Two​ trains, Train A and Train​ B, weigh a total of 492 tons. Train A is heavier than Train B. The difference of their weights is 324 tons. What is the weight of each​ train?

Answers

Answer 1

Answer:

84 tons

Step-by-step explanation:

Let's assume that Train B weighs x tons.

According to the problem, Train A is heavier than Train B, so we can express the weight of Train A in terms of x + 324.

We know that the total weight of both trains is 492 tons, so we can set up an equation:

x + (x + 324) = 492

Simplifying this equation:

2x + 324 = 492

2x = 168

x = 84

So Train B weighs 84 tons.

We can now find the weight of Train A by adding the difference between their weights (324 tons) to the weight of Train B:

Train A = Train B + 324 = 84 + 324 = 408

Therefore, Train A weighs 408 tons and Train B weighs 84 tons.

Answer 2

Answer:

Train A =408

Train B = 84

Step-by-step explanation:

This is a math problem that can be solved by using a system of equations. Let x be the weight of Train A and y be the weight of Train B. Then we have:

x + y = 492 x - y = 324

Adding these two equations, we get:

2x = 816 x = 408

Substituting x into the first equation, we get:

408 + y = 492 y = 84

Therefore, Train A weighs 408 tons and Train B weighs 84 tons.

HOPE THAT HELPS! :D


Related Questions

calculate mad. observation actual demand (a) forecast (f) 1 35 --- 2 30 35 3 26 30 4 34 26 5 28 34 6 38 28

Answers

To calculate the Mean Absolute Deviation (MAD) using the given demand and forecast values.

The MAD is the average of the absolute differences between actual demand (A) and forecast (F).

Here are the steps to calculate MAD:
1. Calculate the absolute differences between actual demand and forecast for each observation.
2. Add up all the absolute differences.
3. Divide the sum of absolute differences by the number of observations.

Let's apply these steps to your data:

1. Calculate the absolute differences:
  - Observation 2: |30 - 35| = 5
  - Observation 3: |26 - 30| = 4
  - Observation 4: |34 - 26| = 8
  - Observation 5: |28 - 34| = 6
  - Observation 6: |38 - 28| = 10

2. Add up the absolute differences:
  5 + 4 + 8 + 6 + 10 = 33

3. Divide the sum of absolute differences by the number of observations (excluding the first one since there's no forecasting value for it):
  MAD = 33 / 5 = 6.6

So, the Mean Absolute Deviation (MAD) for the given data is 6.6.

To learn more about “demand” refer to the https://brainly.com/question/1245771

#SPJ11

use two-point forward-difference formulas and backward-difference formulas as appropriate to determine each f'(x)

Answers

The forward-difference formula estimates the slope of the tangent line at x using f(x+h) and f(x), while the backward-difference formula uses f(x) and f(x-h).

The two-point forward-difference formula for approximating the derivative of a function f(x) at a point x is:

f'(x) = (f(x+h) - f(x))/h

where h is a small positive number. This formula estimates the slope of the tangent line to the function f(x) at x by taking the slope of the secant line between f(x) and f(x+h).

The two-point backward-difference formula for approximating the derivative of a function f(x) at a point x is:

f'(x) = (f(x) - f(x-h))/h

where h is a small positive number. This formula estimates the slope of the tangent line to the function f(x) at x by taking the slope of the secant line between f(x) and f(x-h).

To determine f'(x) using these formulas, we need to know the value of f(x) and the value(s) of f(x ± h), depending on which formula we are using. We can then plug these values into the appropriate formula and calculate an approximation of f'(x). These formulas are first-order approximations and the error in the approximation is proportional to h. Using smaller values of h will generally give more accurate approximations, but may also lead to numerical instability or round-off error.

To know more about the Difference, here

https://brainly.com/question/31013305

#SPJ4

find and classify the local extrema of the function f (x, y) = 3x2y y3−3x2−3y2 2.

Answers

The quadratic formula mentioned below is used to get the following solutions for x:

[tex]x = \frac{15y \pm \sqrt{225y^2 - 60y^3}}{15}[/tex]

we can use these solutions of x to find the corresponding values of y:

[tex]y = \frac{6x \pm \sqrt{36x^2 - 60xy}}{6}[/tex]

What is partial derivative?

Partial derivative is a type of derivative that is taken with respect to one variable, with all other variables held constant.

The local extrema of the function f (x, y) = 3x2y y³−3x²−3y² 2  can be found by taking the partial derivative of the function with respect to x and y and then setting them equal to zero.

This gives us the following equations:

[tex]\frac{\partial f}{\partial x} = 6xy^3 - 6x = 0[/tex]

[tex]\frac{\partial f}{\partial y} = 3x^2y^2 - 6y = 0[/tex]

To solve these equations, we can set the partial derivatives equal to each other and solve for y:

[tex]6xy^3 - 6x = 3x^2y^2 - 6y[/tex]

[tex]3x^2y^2 - 6y = 6xy^3 - 6x[/tex]

[tex]3x^2y^2 - 6xy^3 = 6x - 6y[/tex]

[tex]y(3x^2 - 6xy^2) = 6x - 6y[/tex]

[tex]y = \frac{6x - 6y}{3x^2 - 6xy^2}[/tex]

Next, we can substitute this expression for y into the equation for the partial derivative with respect to x to get a quadratic equation in x:

[tex]6xy^3 - 6x = 6x\left(\frac{6x - 6y}{3x^2 - 6xy^2}\right)^3 - 6x[/tex]

[tex]6xy^3 - 6x = 6x\left(\frac{6x^2 - 36xy + 36y^2}{(3x^2 - 6xy^2)^2}\right) - 6x[/tex]

[tex]6xy^3 - 6x = 6x\left(\frac{6x^2 - 36xy + 36y^2 - 3x^2 + 6xy^2}{(3x^2 - 6xy^2)^2}\right)[/tex]

[tex]6xy^3 - 6x = 6x\left(\frac{3x^2 - 30xy + 30y^2}{(3x^2 - 6xy^2)^2}\right)[/tex]

[tex]0 = 3x^2 - 30xy + 30y^2[/tex]

This equation can be solved using the quadratic formula to get the following solutions for x:

[tex]x = \frac{15y \pm \sqrt{225y^2 - 60y^3}}{15}[/tex]

Finally, we can use these solutions to find the corresponding values of y:

[tex]y = \frac{6x \pm \sqrt{36x^2 - 60xy}}{6}[/tex]

Therefore, the local extrema of the function f (x, y) =3x2y y³−3x²−3y² 2  can be found by substituting the solutions for x and y into the original function and classifying them as either maximums or minimums depending on the sign of the function.

For more questions related to extrema

https://brainly.com/question/31322200

#SPJ1

Provide a minimal set of RISC-V instructions that may be used to implement nor X5, X6, x7, x8, x9---- -(3 credits) Ans:

Answers

By answering the presented question, we may conclude that  Other commands might be used to achieve the same outcome, but these are the most commonly used.

what is expression ?

In mathematics, you can multiply, divide, add, or subtract. An expression is constructed as follows: Number, expression, and mathematical operator A mathematical expression is made up of numbers, variables, and functions (such as addition, subtraction, multiplication or division etc.) It is possible to contrast expressions and phrases. An expression or algebraic expression is any mathematical statement that has variables, integers, and an arithmetic operation between them. For example, the phrase 4m + 5 has the terms 4m and 5, as well as the provided expression's variable m, all separated by the arithmetic sign +.

The following RISC-V instructions can be used to accomplish the NOR operation between registers X5 and X6 and store the result in register X7:

 OR   t0, x5, x6     // t0 = X5 | X6

 NOT  t0, t0         // t0 = ~(X5 | X6)

 ADDI x7, x0, 0      // zero out X7

 XOR  x7, t0, x7     // X7 = ~(X5 | X6)

The following RISC-V instructions can be used to accomplish the NOR operation between registers X8 and X9 and store the result in register X7:

 // X7 = ~(X8 | X9)

 OR   t0, x8, x9     // t0 = X8 | X9

 NOT  t0, t0         // t0 = ~(X8 | X9)

 ADDI x7, x0, 0      // zero out X7

 XOR  x7, t0, x7     // X7 = ~(X8 | X9)

The NOR result is calculated using bitwise OR and NOT operations, and the result is stored in the destination register using XOR. Before executing the XOR operation, the ADDI instruction is used to set the destination register to zero. Other commands might be used to achieve the same outcome, but these are the most commonly used.

To know more about expressions visit :-

https://brainly.com/question/14083225

#SPJ1

Enrollment in the PTA increased by 35% this year. Last year there were 160 members in the PTA. How many PTA members are involved this year?

Answers

There are 216 PTA members involved this year.

The problem states that the enrollment in the PTA (Parent-Teacher Association) increased by 35% this year. We need to calculate how many members are involved this year given that there were 160 members last year.

To calculate the increase in membership, we need to find 35% of 160. We can do this by multiplying 160 by 0.35, which gives us 56.

Now we need to add this increase to the number of members last year to find the total number of members involved this year.

160 + 56 = 216

Therefore, there are 216 PTA members involved this year.

To learn more about PTA members

https://brainly.com/question/28177557

#SPJ1

Find the area of the region between the graphs of y=20−x2 and y=−3x−20. a) Find the points of intersection. Give the x-coordinate(s). Use a comma to separate them as needed. x= b) Write the equation for the top curve. y= c) The area is Round 1 decimal place as needed.

Answers

The area between the curves is approximately 109.7 square units.

To find the points of intersection, we set the two equations equal to each other and solve for x:

[tex]20 - x^2 = -3x - 20[/tex]

Adding[tex]x^2[/tex] and 3x to both sides, we get:

[tex]20 + 20 = x^2 + 3x[/tex]

Simplifying further:

[tex]x^2 + 3x - 40 = 0[/tex]

This is a quadratic equation, which we can solve using the quadratic formula:

[tex]x = (-3\pm \sqrt{(3^2 - 4(1)(-40)))} / (2(1))[/tex]

x = (-3 ± √169) / 2

x = (-3 ± 13) / 2

So the solutions are:

x = 5 or x = -8

Therefore, the points of intersection are (5, -95) and (-8, 44).

To find the top curve, we need to determine which of the two functions has a greater y-value in the region of interest.

We can do this by evaluating each function at the x-values of the points of intersection:

[tex]y = 20 - x^2At x=5, y = 20 - 5^[/tex]2 = -5

[tex]At x=-8, y = 20 - (-8)^2 = -44[/tex]

y = -3x - 20

At x=5, y = -3(5) - 20 = -35

At x=-8, y = -3(-8) - 20 = 4

So the equation for the top curve is y = -3x - 20.

To find the area between the curves, we integrate the difference between the two curves with respect to x, over the interval where the top curve is given by y = -3x - 20:

[tex]A = \int (-8 to 5) [(-3x - 20) - (20 - x^2)] dx[/tex]

[tex]A = \int (-8 to 5) [-x^2 - 3x - 40] dx[/tex]

[tex]A = [-x^3/3 - (3/2)x^2 - 40x][/tex] from -8 to 5

A = [(125/3) - (75/2) - 200] - [(-512/3) + (192/2) + 320]

A = 333/3 - 4/3

A = 109.7 (rounded to 1 decimal place).

For similar question on area.

https://brainly.com/question/25292087

#SPJ11

determine whether the given function is linear. if the function is linear, express the function in the form f(x) = ax b. (if the function is not linear, enter not linear.) f(x) = 5 1 5 x

Answers

The given function is linear, and it can be expressed in form f(x) = ax + b, f(x) = 1x + 0, or simply f(x) = x.

To determine if the given function is linear, we need to check if it can be expressed in form f(x) = ax + b, where a and b are constants.

The given function is f(x) = (5/1)x.

Let's rewrite the function in the required form:

f(x) = (5/5)x

Since 5/5 = 1, we can simplify the function to:

f(x) = 1x + 0

Here, a = 1 and b = 0.

So, the given function is linear, and it can be expressed in form f(x) = ax + b, f(x) = 1x + 0, or simply f(x) = x.

In Mathematics, a linear function is defined as a function that has either one or two variables without exponents. It is a function that graphs to a straight line. In case, if the function contains more variables, then the variables should be constant, or it might be the known variables for the function to remain it in the same linear function condition.

Visit here to learn more about function:

brainly.com/question/12431044

#SPJ11

{xyz | x, z ∈ σ ∗ and y ∈ σ ∗ 1σ ∗ , where |x| = |z| ≥ |y|}

Answers

The expression {xyz | x, z ∈ σ ∗ and y ∈ σ ∗ 1σ ∗ , where |x| = |z| ≥ |y|} represents a set of strings that can be formed by concatenating three substrings: x, y, and z.

The strings in the set must satisfy the following conditions:

x and z are arbitrary strings over the alphabet σ (i.e., any set of symbols).y is a non-empty string over the alphabet σ, followed by a single symbol from the alphabet σ (i.e., any one symbol).The length of x and z must be the same (i.e., |x| = |z|), and must be greater than or equal to the length of y (i.e., |x| = |z| ≥ |y|).

Intuitively, this set represents all the strings that can be formed by taking a "core" string of length |y| and adding some arbitrary strings before and after it to create a longer string of the same length. The single symbol at the end of y is meant to separate y from the rest of the string and ensure that y is not empty.

For example, if σ = {0, 1}, then one possible string in the set is "0011100", where x = "00", y = "111", and z = "00". This string satisfies the conditions because |x| = |z| = 2, |y| = 3, and y ends in the symbol "1" from σ. Other strings in the set could be "0000110", "1010101", or "1111000", depending on the choice of x, y, and z.

To learn more about Sets, visit:

https://brainly.com/question/25005086

#SPJ11

\log_{ 6 }({ 3x }) + \log_{ 6 }({ x-1 }) = 3

What's the answer and how do you get it

Answers

The value of x is 9 and we get the answer by formula of sum of logarithm.

What is logarithm?

A logarithm is a mathematical function that helps to solve exponential equations. It is the inverse operation of exponentiation and is used to find the exponent to which a base must be raised to produce a given value. In other words, if [tex]y = {a}^{x} [/tex], then the logarithm of y with respect to base a is x, written as [tex]log_{a}(y) = x[/tex]

We can start by applying the logarithmic rule that says that the sum of logarithms with the same base is equal to the logarithm of the product of the arguments,

[tex] log_{6}(3x) + log_{6}((x - 1)) = log_{6}(3x(x - 1)) [/tex]

So we have the equation,

[tex]log_{6}(3 \times x(x - 1)) = 3[/tex]Using the definition of logarithms, we can rewrite this equation as,

6³= 3x(x - 1)

216 = 3x²- 3x

Simplifying further,

72 = x² - x

x² - x - 72 = 0

We can factor the left-hand side of this equation as (x - 9)(x + 8) = 0

Therefore, the possible values of x are 9 and -8. However, we must check whether these solutions are valid, as the logarithm function is only defined for positive arguments.

If x = 9, then both arguments of the logarithms are positive, so this is a valid solution.

If x = -8, then the first argument of the logarithm is negative, which is not allowed, so this is not a valid solution.

Therefore, the only solution of the equation is x = 9.

Learn more about Logarithm here,

https://brainly.com/question/30340014

#SPJ1

Assume that Wi's are independent normal with common variance σ^2. Find the distribution of W = Σ W/in.

Answers

The distribution of W = Σ W_i/n is a normal distribution with mean μ and variance σ²/n, where Wi's are independent normal random variables with a common variance σ².

When you sum up independent normal random variables (W_i's), the resulting distribution (W) will also be normal.

The mean (μ) of the resulting distribution is the sum of the means of the individual Wi's divided by n, and the variance is the sum of the variances of the individual Wi's divided by n². Since Wi's have a common variance σ², the variance of W is σ²/n. Therefore, W follows a normal distribution with mean μ and variance σ²/n.

To know more about normal distribution click on below link:

https://brainly.com/question/29509087#

#SPJ11

|x-(-12)| if x<-12
help

Answers

The requried absolute value function |x-(-12)| = |x+12| when x is less than -12.

If x is less than -12, then x-(-12) will result in a negative number. However, the absolute value of any number is always positive, so we can simplify |x-(-12)| by making the expression inside the absolute value bars positive.

Since x is less than -12, x-(-12) can be simplified as follows:

x - (-12) = x + 12

So, |x-(-12)| = |x+12| when x is less than -12.

Learn more about the absolute value function here;

https://brainly.com/question/10664936

#SPJ1

consider the following series. Sqrt n+4/n2 = 1 the series is equivalent to the sum of two p-series. find the value of p for each series. p1 = (smaller value) p2 = (larger value)

Answers

The given series is equivalent to the sum of two p-series: ∑n^(-1/2) + ∑n^(-2). Where the first series converges since p1 = 1/2 > 0 and the second series also converges since p2 = 2 > 1.

To start, we can simplify the given series as:

sqrt(n+4)/n^2 = 1

Taking the reciprocal of both sides:

n^2/sqrt(n+4) = 1

Multiplying both sides by sqrt(n+4):

n^2 = sqrt(n+4)

Squaring both sides:

n^4 = n+4

This is a quadratic equation that we can solve using the quadratic formula:

n = (-1 ± sqrt(17))/2

Since we are only interested in positive integer values of n, we take the larger root:

n = (-1 + sqrt(17))/2 ≈ 1.56

Now that we have found the value of n that satisfies the equation, we can rewrite the given series in terms of p-series:

sqrt(n+4)/n^2 = (n+4)^(1/2) / n^2
= (1 + 4/n)^(1/2) / n^2

Using the formula for the p-series:

∑n^-p = 1/1^p + 1/2^p + 1/3^p + ...

We can see that the given series is equivalent to:

(1 + 4/n)^(1/2) / n^2 = n^(-2) * (1 + 4/n)^(1/2)
= n^(-p1) + n^(-p2)

Where p1 is the smaller value and p2 is the larger value of p that make up the two p-series.

We can find p1 and p2 by comparing the exponents of n on both sides of the equation:

p1 = 1/2
p2 = 2

Therefore, the given series is equivalent to the sum of two p-series:

∑n^(-1/2) + ∑n^(-2)

Where the first series converges since p1 = 1/2 > 0 and the second series also converges since p2 = 2 > 1.

to learn more about converges click here:

https://brainly.com/question/30326862

#SPJ11

Find the equation of the line.
Use exact numbers.
y =

Answers

Answer:

The equation of the line is y=2x+4

Step-by-step explanation:

The equation of the line is expressed in slope-intercept form.
y=mx+b
m is slope
b is y-intercept

The slope of the equation is 2 since the line rises 2 and over 1, defined as 2/1 or 2.

The Y-Intercept is 4 since that's the only point where the line crosses the y-axis.


If we plug these two numbers into the formula:

The equation of the line is y=2x+4

Answer: y=2x+4

Step-by-step explanation:

Our y-intercept is 4 since we see x=0 when (4,0)

To find our slope, we can choose two points on the graph and do rise/run.

Two points chosen: (1,6) and (2,8)

[tex]\frac{8-6}{2-1} \\= 2[/tex]

7) Winston needs at least 80 signatures from students in his school before he can run for class president. He has 23 signatures already. He and two of his friends plan to get the remaining signatures during lunch. If each person gets the same number of signatures, which inequality can Winston use to determine the minimum number of signatures each person should get so he can run for class president? A 3x+80223 B 3x+80 ≤23 C 3x+23280 D 3x+2380​

Answers

If each person gets the same number of signatures, 3x+23 > 80 is the inequality can Winston use to determine the minimum number of signatures each person should get so he can run for class president.

Winston needs at least 80 number of signatures from students in his school before he can run for class president. He has 23 signatures already. He and two of his friends plan to get the remaining signatures during lunch

Winston needs at least 80 signatures. Let y be the number of signatures Winston manages to obtain. Then y > 80

He and 2 of his friends obtain  number of signatures.

Then y = 3x + 23

Or, the required inequality is 3x + 23 > 80.

Correct option is (C).

Therefore, If each person gets the same number of signatures, 3x+23 > 80 is the inequality can Winston use to determine the minimum number of signatures each person should get so he can run for class president.

To know more about number check the below link:

https://brainly.com/question/30659330

#SPJ9

Identify the property described by the given mathematical statement: [(–4) + 7] + 11 = (–4) + (7 + 11).​

Answers

The property described by that mathematical statement is:

The associativity of addition.

The operations on the left side of the equals sign are done in the order they appear, from left to right.

The operations on the right side are done using the associative property, first doing the operations inside the parentheses, then adding the remaining terms.

And the statement shows that for addition, the order of operations does not matter as long as you associate in the proper way using parentheses.

The property described by the given mathematical statement is the associative property of addition.

find the inflection points of f(x)=4x4 22x3−18x2 15. (give your answers as a comma separated list, e.g., 3,-2.) inflection points

Answers

f''(2.503) is positive and f''(-0.378) is negative, the function changes concavity at x = 2.503 and x = -0.378. Therefore, these are the inflection points of the function.

Answer: 2.503,-0.378.

What is function?

In mathematics, a function is a relationship between two sets of elements, called the domain and the range, such that each element in the domain is associated with a unique element in the range.

To find the inflection points of a function, we need to find the points at which the function changes concavity, which occurs where the second derivative of the function changes sign.

First, we need to find the second derivative of the given function f(x):

f(x) = [tex]4x^{4}[/tex] - 22x³ - 18x² + 15

f'(x) = 16x³ - 66x² - 36x

f''(x) = 48x² - 132x - 36

Now we set the second derivative f''(x) equal to zero and solve for x to find the critical points:

48x² - 132x - 36 = 0

Dividing both sides by 12, we get:

4x² - 11x - 3 = 0

Solving for x using the quadratic formula, we get:

x = (-(-11) ± sqrt((-11)² - 4(4)(-3))) / (2(4))

x = (11 ± sqrt(265)) / 8

x ≈ 2.503 or x ≈ -0.378

These are the critical points of the function f(x).

Now we need to check the concavity of the function at these points to see if they are inflection points. We can do this by evaluating the second derivative f''(x) at each critical point:

f''(2.503) ≈ 237.878

f''(-0.378) ≈ -82.878

Since f''(2.503) is positive and f''(-0.378) is negative, the function changes concavity at x = 2.503 and x = -0.378. Therefore, these are the inflection points of the function.

Answer: 2.503,-0.378.

To learn more about functions from the given link:

https://brainly.com/question/12431044

#SPJ1

. Derive the open-loop transfer function of the cascaded system build of the two individuallycontrolled converters. (20p)Converter. Vin. Vout L C. H. GM1 RBuck 1. 48 V. 12 V. 293 μΗ. 47 μF. 1. 1. _Buck 2. 12 V. 5 V. 184 pH. 15 µF. 1. 1. 3

Answers

The transfer function of Buck 1 converter is:

[tex]H1(s) = Vout1(s) / Vin1(s) = D / (1 - D) / (s + (R1 * (1 - D)) / (L1 * (1 - D) * C1))[/tex]

The transfer function of Buck 2 converter is:

[tex]H2(s) = Vout2(s) / Vin2(s) = D / (1 - D) / (s + (R2 * (1 - D)) / (L2 * (1 - D) * C2))[/tex]

How to derive the open-loop transfer function of the cascaded system?

To derive the open-loop transfer function of the cascaded system, we can find the transfer function of each converter separately and then multiply them.

For Buck 1 converter:

The output voltage Vout1 can be expressed as:

[tex]Vout1 = D * Vin1 / (1 - D) * (1 - exp(-t / (L1 * R1 * (1 - D) * C1)))[/tex]

where D is the duty cycle, Vin1 is the input voltage, L1 and C1 are the inductance and capacitance of the converter, R1 is the resistance of the load, and t is the time.

Taking the Laplace transform of the equation above, we get:

[tex]Vout1(s) = (D * Vin1 / (1 - D)) / (s + (R1 * (1 - D)) / (L1 * (1 - D) * C1))[/tex]

The transfer function of Buck 1 converter is:

[tex]H1(s) = Vout1(s) / Vin1(s) = D / (1 - D) / (s + (R1 * (1 - D)) / (L1 * (1 - D) * C1))[/tex]

For Buck 2 converter:

The output voltage Vout2 can be expressed as:

[tex]Vout2 = D * Vin2 / (1 - D) * (1 - exp(-t / (L2 * R2 * (1 - D) * C2)))[/tex]

where D is the duty cycle, Vin2 is the input voltage, L2 and C2 are the inductance and capacitance of the converter, R2 is the resistance of the load, and t is the time.

Taking the Laplace transform of the equation above, we get:

[tex]Vout2(s) = (D * Vin2 / (1 - D)) / (s + (R2 * (1 - D)) / (L2 * (1 - D) * C2))[/tex]

The transfer function of Buck 2 converter is:

[tex]H2(s) = Vout2(s) / Vin2(s) = D / (1 - D) / (s + (R2 * (1 - D)) / (L2 * (1 - D) * C2))[/tex]

The open-loop transfer function of the cascaded system is the product of the transfer functions of the two converters:

[tex]H(s) = H1(s) * H2(s) = D^2 / (1 - D)^2 / [(s + (R1 * (1 - D)) / (L1 * (1 - D) * C1)) * (s + (R2 * (1 - D)) / (L2 * (1 - D) * C2))][/tex]

Learn more about open-loop transfer function

brainly.com/question/31300185

#SPJ11

a cardboard box without a lid is to have a volume of 23,328 cm3. find the dimensions that minimize the amount of cardboard used. (let x, y, and z be the dimensions of the cardboard box.) (x, y, z) =

Answers

The dimensions (x, y, z) that minimize the amount of cardboard used for a box with a volume of 23,328 cm³ are (28, 28, 30).

1. Given the volume, V = x*y*z = 23,328 cm³.


2. The surface area, which represents the amount of cardboard used, is S = x*y + x*z + y*z.


3. To minimize S, we need to use calculus. First, express z in terms of x and y using the volume equation: z = 23,328 / (x*y).


4. Substitute z into the surface area equation: S = x*y + x*(23,328 / (x*y)) + y*(23,328 / (x*y)).


5. Now find the partial derivatives dS/dx and dS/dy, and set them equal to zero.


6. Solve the system of equations to get x = 28 and y = 28.


7. Plug x and y back into the equation for z: z = 23,328 / (28 * 28) = 30.


So the dimensions that minimize the amount of cardboard used are (28, 28, 30).

To know more about partial derivatives click on below link:

https://brainly.com/question/31397807#

#SPJ11

Sharifah arranges Mathematics, Science and History reference books on a bookshelf. Given the total number of
reference books is 3 times the number of Science reference books. The number of Science reference books is 6 less
than the Mathematics reference books. Express the number of History reference books in the form of an algebraic
expression.

Answers

Step-by-step explanation:

m = number of math books

s = number of science books

h = number of history books

m + h + s = 3s

m + h = 2s

s = m - 6

m + h = 2(m - 6) = 2m - 12

h = m - 12

and since s = m - 6, this also means

h = s - 6

that means, the number of History reference books is 12 less than the Mathematics reference books. which is then 6 less than the number of Science reference books.

If I ran Levene's test in SPSS and I received a 0.477 that means...
a. That the differences are too big and the study must be redone.
b. Reject the H0.
c. Homogeneity can be assumed.

Answers

If I ran Levene's test in SPSS and I received a 0.477 that means Homogeneity can be assumed. So, correct option is C.

Levene's test is a statistical test used to determine whether or not the variances of two or more groups are equal. The null hypothesis (H0) for Levene's test is that the variances are equal across all groups.

When running Levene's test in SPSS, the output will include a p-value. This p-value represents the probability of obtaining a test statistic as extreme or more extreme than the one observed, assuming that the null hypothesis is true.

In this case, a Levene's test result of 0.477 suggests that the p-value is greater than 0.05. This means that there is not enough evidence to reject the null hypothesis. Therefore, the assumption of homogeneity of variances can be made, and it is appropriate to use tests such as ANOVA or t-tests that assume equal variances.

A Levene's test result of 0.477 indicates that homogeneity of variances can be assumed, and there is no need to redo the study or reject the null hypothesis.

In conclusion, option c is the correct answer.

To learn more about Levene's test click on,

https://brainly.com/question/31423249

#SPJ4

Find the area of the parallelogram with verticesA(-5, 3), B(-3, 6), C(1, 4), and D(-1, 1).

Answers

To find the area of a parallelogram, we need to multiply the length of one of its sides by its corresponding height. In this case, we can take AB or BC as the base and draw a perpendicular line from D to AB or BC as the height. Let's choose AB as the base.

The length of AB is sqrt((6-3)² + (-3--5)²) = sqrt(10), and the corresponding height is the distance from D to AB, which can be found by taking the absolute value of the cross product of the vectors AB and AD, divided by the length of AB. This gives us (1/2)|(-2)(-2) - (3)(1)|/√10) = 1/√(10). Therefore, the area of the parallelogram is sqrt(10)*1/sqrt(10) = 1. So, the area of the parallelogram with vertices A(-5, 3), B(-3, 6), C(1, 4), and D(-1, 1) is 1 square unit.

For more information on parallelogram see:

https://brainly.com/question/29147156

#SPJ11

Which of the following ratios is a rate? What is the difference between these ratios?
260 miles/8 gallons
260 miles/8 miles

Answers

Of the two ratios, the ratio that is a rate is 260 miles/8 gallons

Which of the ratios is a rate?

From the question, we have the following parameters that can be used in our computation:

260 miles/8 gallons

260 miles/8 miles

As a general rule

Rates are used to compare quantities of different measurements

In 260 miles/8 gallons, the measurements are miles and gallonsIn 260 miles/8 miles, the only measurement is miles

Hence, the ratios that is a rate is 260 miles/8 gallons

Read more about rates at

https://brainly.com/question/26059245

#SPJ1

Cual es el dominio y el rango de h(x)=16x-4

Answers

The domain and range of the function h(x) = 16x - 4 are both all real numbers.

To find the domain and range, we need to examine the function and determine the possible values for x (domain) and

the corresponding output values for h(x) (range).

Domain: Since the function h(x) = 16x - 4 is a linear function, there are no restrictions on the input values for x.

Therefore, the domain includes all real numbers.

Domain: (-∞, +∞)

Range: Similarly, as a linear function, the output values for h(x) can take any real number as well.

Therefore, the range is also all real numbers.

Range: (-∞, +∞)

In conclusion, the domain and range of the function h(x) = 16x - 4 are both all real numbers.

for such more question on domain and range

https://brainly.com/question/26098895

#SPJ11

can yall pls help me with this this is due tomorrow

Answers

To find the least number of hot dogs and buns Aldo could have bought, we need to find the least common multiple (LCM) of 10 and 12.

Multiples of 10: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, ...

Multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, ...

The LCM is the smallest number that appears in both lists, which is 60. Therefore, Aldo could have bought 60 hot dogs and 60/12 = 5 packs of buns (since each pack has 12 buns), or 5*12 = 60 buns.

Answer: Aldo could have bought 60 hot dogs and 60 buns.

Determine the solution for 0.4(3y + 18) = 1.2y + 7.2.

Answers

Answer:

  y ∈ ℝ

Step-by-step explanation:

You want the solution to the equation 0.4(3y + 18) = 1.2y + 7.2.

Simplify

The parentheses can be removed by making use of the distributive property.

  0.4(3y + 18) = 1.2y + 7.2 . . . . . . given

  0.4(3y) +0.4(18) = 1.2y +7.2

  1.2y +7.2 = 1.2y +7.2 . . . . . . . . . true for any value of y

The set of solutions for y is all real numbers.

__

Additional comment

Actually, the solution set is "all complex numbers" as well as any other entities for which multiplication and addition with scalars are defined. For example, y could be a matrix of complex numbers, and the equation would still be true.

Tutorial Exercise Find the center of mass of the point masses lying on the x-axis. m1 = 9, m2 = 3, m3 = 7 X1 = -5, X2 = 0, X3 = 4 Step 1 Let m; be the mass of the ith element and x; be the position of the ith element. Recall that the center of mass is given by mi xxi x i = 1 n mi i = 1 and n mi x Yi CM = 1 mi IM i = 1 Since all the point masses lie on the x-axis, we know that y = -0.89 X. Submit Skip (you cannot come back) Find Mx, My, and (x,y) for the laminas of uniform density p bounded by the graphs of the equations. y = x, y = 0, x = 4 Mx = = My (x, y) = Need Help? Read It Watch It Talk to a Tutor

Answers

The center of mass of the point masses lying on the x-axis is at x = -0.89.

To find the center of mass of the point masses lying on the x-axis, we'll use the given masses (m1, m2, m3) and positions (X1, X2, X3). The center of mass equation for the x-axis is,

X_cm = (m1 * X1 + m2 * X2 + m3 * X3) / (m1 + m2 + m3)

Plug in the values for the masses and positions:
m1 = 9, m2 = 3, m3 = 7
X1 = -5, X2 = 0, X3 = 4

Calculate the numerator (m1 * X1 + m2 * X2 + m3 * X3):
(9 * -5) + (3 * 0) + (7 * 4) = -45 + 0 + 28 = -17

Calculate the denominator (m1 + m2 + m3):
9 + 3 + 7 = 19

Divide the numerator by the denominator to find the center of mass:
X_cm = -17 / 19 ≈ -0.89

So, the center of mass of the point masses lying on the x-axis is at x = -0.89.

Learn more about "center of mass": https://brainly.com/question/28021242

#SPJ11

Let f be the function given by f(x) = (x2 - 2x - 1)e". (a) Find lim f(x) and lim (x). lim fx=(18-21 li)=2" = 0 (b) Find the intervals on which is increasing Show the analysis that leads to your answer. (c) Find the intervals on which the graph off is concave downward. Show the analysis that leads to your answer. d) Sketch the graph off.

Answers

(a) negative infinity also approaches 0 because e^x becomes very large as x becomes very negative, (b)  f(x) is increasing on the interval (1, infinity) and decreasing on the interval (-infinity, 1), (c)  f(x) is concave downward on the interval (-infinity, 2) and concave upward on the interval (2, infinity) and (d) the graph approaches the x-axis as x approaches infinity and negative infinity.

(a) To find lim f(x) as x approaches infinity, we need to determine the growth rate of the term e^(-x). As x becomes very large, e^(-x) approaches 0 faster than any polynomial, so the exponential term dominates and the limit of f(x) approaches 0. Similarly, lim f(x) as x approaches negative infinity also approaches 0 because e^x becomes very large as x becomes very negative.(b) To find the intervals on which f(x) is increasing, we need to find the first derivative of f(x) and examine its sign.f'(x) = (2x-2)e^(-x), so f'(x) is positive for x > 1 and negative for x < 1. Therefore, f(x) is increasing on the interval (1, infinity) and decreasing on the interval (-infinity, 1).(c) To find the intervals on which the graph of f(x) is concave downward, we need to find the second derivative of f(x) and examine its sign.f''(x) = (4-2x)e^(-x), so f''(x) is negative for x < 2 and positive for x > 2. Therefore, f(x) is concave downward on the interval (-infinity, 2) and concave upward on the interval (2, infinity).(d) The graph of f(x) is shown below. It has a local maximum at x=1 and a point of inflection at x=2. The graph approaches the x-axis as x approaches infinity and negative infinity.

For more such question on graph

https://brainly.com/question/26865

#SPJ11

It can be shown that x² + 16x +44 = (x+8)² - 20
Use this to solve the equation x² + 16x +44 = 0
Give your solutions in surd form as simply as possible.
X=
x=

Answers

We have two solutions for x:

x = -8 + 2√5

x = -8 - 2√5

How to solve

To solve the equation [tex]x^2 + 16x + 44 = 0[/tex], we can use the given information that [tex]x^2 + 16x + 44 = (x+8)^2 - 20[/tex]. We rewrite the equation as:

(x+8)² - 20 = 0

Now, we need to solve for x:

(x+8)² = 20

Take the square root of both sides:

x + 8 = ±√20

Now, we can simplify √20:

√20 = √(4 * 5) = 2√5

Subtract 8 from both sides to solve for x:

x = -8 ± 2√5

So, we have two solutions for x:

x = -8 + 2√5

x = -8 - 2√5

Read more about equations here:

https://brainly.com/question/22688504

#SPJ1

11.5 in 16 in find the surface area​

Answers

The calculated value of the surface area​ is 184 sq inches

Finding the surface area​

From the question, we have the following parameters that can be used in our computation:

11.5 in by 16 in

The surface area​ of the shape is then calculated as

Area = product of dimensions

In other words

Area = Length * Width

Substitute the known values in the above equation, so, we have the following representation

Area = 11.5 * 16

Evaluate

Area = 184 sq inches

Hence, the surface area​ is 184 sq inches

Read more about surface area at

https://brainly.com/question/26403859

#SPJ1

How many milliliters of a sample would you need if you needed 9 million yeast cells to make bread? (You have a yeast concentration of 3 million yeast cells/ml). O 3 O 3 million yeast cells/ml O 3ml O 3 million

Answers

We would need 3 milliliters of the sample to have 9 million yeast cells for making bread.

To find out how many milliliters of a sample you would need to obtain 9 million yeast cells, given a yeast concentration of 3 million yeast cells/ml, you can follow these steps,

1. Determine the number of yeast cells needed: 9 million yeast cells.
2. Identify the yeast concentration: 3 million yeast cells/ml.
3. Divide the total number of yeast cells needed by the yeast concentration to find the required sample volume.

In this case,

(9 million yeast cells) / (3 million yeast cells/ml) = 3 ml

So, you would need 3 milliliters of the sample to have 9 million yeast cells for making bread.

Learn more about "sample": https://brainly.com/question/24466382

#SPJ11

We would need 3 milliliters of the sample to have 9 million yeast cells for making bread.

To find out how many milliliters of a sample you would need to obtain 9 million yeast cells, given a yeast concentration of 3 million yeast cells/ml, you can follow these steps,

1. Determine the number of yeast cells needed: 9 million yeast cells.
2. Identify the yeast concentration: 3 million yeast cells/ml.
3. Divide the total number of yeast cells needed by the yeast concentration to find the required sample volume.

In this case,

(9 million yeast cells) / (3 million yeast cells/ml) = 3 ml

So, you would need 3 milliliters of the sample to have 9 million yeast cells for making bread.

Learn more about "sample": https://brainly.com/question/24466382

#SPJ11

Other Questions
under the doctrine of respondeat superior, an attorney is not liable for the unethical or negligent conduct of his or her paralegal.True or False why water essential for the plant? Read the excerpt and answer the question.The third night the house was crammed again-and they warn't new-comers this time, but people that was atthe show the other two nights. I stood by the duke at the door, and I see that every man that went in had hispockets bulging, or something muffled up under his coat-and I see it warn't no perfumery, neither, not by along sight. I smelt sickly eggs by the barrel, and rotten cabbages, and such things; and if I know the signs of adead cat being around, and I bet I do, there was sixty-four of them went in.What can be inferred from the behavior of the audience on the third night of the duke and king's production? A competitive producer has a production function given by q= f(k,l) = 8k3/471/4, where k denotes the quantity of capital, and I denotes labor hours. The factor prices are y, and w. Write down the producer's cost minimization problem and find the con- tingent factor demands and cost function. What is more water soluble, N-butyl or tbutyl alcohol and why Find the shortest distance, d, from the point (3, 0, 2) to the plane x + y + z = 2. given: = {a}. what is the minimum pumping length for each of the following languages: {}, {a}, {a, aaaa, aa}, , and { This company has five (5) different departments (Marketing, Admin, Finance, Security, and HR) in Melbourne. The company wants to expand its branch office to Sydney with the same office setup as in Melbourne. Its Melbourne office sits on approximately four acres of land and serves over 100 staff and 20 guest users. The office consists of two buildings. One building is used for Marketing, admin and finance and other building has Security and HR. Each building has two floors with each department on each floor. Client is also requesting wireless internet access at all buildings. How to build this network topology in cisco packet tracer? Need exactly how to make it. A small grocery store has a single checkout line. On Saturdays, customers arrive at the checkout on an average of one every 8 minutes. The cashier takes an average of 6 minutes to process a single customer. We assume that the service time is randomly distributed, and the customers arrive randomly. The store's owner believes that the amount of time that a customer has to wait hurts his business; he estimates that waiting time costs him S20 per hour in lost business. In order to speed up service, the owner is considering hiring a teenager to bag the groceries at $6 per hour. With the addition of the bagger, the cashier will be able to process a customer in an average of 4.5 minutes. Should the bagger be hired? Problem 6-33 Consider a system having four components with reliabilities through time t of: (1) 0.80 (2) 0.66(3) 0.78 (4) 0.89 Sean has just been promoted to shift manager at the store where he works. What is the FIRST thing he should do when he is trying to resolve a conflict between two employees that he supervises? A. give constructive criticism to the employee who is in the wrong B. find out what the conflict is about so he understands whats going on C. think about what to say to each employee D. have both employees write down the solution to the conflict How much are ice levels decreasing in the Arctic? which of the following functions has an amplitude of 3 and a phase shift of /2? a) f(x) = -3 cos(2x - ) + 4. b) g(x) = 3cos(2x + ) -1. c) h(x) = 3 cos (2x - /2) + 3. d) j(x) = -2cos(2x + /2) + 3 True or False. The primary purpose of all warehouses is to store products. i need help pleaseee!!! Why the vet was not hopeful about the white dolphin(the white dolphin by gill Lewis) 1/10 8Could someone help me with this A school is arranging a field trip to the zoo. The school spends 656.26 dollars on passes for 36 students and 2 teachers. The school also spends 348.48 dollars on lunch for just the students. How much money was spent on a pass and lunch for each student? Which one of the following compounds utilizes both ionic and covalent bonding?A) Na2SO4 B) AlCl3 C) PO4-D) NH4E) CaO In the coordinate plane, the point A(-2,4) is translated to the point A(-4,3). Under the same translation, the points B(-4,8) and C(-6,2) are translated to B and C, respectively. What are the coordinates of B and C?