V1 = 19.09 mL[/tex]

Therefore, the volume of [tex]0.550 M NaOH (aq)[/tex]required to completely neutralize [tex]25.00 mL of 0.410 M HCl (aq) is 19.09 mL[/tex](rounded to two decimal places).

Learn more about NaOH here:

https://brainly.com/question/23753546

#SPJ11

List the possible effects of inhaling excessive amounts of pinacolone (3,3-dimethylbutan-2-one).

Answers

Excessive inhalation of pinacolone can cause irritation to the respiratory tract, headaches, dizziness, nausea, and in severe cases, can lead to unconsciousness or respiratory failure.

Pinacolone (3,3-dimethylbutan-2-one) is a colorless liquid with a pleasant odor, commonly used in industrial processes as a solvent and in the production of other chemicals. However, inhaling excessive amounts of pinacolone can have harmful effects on human health. These effects may include irritation of the eyes, nose, and throat, headache, dizziness, nausea, and respiratory problems. In severe cases, exposure to high concentrations of pinacolone can lead to unconsciousness and even death. Prolonged or repeated exposure to pinacolone may also cause damage to the liver and kidneys. Therefore, it is important to take appropriate safety precautions, such as using proper protective equipment and adequate ventilation, when working with this chemical.

Learn more about Excessive inhalation here:

https://brainly.com/question/30019048

#SPJ11

Consider the following reaction at constant P. Use the information here to determine the value of ΔSsurr at 398 K. Predict whether or not this reaction will be spontaneous at this temperature.
4 NH3(g) + 3 O2(g) → 2 N2(g) + 6 H2O(g) ΔH = -1267 kJ
A) ΔSsurr = +12.67 kJ/K, reaction is spontaneous
B) ΔSsurr = -12.67 kJ/K, reaction is spontaneous
C) ΔSsurr = +50.4 kJ/K, reaction is not spontaneous
D) ΔSsurr = +3.18 kJ/K, reaction is spontaneous
E) ΔSsurr = -3.18 kJ/K, it is not possible to predict the spontaneity of this reaction without more information.

Answers

The entropy of the surrounding, ΔSsurr at 398 K, given that the pressure is constant is +3.18 kJ/K and the reaction is spontaneous (option D)

How do i determine the entropy of surrounding, ΔSsurr?

The entropy of surrounding, ΔSsurr can be obtain as follow:

Enthalpy change (ΔH) = -1267 KJTemperature (T) = 398 K Entropy of surrounding (ΔSsurr) =?

ΔSsurr = -ΔH / T

ΔSsurr = -(-1267) / 398

ΔSsurr = +3.18 KJ/K

We can determine if the reaction is spontaneous or not by obtaining the gibbs free energy as shown below:

Enthalpy change (ΔH) = -1267 KJTemperature (T) = 398 K Entropy of surrounding (ΔSsurr) = +3.18 KJ/KGibbs free energy (ΔG)

ΔG = ΔH - TΔS

ΔG = -1267 - (398 × 3.18)

ΔG = -2532.64 KJ

Since ΔG is negative, the reaction is spontaneous

Thus, the correct answer to the question is ΔSsurr = +3.18 kJ/K, reaction is spontaneous (option D)

Learn more about entropy:

https://brainly.com/question/30218597

#SPJ1

We spent a lot of time studying Valsartan in Module A. Here it is again! Provide the configuration of the chiral center in Valsartan. (6 pts) Atrorvastatin is sold under the trade name Lipitor and is used for lowering cholesterol. Annual global sales of this compound exceed $13 billion. Assign a configuration to each chirality cente in atrovastin: (6 pts) A. The configuration of this cabon atom(B) is ___B. The configuration of this carbon atom (C) is ___

Answers

The chiral center in Valsartan has an (S) configuration. In Atorvastatin, the configuration of carbon atom B is (R), and the configuration of carbon atom C is (S).

A chiral center is an atom in a molecule that has four different substituents bonded to it, resulting in two non-superimposable mirror image structures known as enantiomers. Valsartan is a medication used to treat high blood pressure and heart failure that contains a single chiral center.

The chiral center in Valsartan is located at the carbon atom attached to the nitrogen in the tetrazole ring. This carbon has an (S) configuration, as determined by the Cahn-Ingold-Prelog priority rules.

Atorvastatin is a medication used to lower cholesterol levels and prevent cardiovascular disease. It contains two chiral centers, at carbon atoms B and C in the pyrrole and tert-butyl groups, respectively.

The configuration of carbon atom B is (R), while the configuration of carbon atom C is (S). This information can be determined using the same Cahn-Ingold-Prelog priority rules used to determine the configuration of the chiral center in Valsartan.

For more questions like Configuration click the link below:

https://brainly.com/question/1255220

#SPJ11

In Friedel-Craft alkylation reaction of benzene with propyl bromide, FeBrz acts as the Lewis acid catalyst Bronstead base catalyst Bronstead acid catalyst Lewis base catalyst

Answers

In Friedel-Craft alkylation reaction of benzene with propyl bromide, FeBr2 acts as the Lewis acid catalyst.

This is because FeBr2 is electron deficient and can accept a pair of electrons from the benzene ring, forming a complex that facilitates the reaction with the propyl bromide. This Lewis acid catalyst not only polarizes the alkyl halide to enhance the electrophilicity of the carbocation, but also stabilizes the carbocation intermediate formed during the reaction. The FeBr2 Lewis acid catalyst facilitates the reaction by coordinating with the halogen atom in the propyl bromide, promoting the formation of the carbocation intermediate.

In contrast, Bronsted acid catalysts donate protons, Bronsted base catalysts accept protons, and Lewis base catalysts donate pairs of electrons. The use of FeBr2 as a Lewis acid catalyst in Friedel-Craft alkylation reaction of benzene with propyl bromide is essential for the reaction to proceed efficiently.

Know more about Friedel-Craft alkylation here:

https://brainly.com/question/30884625

#SPJ11

Using the accepted values for delta H and S, calculate the Ksp of anhydrous CaSO4 at 5 degrees C

Answers

The Ksp (solubility product constant) of anhydrous CaSO4 at 5 degrees Celsius can be calculated using the thermodynamic equation ΔG = -RTlnK, where ΔG is the Gibbs free energy change,

R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant. The ΔH and ΔS values for the dissolution of anhydrous CaSO4 can be found in thermodynamic tables as -90.9 kJ/mol and 152.3 J/(mol·K), respectively. Plugging in these values and converting to Kelvin, we can calculate a Ksp of approximately 2.7 x 10^-5 mol^2/L^2 at 5 degrees Celsius. This value indicates the maximum concentration of dissolved CaSO4 that can be reached in a saturated solution at equilibrium under these conditions.

Learn more about  CaSO4   here:

https://brainly.com/question/29482058

#SPJ11

If a molecule of pyruvate was labeled on the carboxyl carbon with 14C and used to make each of the five products discussed in the fates of pyruvate, where would the label be found in each product?A. In alanine, the 14C label would be:attached to the amine group.at the Cα position on the amino acid.at the carboxyl group.B. For conversion to acetyl-CoA, the 14C label would be:lost as CO2.attached to the carbonyl group.at the methyl position.For conversion to lactate, the 14C label would be:attached to the alcohol group.at the carboxyl group.at the methyl position.For conversion to oxaloacetate, the 14C label would be:at the methylene position at carbon-3.at the carbonyl position at carbon-2.at the carboxyl group at carbon-1.at the carboxyl group at carbon-4.

Answers

B. For conversion to acetyl-CoA, the 14C label would be: lost as CO₂.

For conversion to lactate, the 14C label would be: attached to the methyl position.

For conversion to oxaloacetate, the 14C label would be: at the carboxyl group at carbon-1.

In alanine, the 14C label would be: at the Cα position on the amino acid.

Pyruvate is a three-carbon molecule that can undergo different metabolic fates, depending on the cellular conditions and the energy needs of the organism. The five products mentioned in the question are examples of these fates: acetyl-CoA, lactate, oxaloacetate, alanine, and carbon dioxide.

If a molecule of pyruvate is labeled on the carboxyl carbon with 14C, the position of the label in the different products can be traced based on the chemical transformations that occur.

For conversion to acetyl-CoA, pyruvate undergoes oxidative decarboxylation, which involves the removal of a carboxyl group as carbon dioxide. Therefore, the 14C label would be lost as CO2, and no radioactivity would be found in the acetyl-CoA molecule.

For conversion to lactate, pyruvate is reduced by NADH to form lactate. The 14C label would be found in the methyl position of the lactate molecule, which corresponds to the position of the carboxyl carbon in pyruvate.

For conversion to oxaloacetate, pyruvate is carboxylated by biotin-dependent pyruvate carboxylase to form oxaloacetate. The 14C label would be found in the carboxyl group at carbon-1 of the oxaloacetate molecule.

In alanine, pyruvate is transaminated by the enzyme alanine transaminase to form alanine. The 14C label would be found at the Cα position on the amino acid, which corresponds to the position of the carboxyl carbon in pyruvate.

Learn more about oxaloacetate

https://brainly.com/question/25735714

#SPJ4

100 points help pleaseeee:

Oxygen and hydrogen combine with a lot of heat or a spark, which provides sufficient activation energy, to produce water.

O2(g)+2H2(g)⟶2H2O(l)

Assume 0.290 mol O2
and 0.911 mol H2
are present initially.

After the reaction is complete, how many moles of water are produced?

H2O:

mol
How many moles of hydrogen remain?

H2:

mol
How many moles of oxygen remain?

O2:

mol

What is the limiting reagent?


oxygen


hydrogen

Answers

First we need to know which is the limiting agent: wee need to divide the moles of reactants available with its corresponding stoichiometric coefficients. The reactants which ratio is the least is the limiting reagent since less substance can perform the reaction.

O2

0,290 mol / 1 = 0,290

H2

0,991 mol / 2 = 0,456

In this case the limiting agent is oxygen since the ratio si smaller than the hydrogen one.

Since oxygen is the limiting agent, no moles of O2 will remain when the reaction is completed.

Since oxygen is the limiting agent, stoichiometric calculation must be done considering oxygen and not hydrogen. Therefore the amount of water produced will be

[tex]n_{H2O} = 0,290 mol × 2 = 0,580 mol[/tex]

And the amount of hydrogen remaining is the subtraction between the hydrogen that has reacted and the total hydrogen available.

Reacted hydrogen:

[tex]n_{H2} = 0,290 mol × 2 = 0,580 mol[/tex]

Remaining hydrogen:

[tex]n_{H2} = 0,991 mol - 0,580 mol = 0,411 mol[/tex]

The equilibrium constant for the chemical equation N2(g) + 3H2(g) arrow 2NH3(g) is Kp = 7.82 at 195 degrees Celsius. Calculate the value of Kc for the reaction ..

Answers

The value of Kc for the reaction N2(g) + 3H2(g) ⇌ 2NH3(g) at 195 degrees Celsius is 4.16 x 10^2 mol/L.

Given

At 195 degrees Celsius, the chemical equation N2(g) + 3H2(g) arrow 2NH3(g) is Kp = 7.82.

To Find      

the value of Kc for the reaction.

Solution      

We must apply the relationship between Kp and Kc, which is given by: to determine the value of Kc for the reaction.

Kc = Kp (RT) n              

     

where:

Partial pressures are used to express Kp, the equilibrium constant.

In molar concentrations, Kc represents the equilibrium constant.

The gas constant, or R, is 0.08206 L atm/K mol.

The temperature in Kelvin is T.

The stoichiometric coefficient n is the difference between the total of the gaseous products' and the gaseous reactants' stoichiometric coefficients (in this case, n = 2 - (1+3) = -2).

To find Kc, we can rearrange this equation as follows:

Kp = Kc / (RT)        

Inputting the values provided yields:

Kc is calculated as 7.82 / (0.08206 L atm/K mol * (195+273) K).(-2)

Kc equals 4.16 x 102 mol/L

Therefore, the value of Kc for the reaction N2(g) + 3H2(g) ⇌ 2NH3(g) at 195 degrees Celsius is 4.16 x 10^2 mol/L.

To know more about this topic

https://brainly.com/question/18484878      

if a 1mg/ml bsa solution will give an a280 value of 0.667, what was the bsa concentration in the 1:10 dilution cuvette? the 1:20 dilution cuvette? the stock bsa? show your work/calculations.

Answers

The concentrations of BSA in the 1:10 and 1:20 dilution cuvettes are 10 mg/mL and 20 mg/mL, respectively. The concentration of the stock BSA solution is 15.32 µg/mL.

To calculate the bsa concentration in the 1:10 and 1:20 dilution cuvettes, we need to use the dilution equation:
C1V1 = C2V2
For the 1:10 dilution cuvette, we know that the dilution factor is 1/10, so V2 is 1/10 of the initial volume. Let's call the initial volume of the stock solution V0. Then, we have:
C1V0 = C2(V0/10)
C2 = (C1V0)/(V0/10) = 10C1
So, the concentration of BSA in the 1:10 dilution cuvette is 10 times less than the stock solution. Therefore, the concentration of BSA in the 1:10 dilution cuvette is:
C2 = 10 x 1 mg/mL = 10 mg/mL
For the 1:20 dilution cuvette, we use the same equation but with a dilution factor of 1/20:
C1V0 = C2(V0/20)
C2 = (C1V0)/(V0/20) = 20C1
So, the concentration of BSA in the 1:20 dilution cuvette is 20 times less than the stock solution. Therefore, the concentration of BSA in the 1:20 dilution cuvette is:
C2 = 20 x 1 mg/mL = 20 mg/mL
Now, to calculate the concentration of the stock solution, we can use the Beer-Lambert law, which relates the absorbance (A) of a solution to its concentration (C) and the path length (l) of the cuvette:
A = εcl
C = 0.667/(43,500 M^-1 cm^-1 x 1 cm) = 0.00001532 M = 0.01532 mg/mL

To know more about dilution visit :-

https://brainly.com/question/28997625

#SPJ11

the force constant for li2 is 15.0 n⋅m−1. the atomic mass of li is 7.0160 amu. Calculate the vibrational frequency of this molecule.

Answers

The vibrational frequency of the[tex]Li_{2}[/tex] molecule is approximately 1.61 x 10¹³ Hz.

To calculate the vibrational frequency of the[tex]Li_{2}[/tex]molecule, we'll use the formula for a harmonic oscillator:
v = (1 / 2π) * √(k / µ)
Where:
- v is the vibrational frequency
- k is the force constant (15.0 N·m⁻¹)
- µ is the reduced mass of the molecule
First, we need to calculate the reduced mass, µ. Since [tex]Li_{2}[/tex] is a diatomic molecule with the same atomic mass for both atoms, we can calculate µ using:
µ = m / 2
Where m is the atomic mass of Li (7.0160 amu).
To use the formula, we need to convert the atomic mass from amu to kg. The conversion factor is 1 amu = 1.66054 x 10⁻²⁷ kg.
m (kg) = 7.0160 amu * (1.66054 x 10⁻²⁷ kg/amu) = 1.1648 x 10⁻²⁶ kg
Now we can find µ:
µ = 1.1648 x 10⁻²⁶ kg / 2 = 5.824 x 10⁻²⁷ kg
Now, we can calculate the vibrational frequency, v:
v = (1 / 2π) * √(15.0 N·m⁻¹ / 5.824 x 10⁻²⁷ kg) = 1.61 x 10¹³ Hz
So the vibrational frequency of the[tex]Li_{2}[/tex] molecule is approximately 1.61 x 10¹³ Hz.

Learn more about frequency here: https://brainly.com/question/29739263

#SPJ11

A point charge Q1 = 10 μC, is located at P1(1,2,3) in free space, while Q2 = -5 μC is at P2(1,2,10). (a) Find the vector force exerted on Q2 by Q1. (b) Find the coordinates of P3 at which a point charge Q3 experiences no force.

Answers

Q1 is pushing Q2 with a vector force of -6.12 x 10-4 N * k. At P3, the vector sum of the forces resulting from Q1 and Q2 is (x-1)2 + (y-2)2 + (z-3)2 = 4/3 *.

What is the sum of the vector forces?

The vector sum of all the forces equals the net force. In other words, the net force is the sum of all forces. The net force is the sum of the force vectors A + B + C in the scenario of the three forces on the force board.

(a) Coulomb's law provides the electric force F on Q2 as a result of Q1:

F = k * Q1 * Q2 / r² * r_hat

where r_hat is the unit vector pointing from Q1 to Q2, k is the Coulomb constant, and r is the separation between the two charges.

r = |P2 - P1| = sqrt((1-1)² + (2-2)² + (10-3)²) = 7

r_hat = (P2 - P1) / r = (0, 0, 1)

When we change the values, we obtain:

F = 9 x 10⁹ Nm²/C² * (10 x 10⁻⁹C) * (-5 x 10⁻⁶ C) / (7 m)² * (0, 0, 1)

F = -6.12 x 10⁻⁴ N * k

Therefore, Q1's vector force on Q2 is -6.12 x 10⁻⁴ N * k.

(b) We must identify the location P3 where Q1 and Q2's combined net force on Q3 equals zero. This indicates mathematically that the vector sum of the forces resulting from Q1 and Q2 at P3 is 0:

F_1 + F_2 = 0

We can write: Using Coulomb's law

F_1 = k * Q1 * Q3 / r_1² * r_1_hat

F_2 = k * Q2 * Q3 / r_2² * r_2_hat

If P3's coordinates are (x, y, z), we can write:

r_1 = sqrt((x-1)² + (y-2)² + (z-3)²)

r_2 = sqrt((x-1)² + (y-2)² + (z-10)²)

r_1_hat = ((x-1)/r_1, (y-2)/r_1, (z-3)/r_1)

r_2_hat = ((x-1)/r_2, (y-2)/r_2, (z-10)/r_2)

By replacing these values, we obtain:

k * Q1 * Q3 / r_1² * r_1_hat + k * Q2 * Q3 / r_2² * r_2_hat = 0

The result of simplifying and solving for Q3 is:

Q3 = -Q1 * r_1² / (Q2 * r_2²)

When we change the values, we obtain:

Q3 = -10 x 10⁻⁶ C * (sqrt((x-1)² + (y-2)² + (z-3)²))² / (-5 x 10⁻⁶ C * (sqrt((x-1)² + (y-2)² + (z-10)²))²)

If we simplify, we get:

(x-1)² + (y-2)² + (z-3)² = 4/3 *

To know more about separation visit:-

https://brainly.com/question/27207149

#SPJ1

3. Cahn-Ingold-Prelog a. Prioritize all four groups connected to the chirality center Number the following groups based on priority. This is done one atom at a time, not the group! CH3 Me но ButIi Prop Et Cl Br

Answers

To prioritize the four groups connected to the chirality center using the Cahn-Ingold-Prelog rules, we need to compare the atoms directly bonded to the chirality center and assign them a priority based on their atomic number.


Starting with the highest atomic number, we have:



1. Br (bromine)


2. Cl (chlorine)


3. But (butyl group)


4. Prop (propyl group)


5. Et (ethyl group)


6. Me (methyl group)


7. CH3 (methyl group)


So the priority order of the groups from highest to lowest is:

1. Br
2. Cl
3. But
4. Prop
5. Et
6. Me
7. CH3

To know more about Cahn-Ingold-Prelog here

https://brainly.com/question/13514751

#SPJ11

What is the molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt? molar mass: 282.1 g/mol Incorrect

Answers

The molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt is 270.29 g/mol.

To determine the molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt, we first need to find the molecular formula of this compound and then calculate its molar mass.

Step 1: Identify the molecular formula
(S)-phenylethylammonium-(2R,3R) tartrate salt is a complex compound, and its molecular formula is (C₈H₁₂N)(C₄H₄O₆). This formula consists of one phenylethylammonium ion (C₈H₁₂N) and one tartrate ion (C₄H₄O₆).

Step 2: Calculate the molar mass
To calculate the molar mass, we will add the molar masses of each element in the molecular formula, multiplied by their respective counts:

Molar mass of C: 12.01 g/mol
Molar mass of H: 1.01 g/mol
Molar mass of N: 14.01 g/mol
Molar mass of O: 16.00 g/mol

(C₈H₁₂N)(C₄H₄O₆) = [(8 x 12.01) + (12 x 1.01) + (1 x 14.01)] + [(4 x 12.01) + (4 x 1.01) + (6 x 16.00)]

= [96.08 + 12.12 + 14.01] + [48.04 + 4.04 + 96.00]

= 122.21 + 148.08

The molar mass of (S)-phenylethylammonium-(2R,3R) tartrate salt is 270.29 g/mol.

For learn more about molar mass, visit: https://brainly.com/question/25879634

#SPJ11

What is the solubility (in g/L) of aluminum hydroxide at 25°C? The solubility product constant for aluminum hydroxide is 4.6 x 10-33 at 25°C. a) 5.3 * 10-15 g/L b) 8.2 x 10-10 g/L c) 1.8 x 10-31 g/L d) 2.8 x 10-7 g/L e) 3.6 x 10-31 g/L

Answers

The solubility of aluminum hydroxide at 25°C is (b) 8.2 x 10⁻¹⁰ g/L.

Using the solubility product constant (Ksp) of aluminum hydroxide (Al(OH)₃) at 25°C (4.6 x 10⁻³³), the solubility (in g/L) can be calculated using the following formula:

Ksp = [Al³⁺][OH⁻]³

Assuming x is the solubility in moles per liter, then [Al³⁺] = x and [OH⁻] = 3x, therefore:

4.6 x 10⁻³³ = x(3x)³

x = 1.1 x 10⁻¹¹ M

The molar mass of Al(OH)₃ is 78.0 g/mol, so:

solubility = (1.1 x 10⁻¹¹ M)(78.0 g/mol) = 8.6 x 10⁻¹⁰ g/L

Therefore, the answer is (b) 8.2 x 10⁻¹⁰ g/L.

To know more about the solubility refer here :

https://brainly.com/question/28170449#

#SPJ11

Consider a supersonic flow past a compression corner with a ramp angle of theta=20 degrees. The upstream properties are M1=3 and pl=2116 lbf/ft^2. A Pitot tube is inserted in the flow downstream of the corner and the resulting oblique shock wave. Calculate the value of the pressure measured by the Pitot tube. First draw a careful sketch of the entire flow field and show station numbers: 1, 2, 3. Hint: Do you work in the following order: Shock wave angle beta, Mnl, Mn2, po2/pol, M2, po3/po2, pol/pl, po3

Answers

The pressure measured by the Pitot tube is approximately 6,647 lbf/ft^2. This can be calculated by first finding the shock wave angle beta using the given ramp angle of 20 degrees and Mach number of 3,

and then using the oblique shock relations to solve for the other properties at stations 1, 2, and 3, including the pressure measured by the Pitot tube at station 3.

The solution involves using the oblique shock relations to find the properties of the flow at different stations, starting with the shock wave angle beta and then working through the various properties at each station, including the pressure measured by the Pitot tube at station 3. The solution requires a careful sketch of the flow field and an understanding of the physics of compressible flow.

learn more about pressure here:

https://brainly.com/question/12971272

#SPJ11

How should the baking of a pizza be categorized?
as an exothermic process because the dough releases heat
as an endothermic process because the dough releases heat
as an exothermic process because the dough absorbs heat
as an endothermic process because the dough absorbs heat

Answers

The baking of a pizza should be categorized as an exothermic process because the dough releases heat. During baking, the dough undergoes a chemical reaction where the carbohydrates and sugars present in the dough are broken down and release heat, causing the pizza to cook and bake. The heat is also transferred from the oven to the pizza, which provides additional energy for the baking process. Therefore, the baking process involves the release of heat and should be classified as an exothermic process.

The baking of a pizza is categorized as an endothermic process because the dough absorbs heat. Therefore, option D is correct.

What is an endothermic process?

An endothermic process is a process that absorbs heat from the surroundings. In an endothermic process, the system gains energy from the surroundings, usually in the form of heat. This energy is used to break bonds within the system or to convert a solid or liquid into a gas.

Examples of endothermic processes include:

Melting of ice: When ice melts, it absorbs heat from the surroundings, which is used to break the hydrogen bonds between water molecules.Boiling of water: When water boils, it absorbs heat from the surroundings, which is used to break the hydrogen bonds between water molecules and convert water into steam.The dissolving of ammonium nitrate in water: When ammonium nitrate dissolves in water, it absorbs heat from the surroundings, which is used to break the ionic bonds between ammonium and nitrate ions.

Thus, option D is correct.

Learn more about the endothermic process, here:

https://brainly.com/question/29555731

#SPJ5

C8h16 + 12o2=8CO2 + 8h2o What is the ratio of octene (c8h16) to oxygen in the reaction?

Answers

The balanced chemical equation for the combustion of octene (C₈H₁₆) is:

C₈H₁₆ + 12O₂ → 8CO₂ + 8H₂O

The ratio of octene to oxygen in the reaction is 1:12.

The balanced chemical equation for the combustion of octene shows the reactants and products of the reaction and also indicates the stoichiometry of the reaction.

In this case, the balanced equation shows that 1 mole of octene reacts with 12 moles of oxygen to produce 8 moles of carbon dioxide and 8 moles of water. This means that the ratio of octene to oxygen in the reaction is 1:12, which indicates that a much larger amount of oxygen is needed compared to octene. This is because oxygen is the limiting reactant in the reaction and must be present in excess to ensure that all of the octene is consumed during the reaction.

To learn more about oxygen follow the link:

https://brainly.com/question/13370320

#SPJ1

Enter the balanced complete ionic equation for K2SO4(aq)+CaI2(aq)→CaSO4(s)+KI(aq).
Express your answer as a chemical equation. Identify all of the phases in your answer.
Part B
Enter the balanced net ionic equation for K2SO4(aq)+CaI2(aq)→CaSO4(s)+KI(aq) .
Express your answer as a chemical equation. Identify all of the phases in your answer.
Part C
Enter the balanced complete ionic equation for NH4Cl(aq)+NaOH(aq)→H2O(l)+NH3(g)+NaCl(aq).
Express your answer as a chemical equation. Identify all of the phases in your answer.
Part D
Enter the balanced net ionic equation for NH4Cl(aq)+NaOH(aq)→H2O(l)+NH3(g)+NaCl(aq).
Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

Part A: 2 K⁺(aq) + SO₄²⁻(aq) + Ca²⁺(aq) + 2 I⁻(aq) → CaSO₄(s) + 2 K⁺(aq) + 2 I⁻(aq)
Part B: Ca²⁺(aq) + SO₄²⁻(aq) → CaSO₄(s)
Part C: NH₄⁺(aq) + Cl⁻(aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + NH₃(g) + Na⁺(aq) + Cl⁻(aq)
Part D: NH₄⁺(aq) + OH⁻(aq) → H₂O(l) + NH₃(g)


Part A: Separate all ions in their aqueous states, then write the balanced complete ionic equation.
Part B: Remove spectator ions (K⁺ and I⁻) from the complete ionic equation, resulting in the balanced net ionic equation.
Part C: Follow the same procedure as Part A for the given reaction.
Part D: Remove spectator ions (Na⁺ and Cl⁻) from the complete ionic equation, resulting in the balanced net ionic equation.

To know more about ionic equation click on below link:

https://brainly.com/question/29299745#

#SPJ11

1-propanol, 2-propanol, and methyl ethyl ether share the same molecular formula and so they are referred to as

Answers

1-propanol, 2-propanol, and methyl ethyl ether share the same molecular formula and so they are referred to as isomers.

Isomers are compounds that have the same molecular formula but different arrangements of atoms and/or different bonding patterns between atoms. In the case of 1-propanol, 2-propanol, and methyl ethyl ether, they all have the molecular formula C₃H₈O, but differ in their structural formula and properties.

1-propanol, also known as n-propanol or propan-1-ol, has a linear structure with a primary alcohol group (-OH) attached to the first carbon atom of the propane chain. It is a colorless liquid with a strong odor, and is commonly used as a solvent and in the production of other chemicals.

2-propanol, also known as isopropanol or propan-2-ol, has a branched structure with a secondary alcohol group (-OH) attached to the second carbon atom of the propane chain. It is also a colorless liquid with a strong odor, and is widely used as a solvent, disinfectant, and antifreeze.

Methyl ethyl ether, also known as ether or dimethyl ether, has a linear structure with an ether functional group (-O-) linking the methyl and ethyl groups. It is a volatile, flammable liquid with a sweet odor, and is used as a solvent and fuel.

Although these three compounds share the same molecular formula, their different structures and bonding patterns give rise to different physical and chemical properties.

Learn more about isomers here: https://brainly.com/question/18474884

#SPJ11

Consider the reaction a+2b⇌c for which in the initial mixture qc=[c][a][b]2=387 is the reaction at equilibrium? if not, in which direction will it proceed to reach equilibrium?

Answers

The reaction a + 2b ⇌ c is not at equilibrium if Qc ≠ Kc. If Qc < Kc, it will proceed in the forward direction (towards c); if Qc > Kc, it will proceed in the reverse direction (towards a and b).

To determine if the reaction is at equilibrium, compare the given Qc value (387) to the Kc value for this reaction. If Qc = Kc, then the reaction equilibrium occurs. If Qc < Kc, the reaction will proceed in the forward direction, meaning the concentrations of a and b will decrease while the concentration of c will increase.

On the other hand, if Qc > Kc, the reaction will proceed in the reverse direction, meaning the concentration of a and b will increase while the concentration of c will decrease.

To know more about reaction equilibrium click on below link:

https://brainly.com/question/30799381#

#SPJ11

1) A. What is the purpose of adding an antifoam agent? Boiling chips?
B. Could the steam distillation of limonene be carried out without using an antifoam agent or boiling chips? What would happen in either case?

Answers

a. The purpose of adding an antifoam agent is to prevent or reduce the formation of foam during a process, such as distillation. Boiling chips, on the other hand, are small, insoluble particles that provide nucleation sites for bubbles to form, promoting even boiling and preventing superheating or bumping in the liquid.

b. The steam distillation of limonene could technically be carried out without using an antifoam agent or boiling chips.

However, without an antifoam agent, excessive foam might form, potentially causing overflow or affecting the efficiency of the distillation. Without boiling chips, the liquid might superheat or bump, leading to uneven boiling, potential splashing of the liquid, or even breakage of the glassware. In both cases, it's generally safer and more efficient to use an antifoam agent and boiling chips during the distillation process.

Learn more about steam distillation: https://brainly.com/question/29400171

#SPJ11

1. Titrations are generally both more accurate and more precise the smaller the concentration of titrant you use. A 6.0 M NaOH stock solution is provided by the stock room. (a) What volumes of the stock NaOH solution and DI water would you need to prepare 500 mL of 0.10 M NaOH solution? (b) If you measured your diluted NaOH solution using a pH meter, what pH should it read?

Answers

Answer:

8.3 mL of NaOH Stock, 492 mL of DI Water. pH = 13.

Explanation:

Use the M1V1 = M2V2 formula, where m is molarity and v is volume. This can be done in mL or L, it will cancel out.

(6.0)V1 = (.10)(500), solving for V1 you get 8.3 mL of 6.0M NaOH stock solution. The remaining 500-8.3= approx 492 mL should be DI water.

The pH = -log[H+] but in this case we have OH-, so we will use pH + pOH =14. And rearrange to solve for pH = 14 + pOH = 14 + log[OH-]

Then solve

pH = 14 + log(0.10 M0 = 14 - 1 = 13

Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction entropy of the following chemical reaction:
C3H8(g)+5O2(g)→3CO2(g)+4H2O(l)
Round your answer to zero decimal places.
? J/K

Answers

The standard reaction entropy for the given chemical reaction is 109 J/K (rounded to zero decimal places).

To calculate the standard reaction entropy of the given chemical reaction, we need to use the standard entropy of formation values of the products and reactants.

The standard entropy of formation values are given in the ALEKS Data tab as follows:

C₃H₈(g) : 186.2 J/K

O₂(g) : 205.0 J/K

CO₂(g) : 213.6 J/K

H₂O(l) : 69.9 J/K

Using these values, we can calculate the change in entropy (ΔS) for the reaction:

ΔS = ΣS(products) - ΣS(reactants)

ΔS = [3(213.6 J/K) + 4(69.9 J/K)] - [1(186.2 J/K) + 5(205.0 J/K)]

ΔS = 108.7 J/K

learn more about chemical reaction here:

https://brainly.com/question/29762834

#SPJ11

The standard reaction entropy for the given chemical reaction is 109 J/K (rounded to zero decimal places).

To calculate the standard reaction entropy of the given chemical reaction, we need to use the standard entropy of formation values of the products and reactants.

The standard entropy of formation values are given in the ALEKS Data tab as follows:

C₃H₈(g) : 186.2 J/K

O₂(g) : 205.0 J/K

CO₂(g) : 213.6 J/K

H₂O(l) : 69.9 J/K

Using these values, we can calculate the change in entropy (ΔS) for the reaction:

ΔS = ΣS(products) - ΣS(reactants)

ΔS = [3(213.6 J/K) + 4(69.9 J/K)] - [1(186.2 J/K) + 5(205.0 J/K)]

ΔS = 108.7 J/K

learn more about chemical reaction here:

https://brainly.com/question/29762834

#SPJ11

what ion cause the reaction in fescn 2 fe(no3)3

Answers

The ion that causes the reaction in [tex]FeSCN^{2+[/tex] and [tex]Fe(NO^3)^3[/tex] is: Fe3+.

Your question involves the following reaction:
[tex]Fe^{3+[/tex] + SCN- → [tex]FeSCN^{2+[/tex]

The Fe(SCN)2+ complex ion is formed through a series of steps.

The first step involves the dissociation of [tex]Fe(NO^3)^3[/tex] into [tex]Fe^{3+[/tex] and [tex]NO^3[/tex]- ions. [tex]Fe^{3+[/tex] ions then react with SCN- ions to form [tex]FeSCN^{2+[/tex] The [tex]Fe^{3+[/tex] ion is the main cause of the reaction as it combines with SCN- to form the [tex]FeSCN^{2+[/tex] complex ion. This reaction is a type of equilibrium reaction, meaning that the concentration of products and reactants will be constant over time. The intensity of the color of the solution can be used to determine the concentration of the complex ion present in the solution. This reaction is often used in analytical chemistry to determine the concentration of [tex]Fe^{3+[/tex] ions in a sample.

In summary, the ion causing the reaction between [tex]FeSCN^{2+[/tex] and [tex]Fe(NO^3)^3[/tex] is the [tex]Fe^{3+[/tex] ion.

To know more about "Analytical chemistry" refer here:

https://brainly.com/question/9477180#

#SPJ11

27. oxidation (kmno4 or ozone) of unsymmetrical internal alkynes produces two carboxylic acids whereas under the same condition terminal alkyne produces one carboxylic acid — explain.

Answers

The reason why oxidation (using KMnO4 or ozone) of unsymmetrical internal alkynes produces two carboxylic acids is because the unsymmetrical alkynes have two different groups attached to each end of the triple bond. During oxidation, the triple bond is broken and each end of the molecule is converted into a carboxylic acid.

Since the two ends of the unsymmetrical alkyne have different groups, two different carboxylic acids are produced. On the other hand, terminal alkynes have the same group attached to each end of the triple bond. When terminal alkynes undergo oxidation, only one carboxylic acid is produced because both ends of the molecule are the same.

The oxidation of unsymmetrical internal alkynes with reagents like KMnO4 or ozone results in the formation of two carboxylic acids because the alkyne has two distinct alkyl groups attached to the carbon-carbon triple bond. When the oxidizing agent breaks the triple bond, each carbon forms a carboxylic acid group, leading to two different carboxylic acids.

On the other hand, terminal alkynes have a hydrogen atom attached to one of the carbons in the carbon-carbon triple bond. When terminal alkynes undergo oxidation using KMnO4 or ozone, the hydrogen atom is replaced by a carboxylic acid group, while the other carbon in the triple bond forms a carboxylic acid. However, the carboxylic acid formed from the hydrogen side is a formic acid (HCOOH), which can be further oxidized to carbon dioxide and water. Therefore, under the same conditions, the oxidation of terminal alkynes ultimately produces only one carboxylic acid.

Learn more about alkynes here:

https://brainly.com/question/9620187

#SPJ11

Which reagent, NaOH or NH3, will enable you to precipitate the first-named ion from a solution containing each of the following pairs of ions, leaving the second ion in solution? Give also the formula of the precipitate and the exact formula of the other ion in solution. Determine which ions form hydroxide precipitates or hydroxide complexes, and ammonia complexes.(a) Al3+, Zn2+ (reagent, precipitate, ion insolution for all )(b) Cu2+, Pb2+(c) Pb2+, Cu2+(d) Fe3+, Al3+(e) Ni2+, Sn2+(f) Sn2+, Ni2+(g) Mg2+, Ag+

Answers

(a) NaOH: Al(OH)₃; NH3: Zn(NH3₃42+, (b) NaOH: Pb(OH)₂; NH₃: Cu(NH₃)42+, (c) Same as (b), (d) NaOH: Fe(OH)₃; NH₃: Al(NH₃)63+, (e) NaOH: Sn(OH)₂; NH₃: none, (f) Same as (e)., (g) NaOH: Mg(OH)2₂; NH₃: none

To determine which reagent, NaOH or NH₃, will precipitate the first-named ion, we need to check the solubility of the hydroxide and ammonia complexes of the ions.

(a) Al₃+, Zn₂+

NaOH will precipitate Al₃+ as Al(OH)₃ and leave Zn₂+ in solution as Zn(OH)42-. NH₃ will precipitate Zn2+ as Zn(NH₃)42+ and leave Al₃+ in solution as Al(H₂O)63+.

(b) Cu2+, Pb2+

NaOH will precipitate Pb2+ as Pb(OH)₂ and leave Cu2+ in solution as Cu(OH)42-. NH₃ will precipitate Cu₃+ as Cu(NH₃)42+ and leave Pb2+ in solution as [Pb(OH)4]2-.

(c) Pb₂+, Cu₂+

Same as (b).

(d) Fe₃+, Al₃+

NaOH will precipitate Fe3+ as Fe(OH)₃ and leave Al3+ in solution as Al(H₂O)63+. NH3 will precipitate Al3+ as Al(NH3)63+ and leave Fe3+ in solution as [Fe(H2O)6]3+.

(e) Ni₂+, Sn₂+

NaOH will precipitate Sn2+ as Sn(OH)₂ and leave Ni₂+ in solution as Ni(OH)42-. NH3 will not precipitate either ion.

(f) Sn2+, Ni2+

Same as (e).

(g) Mg2+, Ag+

NaOH will precipitate Mg2+ as Mg(OH)₂ and leave Ag+ in solution. NH₃ will not precipitate either ion.

learn more about Precipitate here:

https://brainly.com/question/29762381

#SPJ11

A direct current is applied to an aqueous nickel (II) bromide solution. a. Write the balanced equation for the half reaction that takes place at the b. Write the balanced equation for the half reaction that takes place at the c. Write the balanced equation for the overall reaction that takes place in the d. Do the electrons flow from the anode to the cathode or from the cathode to anode. cathode. cell. the anode?

Answers

At the anode, the oxidation half-reaction is as follows:

[tex]Ni(s) = Ni(aq) + 2e-[/tex]

b. Write the balanced equation for the half reaction that takes place at the

b. The half-reaction (reduction) at the cathode is as follows:

[tex]2e- + Br2(l) = 2Br(aq)[/tex]

c. We combine the two half-reactions and eliminate the electrons to obtain the total reaction:

Ni (s) + Br2 (l) Ni 2+ (aq) + 2Br(aq)

d. A galvanic cell's anode and cathode are where electrons move. The nickel electrode serves as the anode in this instance, where oxidation takes place, and the bromine electrode serves as the cathode, where reduction takes place.

To know more about cell  visit:

https://brainly.com/question/31133922

#SPJ1

Before running the column, you will use liquid- liquid extraction to separate some of the pigments from the lawsone. During the 0.1 M NaoH extraction process, where will your lawsone be? A. In the upper, organic layer B. In the lower, organic layer C. In the upper, aqueous layer D. In the lower, aqueous layer

Answers

Your lawsone will be in the upper, aqueous layer during the 0.1 M NaOH extraction process.

Liquid-liquid extraction is a technique used to separate components in a mixture based on their relative solubilities in two immiscible liquids, typically an organic solvent and an aqueous solvent. When the 0.1 M NaOH is added, it forms an aqueous layer that mixes with the pigments and lawsone.

Lawsone, being an organic compound, will preferentially dissolve in the aqueous NaOH layer due to the formation of a soluble ion when it reacts with the base.

As a result, the lawsone will be found in the upper, aqueous layer while other pigments and compounds that are not soluble in the aqueous layer will remain in the lower, organic layer. This separation allows for the isolation of lawsone from the other pigments before running the column.

To know more about Liquid-liquid extraction click on below link:

https://brainly.com/question/13345735#

#SPJ11

1. Acetic acid is a weak acid, meaning it does not fully dissociate in water. Instead, there is an equilibrium between the dissolved but undissociated molecule and the component ions: HOAc (aq) + H20 (1)=H20+ (aq) + OAC (aq) OAc is an abbreviation for the acetate ion, CH3C00 , and H30+ is the hydronium ion (lone protons, H+ (aq), do not exist!). (a) Write the equilibrium constant expression for the dissociation of acetic acid. (b) Vinegar sold commercially is typically 0.8-1.0M acetic acid. A 1.00 M solution of acetic acid is measured by its pH to have an equilibrium concentration of 4.19x10-3 M for both acetate ions and hydronium ions at room temperature. Assuming (HOAc]o 1.00 M, what is the equilibrium concentration of undissociated acetic acid (HOAceq to the correct number of significant figures? (c) What is the value of the equilibrium constant Keq for the dissociation according to the concentrations from part (b)? (d) When starting with completely un-dissociated acetic acid, is it accurate to assume that [HOAc]o = [HOAceq? Why or why not? (e) A highly concentrated acetic acid solution contains 15.0M acetic acid at equilibrium. What are the equilibrium concentrations of the hydronium and acetate ions in this solution? (f) Creating the concentrated acetic acid solution by dissolving liquid HOAc in water raises the temperature of the water by about 5 °C from room temperature. At 50 °C, do you expect the solution to contain more or less acetate ion Ac than what you calculated in (c)? Why?

Answers

(a) The equilibrium constant expression for the dissociation of acetic acid is: Keq = [H3O+][OAc-]/[HOAc].

(b) Using the equilibrium concentrations of [H3O+] = [OAc-] = 4.19x10^-3 M and the initial concentration of [HOAc]o = 1.00 M, we can calculate the equilibrium concentration of undissociated acetic acid (HOAceq) using the equilibrium constant expression: Keq = [H3O+][OAc-]/[HOAc]o = (4.19x10^-3)^2/1.00 = 1.75x10^-5 M. To find the equilibrium concentration of HOAceq, we use the conservation of mass equation: [HOAc]o = [HOAceq] + [OAc-], which gives [HOAceq] = [HOAc]o - [OAc-] = 1.00 - 4.19x10^-3 = 0.996 M.

(c) The equilibrium constant Keq can be calculated using the values from part (b): Keq = [H3O+][OAc-]/[HOAc]o = (4.19x10^-3)^2/1.00 = 1.75x10^-5.

(d) It is not accurate to assume [HOAc]o = [HOAceq] when starting with completely undissociated acetic acid because at equilibrium, some of the acetic acid has dissociated into its component ions. Therefore, [HOAc]o is greater than [HOAceq].

(e) To find the equilibrium concentrations of hydronium and acetate ions in a 15.0 M acetic acid solution, we use the equilibrium constant expression: Keq = [H3O+][OAc-]/[HOAc]. Rearranging this equation and plugging in the values, we get [H3O+] = [OAc-] = sqrt(Keq x [HOAc]) = sqrt(1.75x10^-5 x 15.0) = 0.0416 M.

(f) At 50 °C, the solution will contain more acetate ion (OAc-) than what was calculated in (c) because an increase in temperature favors the dissociation of acetic acid, shifting the equilibrium to the right.

Learn more about equilibrium here:

https://brainly.com/question/30807709

#SPJ11

Other Questions
-12x to the power of 3 y to the power of 8 what is equivalent to 5x - 19 ITRATION. CONCENTRATION OF VINEGAR NTRODUCTION LABORATORY SIMULATION A Lab Data Verify your volume measurement Standardized NaOH (M) 0.4125 Initial volume of buret (mL) 1.80 Volume of vinegar (mL) 10.00 Observations solution turned purple 20.56 Final volume of buret (mL) Volume of NaOH (mL) 19.56 Molarity of acetic acid (M) Mark each statement true or false. Justify each answer. Unless otherwise stated, B is a basis for a vector space V. a. If B is the standard basis for R", then the B-coordinate vector of an x in Rh is x itself. b. The correspondence [x]B Hx is called the coordinate mapping. c. In some cases, a plane in R3 can be isomorphic to R2. A chemical reaction is most likely to be spontaneous if it is accompanied by a. increasing energy and increasing entropy b. lowering energy and increasing entropy c. increasing energy and decreasing entropy d. lowering energy and decreasing entropy you are going to design and develop a web-based application that manages the inventory of electronic equipment of an organization. It is possible to create a sharepoint site with powershell After a number of months, a bank balance was $46.83. Each month, the bank charges a $5.95 fee for having a negative balance. Write an inequality to determine at most how many months the fee was charged. Let x be how many months the fee was charged.Can someone pls explain this to me and the answer also. The steps for circumscribing a circle about a triangle are shown:Step 1 Construct the angle bisector of one side of the triangle.Step 2 Construct the perpendicular bisector of another side of the triangle.Step 3 Indicate the point of intersection of the bisectors with a point representing the center of the circle.Step 4 Place the compass on the center, adjust its length to reach any vertex of the triangle, and draw your circumscribed circle.Which step is incorrect, and how can it be fixed? aStep 1, replace "angle bisector" with "perpendicular bisector" bStep 3, replace "circle" with "triangle" cStep 4, replace "vertex" with "side" dAll steps are correct A pool of water has a rectangular base of 5 m by 10 m and the water is 6 m deep. What is the pressure on the base of the pool taken g = 10m/ss ] a bacteria culture starts with e 10 bacteria and grows at a rate proportional to its size. after 3 hours there are e 16 bacteria. 1. find an expression for the number of bacteria after t hours. The road to democracy in South africa was met with numerals obstacles and challenges between 1990 and 1994 Critically discuss the statement by refering to the process of negotiations in South africa Since the 2008 credit crisis 1) LIBOR has replaced OIS as the discount rate for non-collateralized swaps 2) OIS has replaced LIBOR as the discount rate, but only for non-collateralized swaps 3) LIBOR has replaced OIS as the discount rate for collateralized swaps 4) OIS has replaced LIBOR as the discount rate for swaps the past five montly returns for kohl's are 3.72 percent, 4.07 percent, -1.86 percent, 9.34 percent, and -2.74 percent. compute the standard deviation of khol's monthly returns repeat exercise 14.24 for the following different set of functional dependen- cies g = {{a, b}{c}, {b, d}{e, f}, {a, d}{g, h}, {a}{i}, {h}{j}}. when only a copy of an argument is passed to a function, it is said to be passed by ___referencevalueparametersnone of the choices how do hydrogen atoms become ionized within an h-ii region? question 19 options: as a result of emitting radiation within the visible light spectrum by absorbing ultraviolet radiation from a nearby star by absorbing radiation within the visible spectrum by capturing the free electrons within the cloud by absorbing thermal radiation from the nearby star how does plate tectonics support evolution? What reagents would you need to convert 1-methylcyclohexane to 1-bromo-1-methylcyclohexane? In the electric series which one of the following materials is the most negatively charged