Answer:
0.78 m
Explanation:
I just did a hw question for this its just 344 divided by 440
In specific heat capacity experiment, the ammeter in circuit is connected in
Answer:
In series
Explanation:
In such experiment, the ammeter is connected in series with the heater, in order to measure the circulating current.
By the way, ammeters are always connected in series in circuits to measure the running current in it.
As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted on the floor by the heel if it has an area of 1.60 cm2 and the woman's mass is 54.0 kg. Express the force in N/m2 and lb/in2. (In the early days of commercial flight, women were not allowed to wear high-heeled shoes because aircraft floors were too thin to resist such large pressures.)
Answer:
P = 3.3075 x 10⁶ N/m² = 479.71 lb/in²
Explanation:
In order to find the pressure , we first need to find the force exerted by the lady. The force must be equal to the weight of the lady:
Force = F = Weight = mg
F = mg = (54 kg)(9.8 m/s²)
F = 529.2 N
Now, we convert area to S.I unit:
Area = A = (1.6 cm²)(1 m/100 cm)²
A = 1.6 x 10⁻⁴ m²
Now, the pressure can be calculated as:
Pressure = P = F/A
P = 529.2 N/1.6 x 10⁻⁴ m²
P = 3.3075 x 10⁶ N/m²
Now, we convert this into lb/in²:
P = (3.3075 x 10⁶ N/m²)[(0.000145038 lb/in²)/(1 N/m²)
P = 479.71 lb/in²
As a block of mass 42 kilograms drops from the edge of a 40-meter-high cliff it experiences a loss of energy due to air resistance of 81 J. At what speed will the rock hit the ground?
Answer:
The block hits the ground at 27.9 m/s
Explanation:
Gravitational Potential Energy (GPE)
It's the energy stored in an object because of its height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or [tex]9.8 m/s^2[/tex].
When the block is at the edge of the cliff it has potential energy that can be transformed into any other type of energy as it starts falling to the ground.
The GPE of the block of mass m=42 Kg at h=40 m is:
U = 42*9.8*40
U = 16,464 J
The block loses 81 J due to air resistance, thus the energy stored when it hits the ground is 16,464 J - 81 J = 16,383 J.
This energy is stored as kinetic energy, whose formula is:
[tex]\displaystyle K=\frac{1}{2}mv^2[/tex]
Solving for v:
[tex]\displaystyle v=\sqrt{\frac{2K}{m}}[/tex]
[tex]\displaystyle v=\sqrt{\frac{2*16,383 }{42}}[/tex]
[tex]v=\sqrt{780.143}[/tex]
v = 27.9 m/s
The block hits the ground at 27.9 m/s
Please help! What kind of energy is produce when solar panel to lightbulb filament?
Answer:
electrical energy
Explanation:
sorry I'm really tired but trust me on this one
Answer:
electrical to thermal and light
Explanation:
The FitnessGram Pacer Test is a multistage aerobic capacity test that progressively gets more difficult as it continues. The 20 meter pacer test will begin in 30 seconds. Line up at the start. The running speed starts slowly, but gets faster each minute after you hear this signal. A single lap should be completed each time you hear this sound. Remember to run in a straight line, and run as long as possible.
12 seconds after starting from rest a frewly falling cantaloupe has a speed of
Answer:
The cantaloupe has a speed of 117.6 m/s
Explanation:
Free Fall Motion
It occurs when an object falls under the sole influence of gravity. Any object that is being acted upon solely by the force of gravity is said to be in a state of free fall. Free-falling objects do not face air resistance.
If an object is dropped from rest in a free-falling motion, it falls with a constant acceleration called the acceleration of gravity, which value is [tex]g = 9.8 m/s^2[/tex].
The final velocity of a free-falling object after a time t is given by:
vf=g.t
The cantaloupe has been dropped from rest. We are required to find the speed after t=12 seconds.
Calculate the final speed:
vf=9.8 * 12 = 117.6 m/s
The cantaloupe has a speed of 117.6 m/s
For a scene in a movie, a stunt driver drives a 1700 kg pickup truck with a length of 4.45 m around a circular curve with a radius 0f 0.355 km. The truck is to complete a semicircle, jump across a gully, and land on the other side 3.00 m below and 10.5 m away. What is the minimum centripetal acceleration the truck must have going around the circular curve so that the entire truck will clear the gully and land on the other side
Answer:
[tex]0.51\ \text{m/s}^2[/tex]
Explanation:
t = Time taken
g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
r = Radius of track = 0.355 km
Displacement in [tex]y[/tex] direction is 3 m
[tex]y=ut+\dfrac{1}{2}gt^2\\\Rightarrow 3=0+\dfrac{1}{2}\times 9.81 t^2\\\Rightarrow t=\sqrt{\dfrac{3\times 2}{9.81}}\\\Rightarrow t=0.782\ \text{s}[/tex]
Displacement in [tex]x[/tex] direction
[tex]x=10.5\ \text{m}[/tex]
[tex]v=\dfrac{x}{t}\\\Rightarrow v=\dfrac{10.5}{0.782}\\\Rightarrow v=13.43\ \text{m/s}[/tex]
Centripetal acceleration is given by
[tex]a_c=\dfrac{v^2}{r}\\\Rightarrow a_c=\dfrac{13.43^2}{355}\\\Rightarrow a_c=0.51\ \text{m/s}^2[/tex]
The minimum centripetal acceleration the truck must have is [tex]0.51\ \text{m/s}^2[/tex]
1. Derive the equation of the trajectory of a projectile.
(3mks)
2. A ball is thrown with an initial speed uof 30 m/s at an angle & above thehorizontal, where
sin 0 = 4/5 and cos 0 = 3/5.
(5mks)
(a) decompose the vector u into itsx and y components.
(b) When t= 2 s, find the position of the ball andthe magnitude and direction of its
velocityu.
(c) Determine
the value
of the highest point of the ball's trajectory.
(d) calculate how much time has elapsed forthe ball to reach the highest point.
(e) Calculate the values of the total time of theball's flight T and the horizontal range R.
ASAN
3. In the model of the hydrogen atom proposed by Niels Bohr an electron circulatesa
stationary proton in a circle of radius 7' = 5.28 x 10-11 m with a speedı= 2.18 x 106m's
(a) Find the magnitude of the electron sradial acceleration in this model.
(1mk)
(b) Determine the period of the motion,
(Imk)
Describe the Rutherford model
Answer:
The Rutherford model was devised by the New Zealand-born physicist Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect.
Atomic theory year: 1911
Explanation:
Hope this helps, Merry Christmas, and have a good day
SOMEBODY ONCE TOLD ME THE WORLD WAS GONNA ROLL ME
I AIN'T THE SHARPEST TOOL IN THE SHED~
SHE WAS LOOKING KINDA DUM WITH HER FINGER AND HER THUMB
IN THE SHAPE OF AN "L" ON HER FOREHEAD~
WELL THE YEARS START COMING AND THEY DON'T STOP COMING
FED TO THE RULES AND I HIT THE GROUND RUNNING
DIDN'T MAKE SENSE NOT TO LIVE FOR FUN
YOUR BRAIN GETS SMART BUT YOUR HEAD GETS DUM
SO MUCH TO DO, SO MUCH TO SEE--
SO WHATS WRONG WITH TAKING THE BACKSTREETS?
YOU'LL NEVER KNOW IF YOU DON'T GO
YOU'LL NEVER SHINE IF YOU DON'T GLOW.
Answer:
so true though
Explanation:
This 200-kg horse ran the track at a speed of 5 m/s. What was the average kinetic energy?
Answer:
2500 JExplanation:
The average kinetic energy can be found by using the formula
[tex]k = \frac{1}{2} m {v}^{2} \\ [/tex]
m is the mass
v is the velocity
From the question we have
[tex]k = \frac{1}{2} \times 200 \times {5}^{2} \\ = 100 \times 25[/tex]
We have the final answer is
2500 JHope this helps you
52. Serves as an air passageway
a. Oropharynx
c. Nasopharynx
b. Laryngopharynx
d. Larynopharynx
Answer:
Nasopharynx
Explanation:
The nasopharynx is posterior to the nasal cavity and serves only as a passageway for air.
psychology: Echoic sensory memory is used when a lightning bolt flashes across the sky. Please select the best answer from the choices provided T F
Answer:
The answer is False
Explanation:
Echoic sensory memory is used when a lightning bolt flashes across the sky. This is false statement.
What is echoic sensory memory?Echoic memory is a type of sensory memory that registers and stores auditory information (sounds) until it is processed and understood (Carlson, 2010). This sensory store can hold a large amount of auditory information for 3 to 4 seconds (Clark, 1987).
Echoic Memory Examples:
While listening to music: When we listen to music, our brains recall each note briefly and connect it to the next note. As a result, the brain recognizes the note sequences as a song.Conversation: When we hear spoken language, our echoic memories retain every individual syllable. Our brains understand words by associating each syllable with the one before it.Learn more about echoic memory here:
https://brainly.com/question/3812421
#SPJ6
Look at this model of an atom. Using a periodic table, which element does it represent?
Answer:
Nitrogen
Explanation:
A truck is traveling at 27 m/s down the interstate highway where you are changing a flat tire. frequency of 185 Hz.
A) What frequency do you hear?
B) Suppose after fixing the flat you were driving your car at 22 m/s the truck drives blows his horn again. What frequency do you hear? (Speed of sound in air is 340 mis).
Answer:
(a) the observed frequency is 200 Hz
(b) the observed frequency is 188 Hz.
Explanation:
speed of the truck, Vs = 27 m/s
frequency of the truck as it approaches, Fs = 185 Hz
(a) Apply Doppler effect to determine the frequency you will hear.
As the truck approaches you, the observed frequency will be higher than the source frequency because of decrease in distance.
[tex]F_s = F_o [\frac{V}{V_S + V} ][/tex]
Where;
Fo is the observed frequency which is the frequency you will hear.
V is speed of sound in air
[tex]F_s = F_o [\frac{V}{V_S + V} ]\\\\185 = F_o [\frac{340}{27 + 340} ]\\\\185 = F_o (0.926)\\\\F_o = \frac{185}{0.926}\\\\F_o = 199.78 \ Hz[/tex]
[tex]F_o = 200 \ Hz[/tex]
(b) Apply the following formula for a moving observer and a moving source;
[tex]F_o = F_s[\frac{V-V_o}{V} ](\frac{V}{V-V_S} )[/tex]
The observed frequency is negative since you are driving away from the truck and the source frequency is also negative since it is driving towards you.
[tex]F_o = F_s[\frac{V-V_o}{V} ](\frac{V}{V-V_S} )\\\\F_o = 185[\frac{340-22}{340} ](\frac{340}{340-27} )\\\\F_o = 185(0.9353)(1.0863)\\\\F_o = 188 \ Hz[/tex]
A force of 100 N acts on a body and moves at a distance of 2 m in the direction of the force. How much work has been done?
Answer:
200 joules
Explanation:
work=force×distance
An object is moving diagonally (down and to the left). You want it to stop moving. In what direction (or
directions) should you exert a force to get the object to stop?
a. Force direction(s):
b. Explain your answer:
1. If a 4000 kg rocket reaches 7,000 m/s in 8 minutes after blastoff, what is its acceleration?
2. What force is being applied to the rocket?
3. What is the rocket's potential energy when it is 12 km off the ground?
(Hint - Change kilometers to meters)
4. If the rocket were to fall from the 12 km height, what would be its speed right before hitting the ground? (assume no air resistance)
+ answer all the questions plz
Answer:
I guess the Ans for second one is gravitational force
What are the factors affect the Electric forces between two charges and What is the relationship between each factor and the Electric force ?
Explanation:
If the two charges are point charges - i.e., they don't have a size - the force between these charges depends on the
• Magnitude if each charge, q1 and q2
• Sign of each charge (+ or -)
• Distance between the charges, r
This is essentially Coulomb’s Law:
FE = (kq1q2)/r2
For collections of charges, you need to find the electric field E, and then use this fields to find a force on a small test charge q in the field. The test charge is always small to help you map the electric field, but not disturb it.
A runner starts from rest and accelerates at a rate of 1.5 m/s2 and covers 375 m. How long did it take the runner to cover this distance?
Answer:
it takes him 22.36 seconds to cover that distance
Explanation:
We can solve this problem using the kinematic equation for uniformly accelerated motion:
[tex]x_f-x_i=v_0*t\,+\,\frac{1}{2} a\,*\,t^2[/tex]
which replacing the values given for our case becomes:
[tex]375=0*t\,+\,\frac{1}{2} (1.5)\,t^2\\375=\frac{1}{2} (1.5)\,t^2[/tex]
and which solving for t gives:
[tex]375=\frac{1}{2} (1.5)\,t^2\\t^2=2*375/1.5\\t^2=500\\t=\sqrt{500} \\t \approx 22.36\,\,sec[/tex]
What is meant by the statement,the linear expansivity of copper is 0.000017k
Answer:
The change in length per unit length per degree rise in temperature of copper is 0.000017k
Explanation:
Given that :
The linear expansivity of copper is 0.000017k. This simply means that ; for a given copper length, the length of such copper will increase by 0.000017k for every degree rose in temperature of the copper rod.
Therefore, the change in length per unit length per degree rise in temperature (k) is 0.000017
1. A 15 kg chair initially at rest on a horizontal floor requires 125 N to set it in motion, Ong
the chair is in motion, a 95 kg force keeps it moving at constant veloclty,
a Find the coefficient of static friction between the chair and the floor,
Answer:
μ = 0.849
Explanation:
In order to solve this problem we must remember that the friction force is defined as the product of the coefficient of friction by the normal force. And normal force is defined as the component of force in the opposite direction to the weight of the body (chair).
As in the y axis there is no movement we can say that the sum of the forces on the chair is equal to zero.
∑Fy = 0
[tex]N-W=0[/tex]
where:
N = normal force [N] (units of Newtons)
W = weight of the chair = m*g [N]
m = mass = 15 [kg]
g = gravity acceleration = 9.81 [m/s²]
[tex]N=m*g\\N=15*9.81\\N=147.15 [N][/tex]
Now the key to solving this problem is to understand that we start applying force on the horizontal component until the chair starts to move at this moment the friction component is calculated with the static friction coefficient. As the chair doesn't move we can say that the sum of force in the horizontal direction is equal to zero.
∑Fx = 0
[tex]F -f_{force} = 0[/tex]
F = force applied = 125 [N]
fforce = friction force = μ*N
μ = friction coefficient (static)
N = normal force = 147.15 [N]
[tex]125-u*147.15=0\\u = 125/147.15\\u = 0.849[/tex]
help plz i need it in the next 30 mins
Answer:
i think it's d
Explanation:
Answer:
D
Explanation:
i feel like this one is it
what is a atomic nuclues
3. If a net horizontal force of 49 N is applied to a box whose mass is 5 kg what acceleration
is produced?
Answer:
9.8 m/s²Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
[tex]a = \frac{f}{m} \\ [/tex]
f is the force
m is the mass
From the question we have
[tex]a = \frac{49}{5} \\ [/tex]
We have the final answer as
9.8 m/s²Hope this helps you
When 26400j of energy is supplied to a 2.0kg bloom of aluminum it temperature rise from 20oc to 35oc.The block is well so there is no energy lost to sorround determine the specific heat capacity of aluminum
Answer:
880J/kelvin
Explanation:
Q =MC ×change in t
c =C/m
C=Q/change in t
c= Q/ m× change in t
c = 26400 / 2.0 × 15
c = 880 J/kelvin
How do the permanent magnets in an electric generator induce a current in a loop of wire that is moving between them?
A. The magnets cause charged particles within the wire to move as the poles of the magnets switch.
B. The moving electrons flow from the permanent magnets into the loop of wire.
C. The magnetic field of each magnet attracts the metal in the moving loop of wire.
D. The magnetic field between the magnets causes the charged particles within the wire to move.
Correct answer is D
The magnetic field between the magnets causes the charged particles within the wire to move.
According Faraday's law of electromagnetic induction, whenever their is a relative motion of a conductor is magnetic field, an emf will be induced in the conductor and the strength of the induced emf is directly proportional to the rate of change of magnetic flux linking the circuit.
The motion of the electrons is due to magnetic field created by the permanent magnet of the electric generator.
Thus, the magnetic field between the magnets causes the charged particles within the wire to move.
Learn more about about Faraday's law here: https://brainly.com/question/4418412
The agonist in a movement is the muscle that provides the major force to complete the movement
(A)True
(B)False
Power lines often carry high voltages. For example, a single power line may carry 100,000 volts. An outlet in a home only carries 120-240 volts. What accounts for this difference in voltage?
- Voltage is decreased due to traveling long distances.
- Voltage is decreased by local transformers.
- Voltage is decreased as it is lost to the environment.
Answer: The second one? C.
Answer:
B. - Voltage is decreased by local transformers.
Explanation:
edge 2021 beep boop
I NEED BY JAN 4!!!!!!
Research what is known about Earth’s magnetic field. Begin by looking for images and credible sites on the Internet or refer to some books in a library. Answer the following questions:
What is the approximate size of Earth’s magnetic field?
Where are Earth’s magnetic poles?
Where is the magnet that causes Earth’s magnetic field located? What is this magnet made of?
Does Earth’s magnetic field move?
The earth has a magnetic field. It is much like a bar magnet. Imagine a gigantic bar magnet inside the Earth. But there is no giant magnet inside it.
To have a pretty good idea what earth's magnetic field is shaped like we imagine a bar magnet inside the earth.
The magnetic field is made by the motion of molten iron in earth's outer core. The swirling motion of molten iron changes all the time. Therefore, the magnetic fields will also get change. Then, the magnet poles also move.
The North pole and the south pole are two geographic poles of earth. These poles are the places on the earth's surface that earth's imaginary spin axis passes through.
There are two magnetic poles of the earth: North magnetic pole and South magnetic pole.
Earth's magnetic field is tilted a little bit. If we imagine that earth's magnetic field is made by a giant bar magnet. Then, the bar magnet would make an with earth's spin axis.
The geographic poles and the magnetic poles are not in the same place.
If we are standing at one magnetic poles then the magnetic field lines would be straight up and down.
Earth's magnetic field is a complex and dynamic phenomenon that is generated by the motion of molten iron in its outer core. The magnetic field extends far beyond the planet and is responsible for protecting Earth from harmful solar radiation and cosmic rays.
What is the approximate size of Earth's magnetic field?Earth's magnetic field is roughly dipolar in shape, meaning it has two main magnetic poles - north and south - and the field lines emerge from the north and re-enter at the south pole. The magnetic field has a strength of about 25-65 microteslas (μT) at the Earth's surface, and it extends for several tens of thousands of kilometers into space.
2. Where are Earth's magnetic poles?
Earth's magnetic poles are not fixed and are constantly moving due to the complex and dynamic nature of the planet's magnetic field. Currently, the north magnetic pole is located in the Arctic Ocean, close to Canada's Ellesmere Island, and the south magnetic pole is located in the Antarctic Ocean, near the coast of Antarctica.
3. Where is the magnet that causes Earth's magnetic field located? What is this magnet made of?
The magnet that causes Earth's magnetic field is not a physical magnet but rather a result of the motion of molten iron in the Earth's outer core. The outer core is a layer of liquid iron and nickel that surrounds the solid inner core. The motion of this molten iron generates electrical currents, which in turn create a magnetic field.
4. Does Earth's magnetic field move?
Yes, Earth's magnetic field is not static and is constantly changing due to the complex nature of the planet's interior. The magnetic poles are constantly moving and the strength of the magnetic field can vary over time. The magnetic field can also be influenced by external factors such as solar storms and changes in the solar wind. Scientists continue to study Earth's magnetic field to better understand its behavior and how it affects the planet.
Therefore, The magnetic field of the Earth is a complex and dynamic phenomenon caused by the movement of molten iron in its outer core. The magnetic field extends far beyond the planet and is in charge of shielding the planet from harmful solar radiation and cosmic rays.
To learn about cosmic rays click:
https://brainly.com/question/13960192
#SPJ3
The wavelength of a water wave is 54 m. It has a frequency of 0.03 Hz. What is the velocity of the wave?
Answer:
1.62 m/s
Explanation:
Wavelength of the water wave= 54 m
The frequency is 0.03 Hz
Therefore the velocity can be calculated as follows
Velocity= frequency × wavelength
= 0.03 × 54
= 1.62 m/s