Things to be done before isolation

Answers

Answer 1
As in a lockdown? Or quarantine? Gets lots of canned food, toilet paper, water and clothing for the future.

Related Questions

An air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 5.25 kW. Determine (a) the COP of this air conditioner and (b) the rate of heat transfer to the outside air.Answers:(a) 2.38, (b) 1065 kJ/min

Answers

Answer:

a) the COP of this air conditioner is 2.38

b) the rate of heat transfer to the outside air is 1065 kJ/min

Explanation:

Given the data in the question;

[ Outdoor ] ←  Q[tex]_H[/tex] [ W[tex]_{net, in[/tex] ] Q[tex]_L[/tex] ← [ House ]

Rate of heat removed from the house; Q[tex]_L[/tex]  = 750 kJ/min = ( 750 kJ/min × ( 1 kW / 60 kJ/min ) ) = 12.5 kW

Net-work input; W[tex]_{net, in[/tex] = 5.25 kW

a) The coefficient of performance of the air conditioner; COP.

COP = Q[tex]_L[/tex] / W[tex]_{net, in[/tex]

we substitute

COP = 12.5 kW / 5.25 kW

COP = 2.38

Therefore, the COP of this air conditioner is 2.38

b) the rate of heat transfer to the outside air.

Q[tex]_H[/tex] = Q[tex]_L[/tex] + W[tex]_{net[/tex]

we substitute

Q[tex]_H[/tex] = 12.5 kW + 5.25 kW

Q[tex]_H[/tex] = 17.75 kW

Q[tex]_H[/tex] = ( 17.75 × 60 ) kJ/min

Q[tex]_H[/tex] = 1065 kJ/min

Therefore, the rate of heat transfer to the outside air is 1065 kJ/min

Even though the content of many alcohol blends doesn’t affect engine drive ability using gasoline with alcohol in warm weather may cause

Answers

Even though the content of many alcohol blends doesn't affect engine driveability, using gasoline with alcohol in warm weather may cause: decrease in fuel economy.

Mark brainliest
s

A ceramic specimen with an elastic modulus of 300 GPa is under a tensile stress of 800 MPa. Will it fracture if its most severe flaw is an internal crack of 0.30 mm long with a tip radius of curvature in the amount of 0.0015 mm? Please justify your conclusion. (Hint: Compare the largest stress in the specimen around the crack to the theoretical strength which is roughly E/10).

Answers

Answer:

16Gpa < 30 Gpa

there would be no fracture

Explanation:

fracture can occur if the maximum strength at the top of the biggest flaw is more than the theoretical fracture

to get the theoretical strength =

e/10 = 300/10

= 30 Gpa

we get the magnitude at the buggest flaw

= 2σ√a/ρt

σ = 800

ρτ = 0.0015

a= 0.3/2

[tex]=2*800\sqrt{\frac{\frac{0.3}{2} }{0.0015} }[/tex]

= [tex]=2*800*\sqrt{100} \\=2*800*10\\=16000MPa[/tex]

= 16Gpa < 30 Gpa

the fracture is not going to happen given that the maximum strenght is smaller than the theoretical fracture strength.

Can some people answer these questions so i can get to know the age group i an making my target market for DT-GSCE thankyou if you do my deadline is tomorrow :D

Answers

Answer:

I think you might have forgotten to post the problems

A cylindrical space capsule lands in the ocean. This capsule is 2.44 m long, 1.10 m in diameter, and weighted at one end so that it floats with its long central axis vertical and 0.820 m of its length above the water surface. The mass density of sea water is 1025 kg/m3.What is the magnitude of the buoyant force exerted on the capsule?

Answers

Answer:

The correct answer is "15456.8 N".

Explanation:

According to the question,

The inside volume will be:

= [tex]3.14\times (\frac{1.1}{2} )^2\times (2.44-0.82)[/tex]

= [tex]3.14\times \frac{1.21}{4}\times 1.62[/tex]

= [tex]3.14\times 03025\times 1.62[/tex]

= [tex]1.538757 \ m^3[/tex]

hence,

The buoyant force will be:

= [tex]V\times Pw\times g[/tex]

= [tex]1.538757\times 1025\times 9.8[/tex]

= [tex]15456.8 \ N[/tex]

Propane is to be compressed from 0.4 MPa and 360 K to 4 MPa using a two-stage compressor. An interstage cooler returns the temperature of the propane to 360 K before it enters the second compressor. The intermediate pressure is 1.2 MPa. Both adiabatic compressors have a compressor efficiency of 80%.(a) What is the work required in the first compressor per kg of propane?(b) What is the temperature at the exit of the first compressor?(c) What is the cooling requirement in the interstage cooler per kg of propane?

Answers

Answer:

a. 81 kj/kg

b. 420.625K

c.  101.24kj/kg

Explanation:

[tex]\frac{t2}{t1} =[\frac{p2}{p1} ]^{\frac{y-1}{y} }[/tex]

t1 = 360

p1 = 0.4mpa

p2 = 1.20

y = 1.13

substitute these values into the equation

[tex]\frac{t2}{360} =[\frac{1.20}{0.4} ]^{\frac{1.13-1}{1.13} }[/tex]

[tex]\frac{t2}{360} =[\frac{1.2}{0.4} ]^{0.1150}\\\frac{t2}{360} =1.1347[/tex]

when we cross multiply

t2 = 360 * 1.1347

= 408.5

a. the work required in the firs compressor

w=c(t2-t1)

c=1.67x10³

t1 = 360

t2 = 408.5

w = 1670(408.5-360)

= 1670*48.5

= 80995 J

= 81KJ/kg

b. [tex]n=\frac{t2-t1}{t'2-t1}[/tex]

n = 80%

t2 = 408.5

t1 = 360

0.80 = 408.5-360 ÷ t'2-360

[tex]0.80 =\frac{48.5}{t'2-360}[/tex]

cross multiply to get the value of t'2

0.80(t'2-360) = 48.5

0.80t'2 - 288 = 48.5

0.8t'2 = 48.5+288

0.8t'2 = 336.5

t'2 = 336.5/0.8

= 420.625

this is the temperature at the exit of the first compressor

c. cooling requirement

w = c(t2-t1)

= 1.67x10³(420.625-360)

= 1670*60.625

= 101243.75

= 101.24kj/kg

Safety Issues for Operators of Oil and Gas Exploiting Equipment when working off rigs

Answers

Answer:

Safety First, Safety Always. Safety stands out as a core value for the oil and natural gas industry, embedded in every process and decision for operations. The oil and natural gas industry and the federal government are working together to continuously improve the safety of offshore operations. ...

A 2.0-in-thick slab is 10.0 in wide and 12.0 ft long. Thickness is to be reduced in three steps in a hot rolling operation. Each step will reduce the slab to 75% of its previous thickness. It is expected that for this metal and reduction, the slab will widen by 3% in each step. If the entry speed of the slab in the first step is 40 ft/min, and roll speed is the same for the three steps, determine: (a) length and (b) exit velocity of the slab after the final reduction

Answers

Answer:

26.02 ft

86.7690 ft/min

Explanation:

After 3 steps

0.75³(2.0 thickness)

T = 0.84375

W = (1+0.03)³10

= 10.92727 inches

A To get length

2.0 x 10 x 12 x12 = 0.84375 x 10.92727x lf

= 2880 = 9.21988Lf

Lf = 2880/9.21988

= 312.368 inches

Convert to feet

322.368 x 0.0833

= 26.02 ft

B.

= 2 x 10 x 40 = 0.84375 x 10.92727 x vf

800 = 9.21988vf

Vf = 800/9.21988

Vf = 86.7690 ft/min

Why does the ceramic made from Thorium and Oxygen have the chemical ratio of 2 oxygen atoms to every thorium atom (ThO2)

Answers

Gf so 467 gah can-go FTC 346

An intelligence signal is amplified by a 65% efficient amplifier before being combined with a 250W carrier to generate an AM signal. If it is desired to operate at 50% modulation, what must be the dc input power to the final intelligence signal amplifier

Answers

Answer:

"192.3 watt" is the right answer.

Explanation:

Given:

Efficient amplifier,

= 65%

or,

= 0.65

Power,

[tex]P_c=250 \ watt[/tex]

As we know,

⇒ [tex]P_t=P_c(1+\frac{\mu^2}{2} )[/tex]

By putting the values, we get

        [tex]=P_c(1+\frac{1}{2} )[/tex]

        [tex]=1.5 \ P_c[/tex]

Now,

⇒ [tex]P_i=(P_t-P_c)[/tex]

        [tex]=1.5 \ P_c-P_c[/tex]

        [tex]=\frac{P_c}{2}[/tex]

DC input (0.65) will be equal to "[tex](\frac{P_c}{2} )[/tex]".

hence,

The DC input power will be:

= [tex]\frac{250}{2}\times \frac{1}{0.65}[/tex]

= [tex]\frac{125}{0.65}[/tex]

= [tex]192.3 \ watt[/tex]

A brittle material is subjected to a tensile stress of 1.65 MPa. If the specific surface energy and modulus of elasticity for this material are 0.60 J/m2 and 2.0 GPa, respectively. What is the maximum length of a surface flaw that is possible without fracture

Answers

Answer:

The maximum length of a surface flaw that is possible without fracture is

[tex]2.806 \times 10^{-4} m[/tex]

Explanation:

The given values are,

σ=1.65 MPa

γs=0.60 J/m2

E= 2.0 GPa

The maximum possible length is calculated as:

[tex]\begin{gathered}a=\frac{2 E \gamma_{s}}{\pi \sigma^{2}}=\frac{(2)\left(2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)(0.60 \mathrm{~N} / \mathrm{m})}{\pi\left(1.65\times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)^{2}} \\=2.806 \times 10^{-4} \mathrm{~m}\end{gathered}[/tex]

The maximum length of a surface flaw that is possible without fracture is

[tex]2.806 \times 10^{-4} m[/tex]

The purpose of the international residential code is to

Answers

Answer:

The International Building Code (IBC) is a model code that provides minimum requirements to safeguard the public health, safety and general welfare of the occupants of new and existing buildings and structures.

Explanation:

Okay bro let’s go man yes yes

Answers

Answer:do me ti

Why not me

Why not me

do me ti

Why not me

Why not me

Do me ti

Why not me

Why not me

Explanation:

mitski

Other than applying a strain to the gauge, what is the primary external/environmental factor that will influence the readings of a strain gauge?

Answers

Answer:

Temperature of the environment

Explanation:

Aside the strain applied to the strain gauge there are several other factors that might affect the reading of the strain gauge, and they are either external or internal factors like ; resistivity, length, and material of the strain gauge.

But the primary external factor is the Temperature of the environment when reading is taken

The net potential energy between two adjacent ions, EN, may be represented by Where A, B, and n are constants whose values depend on the particular ionic system. Calculate the bonding energy E0 in terms of the parameters A, B, and n using the following procedure:

a. Differentiate EN with respect to r, and then set the resulting expression equal to zero, since the curve of EN versus r is a minimum at Eo.
b. Solve for r in terms of A, B, and n, which yields r0, the equilibrium interionic spacing.
c. Determine the expression for E0 by substitution of r0 into the above equation for EN.

Answers

The answer is going to be option c. Substitution of r0 into the above equation for EN

An engineer is applying dimensional analysis to study the flow of air through this horizontal sudden contraction for the purpose of characterizing the pressure drop. The flow is being modeled as constant density and steady. What is the functional relationship of the variables that characterize this situation

Answers

Answer:

The answer is " [tex]\Delta p = f(V1, p, V2, d, D, L)[/tex]"

Explanation:

Please find the complete question in the attached file.

Its change in temperature in pipes depends on rate heads and loss in pipes owing to pipe flow, contractual loss, etc.

The temperature change thus relies on V1 v2 p d D L.

Type the correct answer in each box. Spell all words correctly. According to the priority matrix, which tasks should an entrepreneur complete first? According to the priority matrix, entrepreneurs should first complete tasks that are blank and important.

Answers

Answer:

Development of creative and develop ideas

Explanation:

First task as an entrepreneur is to be creative and develop ideas. The person must design the product based on which he will develop the business strategy.

The remaining activities such as marketing, fund raising, recruitment etc. comes at a later stage.

Water flows through a converging pipe at a mass flow rate of 25 kg/s. If the inside diameter of the pipes sections are 7.0 cm and 5.0 cm, find the volume flow rate and the average velocity in each pipe section.

Answers

Answer:

volumetric flow rate = [tex]0.0251 m^3/s[/tex]

Velocity in pipe section 1 = [tex]6.513m/s[/tex]

velocity in pipe section 2 = 12.79 m/s

Explanation:

We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.

The density of water is = 997 kg/m³

density = mass/ volume

since we are given the mass, therefore, the  volume will be mass/density

25/997 = [tex]0.0251 m^3/s[/tex]

volumetric flow rate = [tex]0.0251 m^3/s[/tex]

Average velocity calculations:

Pipe section A:

cross-sectional area =

[tex]\pi \times d^2\\=\pi \times 0.07^2 = 3.85\times10^{-3}m^2[/tex]

mass flow rate = density X cross-sectional area X velocity

velocity = mass flow rate /(density X cross-sectional area)

[tex]velocity = 25/(997 \times 3.85\times10^{-3}) = 6.513m/s[/tex]

Pipe section B:

cross-sectional area =

[tex]\pi \times d^2\\=\pi \times 0.05^2= 1.96\times10^{-3}m^2[/tex]

mass flow rate = density X cross-sectional area X velocity

velocity = mass flow rate /(density X cross-sectional area)

[tex]velocity = 25/(997 \times 1.96\times10^{-3}) = 12.79m/s[/tex]

to check for ripple voltage from the alternator, connect a digital multimeter and select

Answers

Answer:

isn't it summer? sjsushsiansudndd

A particle which moves in two-dimensional curvilinear motion has coordinates in millimeters which vary with time t in seconds according to X=2t^2 +3t–1 and y = 5t - 2. Determine the coordinates of the center of curvature C at time t = 1s.

Answers

Answer:

The answer is "22.501,-22.899"

Explanation:

Just as in the previous problems find the angle the velocity makes with the  x-axis and radius of curvature.

[tex]x= 2t^2 + 3t — 1\\\\y=5t-2\\\\x=4t+3\\\\y=5\\\\\tan \alpha (t = 1) =\frac{y}{x}=\frac{5}{4+3}=\frac{5}{7} \to alpha=35.54^{\circ}\\\\[/tex]

For the radius of curvature, we can use the expression from the last two  problems, but first express the position and derivatives as y(x).

[tex]y(x)=2(\frac{y+2}{5})^2+3(\frac{y+2}{5})-1=\frac{1}{25}(2y^2+23y+13)\\\\y'(x)=\frac{1}{25}(4y+23)\\\\y''(x)=\frac{4}{25}\\\\\rho(t=1)=\frac{[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}=\frac{(1+(\frac{35}{25})^2)^{\frac{3}{2}}}{4}25=31.828[/tex]

The position for the center of the radius of curvature [tex]\vec{r}[/tex], (finding this expression is easy and is left as an exercise for the reader.)

[tex]\to \vec{r} = \hat{x}(x + \rho \sin \alpha) + \hat{y}(y- \rho \cos \alpha)\\\\= (4 + 18.501, 3-25.899)\\\\=(22.501, -22.899)[/tex]

Can you use isentropic efficiency for a non-adiabatic compressor?

Can you use isothermal efficiency for an adiabatic compressor?

Answers

Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html

are there engineering students here?​

Answers

Uh, I’d assume so because Brainly has a whole section of questions for them.
Probably...i mean....your asking in the engineering section

4. An aluminum alloy fin of 12 mm thick, 10 mm width and 50 mm long protrudes from a wall, which is maintained at 120C. The ambient air temperature is 22C. The heat transfer coefficient and conductivity of the fin material are 140 W/m2K and 55 W/mk respectively. Determine a. Temperature at the end of the fin b. Temperature at the middle of the fin. c. Calculate the heat dissipation energy of the fin

Answers

Answer:

a) 84.034°C

b) 92.56°C

c) ≈ 88 watts

Explanation:

Thickness of aluminum alloy fin = 12 mm

width = 10 mm

length = 50 mm

Ambient air temperature = 22°C

Temperature of aluminum alloy is maintained at 120°C

a) Determine temperature at end of fin

m = √ hp/Ka

   = √( 140*2 ) / ( 12 * 10^-3 * 55 )

   = √ 280 / 0.66 = 20.60

Attached below is the remaining answers

The number of pulses per second from IGBTs is referred to as

Answers

Referred to as Carrier Frequency

How to Cancel prescription

Answers

settings
apple id
subscriptions

A turbine of a fossil fuel burning installation delivers 1,500 hp of mechanical energy to a generator. The generator then converts 80.0% of the mechanical energy into electrical energy. If the terminal potential difference of the generator is 1790 V, what current does it deliver (in A)

Answers

Answer:

The generator delivers current of 500.11 A

Explanation:

Given the data in the question;

mechanical energy delivered to the generator = 1500 hp

efficiency η = 80.0 %

terminal potential difference of the generator = 1790 V

we know that;

1 hp = 746 W

so

the mechanical energy delivered to the generator will be

Generator Input = ( 1500 × 746 )W = 1119000 W

So the generator output will be;

Generator Output = Generator Input × η

we substitute

Generator Output = 1119000 W × 80.0 %

Generator Output = 1119000 W × 0.8

Generator Output = 895200 W

So the Current will be;

[tex]I[/tex] = Generator Output / terminal potential difference of the generator

we substitute

[tex]I[/tex] =  895200 W / 1790 V

[tex]I[/tex] =  500.11 A

Therefore, The generator delivers current of 500.11 A

An AM signal having a carrier frequency of 460 kHz is to be mixed with a local oscillator signal at a frequency of 1135 kHz. What does the output of the IF amplifier consist of

Answers

Answer:

the output of the IF amplifier consist of 675 kHz

Explanation:

Given the data in the question;

AM signal carrier frequency [tex]_{RF[/tex]  = 460 kHz

Local oscillator frequency[tex]_{lo[/tex] = 1135 kHz

Now, The output of the IF amplifier consists of difference of local oscillator frequency & AM carrier signal frequency;

FREQUECY[tex]_{IF[/tex] = FREQUECY[tex]_{lo[/tex] - FREQUECY[tex]_{RF[/tex]

so we substitute in our given values

FREQUECY[tex]_{IF[/tex] = 1135 kHz - 460 kHz

FREQUECY[tex]_{IF[/tex] = 675 kHz

Therefore, the output of the IF amplifier consist of 675 kHz

Technician A says white smoke in the exhaust of a diesel engine can be the result of a cylinder misfire in a warm engine. Technician B says blue smoke in the exhaust of a diesel engine can be caused by scored cylinder walls. Who is correct?

Answers

Answer:

Both

Explanation:

Because of water, fuel does not burn completely. This brings about water fumes that are white in color and looks like white smoke. If engine is cold and water is heating, it leads to steam formation like water vapor. The white times are because of not firing properly in the heated engine. Technician A is right.

Blue fine is caused by this scoring. It is also caused by dirty oil. Technician b is right too

Determine the horsepower required to compress 1 lbm/min of ethylene oxide from 70 oF and 1 atm to 250 psia. The compressor has an efficiency of 75%. The molar heat capacity of ethylene oxide is given by Cp

Answers

Complete Question:

Problem 8 Determine the horsepower required to compress 1 lbm/min of ethylene oxide from 70 °F and 1 atm to 250 psia. The compressor has an efficiency of 75%. The molar heat capacity of ethylene oxide is given by

C_p=10.03+0.0184T  C_p[=]Btu/lbmole- "F ; T[=] °F C,

Answer:

[tex]P'=0.377hp[/tex]

Explanation:

From the question we are told that:

Initial Temperature T_1=70 F

Final Temperature [tex]T_2=250pisa =114.94F[/tex]

Efficiency [tex]E=75\%=0.75[/tex]

Generally the equation for Work-done  is mathematically given by

 [tex]W=\int C_pT[/tex]

 [tex]W=10.03(114.94-70 )+0.0184((114.94)^2-70^2 )[/tex]

 [tex]W=527.21btu/ibmole[/tex]

 [tex]W=11.982btu/ibm[/tex]

Generally the equation for Efficiency  is mathematically given by

 [tex]E=\frac{isotropic Power}{Actual P'}[/tex]

 [tex]E=\frac{P}{P'}[/tex]

Since

Isotropic Power

  [tex]P=0.0167*11.982btu/ibm[/tex]

 [tex]P=0.2btu/s[/tex]

Therefore

 [tex]P'=\frac{0.2}{0.75}[/tex]

 [tex]P'=0266btu/s[/tex]

Since

 [tex]1btu/s=1.4148hp[/tex]

Therefore

 [tex]P'=0.377hp[/tex]

In particular, a system may or may not be (1) Memoryless, (2) Time invariant, (3)Linear, (4) Casual, (5) Stable.

a. True
b. False

Answers

Answer:

a. True

Explanation:

A system may be sometimes casual, time invariant, memoryless, stable and linear in particular.

Thus the answer is true.

A system is casual when the output of the system at any time depends on the input only at the present time and in the past.

A system is said to be memoryless when the output for each of the independent variable at some given time is fully dependent on the input only at that particular time.

A system is linear when it satisfies the additivity and the homogeneity properties.

A system is called time invariant when the time shift in the output signal will result in the identical time shift of the output signal.

Thus a system can be time invariant, memoryless, linear, casual and stable.

Other Questions
how to develop a deaf social club? Why is Pliny the Youngers account of what happened at Pompeii important for historians of ancient Rome? The use of Jim Crow laws to separate African Americans from Southern whites was called what is the solution of in(x-2)^2=6 For each part below use the figure to fill in the blank if necessary you may learn what the markings on a figure indicate PLZ HELP I WILL MARK BRAINLIEST Select three advantages of cloud computing.A) large amount of storage capacityB) no Internet access requiredC) great flexibilityD) enhanced securityE) easily managed Read the text.Do you ever think about what it would be like to live on Mars, he asked.Which sentence correctly embeds the quotation?Select one:Do you ever think, he asked, about what it would be like to live on Mars?He asked this: Whether anyone ever thought about what it would be like to live on Mars?Do you ever, he asked. Think about what it would be like to live on Mars?The sentence is correct as it is. PLS HELP ASAP!!!!!!!!!!!!!!!!!!! PLEASE HELP WITH THIS QUESTIONWhich of Newton's Laws is represented in this demo? When Did The French Revolution Took Place? STATEMENT OF THALES THEORM NEED URGENTLY HAVE A NICE DAY GOOD MORNING An 84% efficient single pulley is used to lift a 230 kg piano 3.5 m. How much work must be input? What is the exponent when you convert 71,100,000 into scientific notation? Which of the following compounds is SOLUBLE? A. SrSO4 B. CaCO3 C. BaS D. CaCl2 What word in Excerpt B has the same root word asintercept from Excerpt A?Excerpt A:Excerpt B:This would allow Eve to intercept the message asit is typed into the computer, before it isencrypted.-The Code Book,Simon SinghWhat word part is used to change the part of speech ofthe word intercept to the new part of speech of theword in Excerpt B?What part of speech is this new form of the word, asused in Excerpt B? Question 2 of 10 The diagonals of a square are A perpendicular B. paralle C. sometimes equal D. never congruen: If you 2,000,000,000 dollars what would you do with all that money Need some assistance please 5. Which of the following statements describes the difference between physical and chemical (1 point)weathering?O Physical weathering affects rocks, while chemical weathering affects only minerals.O Physical weathering is caused by ice, while chemical weathering is caused only by water.O Chemical weathering changes the composition of a rock, while physical weathering does not.O Chemical weathering affects all kinds of rocks, while physical weathering does not. Chapter 11. Which of the following is an example of homeostasis? a. regulation of blood CO2 levelb. regulation of blood glucose levelc. regulation of body temperatured. all of the above2. Which statement is a correct description of negative feedback control system? a. It is stimulatoryb. It is inhibitoryc. It amplifies the change that is occurring3. Positive feedback control system:a. Are stimulatoryb. Tend to produce destabilizing effects and disrupt homeostasisc. Produce an action that is opposite to the change that activate the same systemd. Both "a" and "b" are correct4. The lungs are ____________ to the liver:a. distalb. lateral c. inferiord. superior5. The heart is ___________ to the lungs:a. superiorb. dorsal c. mediald. lateral6. A vertical plane through the body dividing it into right and left is termed:a. sagittalb. lateral c. transversed. frontal7. A patient sustains severe blunt trauma to the left upper abdomen and requires surgery. The body organ most likely to be involved is the ____________a. appendixb. gallbladderc. spleend. urinary bladder8. Cytology is the study of:a. tissuesb. organismsc. cellsd. all of these are correct9. A term that means nearer the attached end of a limb is:a. medialb. lateral c. distal d. proximal10. Coronal plane:a. Divides the body into anterior and posterior portionsb. Divides the body into upper and lower portionsc. Divides the body into left and right portionsd. Is also called horizontal plane