The equation that can be used to find other combinations of b and c is: b = k√a, where k is a constant of variation.
When a variable, such as b, varies directly with the square root of another variable, such as a, it means that there is a constant of proportionality such that the ratio between b and the square root of a remains constant.
In this case, we are given that b = 100 when c = 4. To find the equation that represents the relationship between b and c, we can set up a proportion using the given information:
b / sqrt(a) = k
Substituting the values b = 100 and c = 4:
100 / sqrt(4) = k
Simplifying:
100 / 2 = k
k = 50
Now we can rewrite the equation as:
b / sqrt(a) = 50
To find other combinations of b and c, we can rearrange the equation to solve for b:
b = 50 * sqrt(a)
Therefore, the equation that can be used to find other combinations of b and c is:
b = 50 * sqrt(a)
This equation states that b is equal to 50 times the square root of a. By plugging in different values for a, we can determine the corresponding values of b.
Know more about Plugging here:
https://brainly.com/question/13137385
#SPJ11
unknown Population mean practice
Standard Deviation = 5000
Sample # (n) = 80
Sample mean=58,800.
Confidence interval = 98% -
Construct a 98% confidence interval For the unknown population mean Salary Of PPCC associates in education gradudtes
288,000 = underachievement
The 98% confidence interval for the population mean is given as follows:
($57,473, $60,127).
What is a t-distribution confidence interval?The t-distribution is used when the standard deviation for the population is not known, and the bounds of the confidence interval are given according to the equation presented as follows:
[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]
The variables of the equation are listed as follows:
[tex]\overline{x}[/tex] is the sample mean.t is the critical value.n is the sample size.s is the standard deviation for the sample.The critical value, using a t-distribution calculator, for a two-tailed 98% confidence interval, with 80 - 1 = 79 df, is t = 2.3745.
The parameter values for this problem are given as follows:
[tex]\overline{x} = 58800, s = 5000, n = 80[/tex]
Then the lower bound of the interval is given as follows:
[tex]58800 - 2.3745 \times \frac{5000}{\sqrt{80}} = 57473[/tex]
The upper bound is given as follows:
[tex]58800 + 2.3745 \times \frac{5000}{\sqrt{80}} = 60127[/tex]
More can be learned about the t-distribution at https://brainly.com/question/17469144
#SPJ4
use cylindrical coordinates to find the volume of the solid region bounded on the top by the paraboloid z = 12 − x2 − y2 and bounded on the bottom by the cone z = x2 y2 .
Using cylindrical coordinates, the volume of the solid region bounded on the top by the paraboloid z = 12 − x^2 − y^2 and bounded on the bottom by the cone z = x^2 y^2 can be found. The explanation below provides the step-by-step process.
In cylindrical coordinates, we can express the paraboloid and the cone equations as follows:
Paraboloid: z = 12 -[tex]r^2[/tex]
Cone: z = [tex]r^2 cos^2(θ) sin^2(θ)[/tex]
To find the volume of the solid region, we need to determine the limits of integration. The region is bounded by the paraboloid on top and the cone on the bottom. The paraboloid and the cone intersect when 12 - [tex]r^2[/tex] = [tex]r^2 cos^2(θ) sin^2(θ)[/tex]. Simplifying this equation, we get 12 = [tex]r^2[/tex](1 - [tex]cos^2(θ)[/tex] [tex]sin^2(θ[/tex])). Since r is always non-negative, we can rewrite the equation as 12 =[tex]r^2[/tex][tex]sin^2(θ) (1 - sin^2(θ)[/tex]). This equation defines the boundary curve in the polar coordinate plane (r, θ).
To determine the limits of integration for r, we need to find the values of r that satisfy the equation above for each θ. For a fixed value of θ, the equation becomes 12 = [tex]r^2 sin^2(θ) (1 - sin^2(θ))[/tex]. This equation represents a circle with radius [tex]\sqrt(12 sin^2(θ) (1 - sin^2(θ)))[/tex]. Thus, the limits for r are 0 and [tex]\sqrt(12 sin^2(θ) (1 - sin^2(θ)))[/tex].
For the limits of integration for θ, we need to consider the range in which the paraboloid and the cone intersect. The cone is defined in the range 0 ≤ θ ≤ π, and the paraboloid intersects the cone when θ satisfies 12 = [tex]r^2 sin^2(θ) (1 - sin^2(θ))[/tex]. By solving this equation, we find that 0 ≤ θ ≤ π/2.
To calculate the volume, we integrate over the cylindrical coordinates as follows:
V = ∫∫∫ dV
= ∫[0,π/2]∫[0,√[tex](12sin^2(θ)(1-sin^2(θ)))]∫[r^2cos^2(θ)sin^2(θ),12-r^2][/tex] r dz dr dθ
Evaluating this triple integral will yield the volume of the solid region bounded by the given surfaces.
Learn more about volume here:
https://brainly.com/question/28058531
#SPJ11
Someone please help me outttttttttttt
Answer:
the answer should be
[tex]12 \sqrt{2} [/tex]
Step-by-step explanation:
the shorter leg of a right triangle (in this case it would be BC) is always half the value of the longest side, AB. So if AB is 24\/2, half of that should be 12\/2. So, since BC =X, then X=12\/2.
hope this made sense
PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!!PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!! PLSSS HELPPPP I WILLL GIVE YOU BRAINLIEST!!!!!!
Answer:
a = √39 (exact)
a = 6.24 (dec.)
Step-by-step explanation:
a^2 + b^2 = c^2
a^2 + 5^2 = 8^2
a^2 + 25 = 64
a^2 = 39
a = √39 (exact)
a = 6.24 (dec.)
Write < >, or = to
make the statement
true.
6.208
62.081
Answer:
The answer should be 6.208<62.081
Step-by-step explanation:
Because the open side faces the larger value
true or false: ignoring minor details, one can think of the circulation of a vector field f along c as the line integral f along c given by
Ignoring minor details, one can think of the circulation of a vector field f along c as the line integral f along c given by. The statement is False. The statement is incomplete and lacks the necessary information to determine its truth value.
It seems to be referring to the circulation of a vector field along a curve, which is commonly represented by a line integral. However, without specifying the complete expression for the line integral or providing further context, it is not possible to definitively determine if the statement is true or false.
The statement provided is incomplete and lacks context, making it difficult to provide a comprehensive explanation. However, it seems to suggest a relationship between the circulation of a vector field and the line integral along a curve. In vector calculus, the circulation of a vector field represents the flow or rotation of the field around a closed curve. This can be computed by evaluating the line integral of the vector field along the curve. However, without specific details or equations, it is challenging to provide a more precise explanation within the given word limit. Additional information or context would be required to clarify the statement further.
Learn more about vector field:
https://brainly.com/question/31866032
#SPJ11
4r + 9s + r+ r+ r+ r+r
Answer:
9 + 9
Please mark as brainliest
Have a great day, be safe and healthy
Thank u
XD
1.
What is the unit rate of pesos to dollars?
Answer:
the unit rate of pesos to dollars is 1 MXN = 0.04960 USD
Step-by-step explanation:
Quick Conversions from Mexican Peso to United States Dollar : 1 MXN = 0.04960 USD
$ or MEX$ 10 $, US$ 0.50
$ or MEX$ 50 $, US$ 2.48
$ or MEX$ 100 $, US$ 4.96
$ or MEX$ 250 $, US$ 12.40
Finish the table using
the equation.
Anyone help please ! ?
Answer:
y = 0.5, 1, 1.5, 2
Step-by-step explanation:
x is twice as much as y, so when you multiply the input for y by 2, it should get the value of x. Example: if y is 1, then x is 2, because 1*2 = 2
hope this helped!
What is the area of the parallelogram
96
Step-by-step explanation:
Your formula for parallelograms are: (B•H) which means base times height...
All you have to do is multiply your base (12) by your height (8) and that leaves you with 12•8=96
Hope this helped!
Diameter of a circle is two units. What is the radius of the circle?
Eva has read over 25 books each year for the past three years.
A. Write an inequality to represent the number of books that Eva has read each year.
B. If Eva reads exactly 25 books this year, will the inequality from part A still be true? Explain how you know.
C. What is the smallest total number of books Eva can read over the next five years so that the inequality in part A remains true each year? Explain how to find your answer, and show all work to support your explanation.
Answer:
its 16 books
Step-by-step explanation:
iv had this problwm b4
A bag contains 12 red checkers and 12 black checkers. 1/randomly drawing a red checker 2/randomly drawing a red or black checker
Answer:
(I suppose that we want to find the probability of first randomly drawing a red checker and after that randomly drawing a black checker)
We know that we have:
12 red checkers
12 black checkers.
A total of 24 checkers.
All of them are in a bag, and all of them have the same probability of being drawn.
Then the probability of randomly drawing a red checkers is equal to the quotient between the number of red checkers (12) and the total number of checkers (24)
p = 12/24 = 1/2
And the probability of now drawing a black checkers is calculated in the same way, as the quotient between the number of black checkers (12) and the total number of checkers (23 this time, because we have already drawn one)
q = 12/23
The joint probability is equal to the product between the two individual probabilities:
P = p*q = (1/2)*(12/23) = 0.261
T
SAT Math scores are normally distributed with a mean of 500 and a standard deviation of 100. A student group randomly chooses 25 of its members and finds a mean of 535. The lower value for a 95 percent confidence interval for the mean SAT Math for the group is?
The lower value for a 95 percent confidence interval for the mean SAT Math score of the student group is approximately 503.06.
To calculate the lower value of the confidence interval, we use the formula:
Lower value = x - z * (σ / √n)
where x is the sample mean, z is the z-score corresponding to the desired confidence level (in this case, for 95% confidence, z ≈ -1.96), σ is the population standard deviation, and n is the sample size.
Given that x = 535, σ = 100, and n = 25, we can substitute these values into the formula:
Lower value = 535 - (-1.96) * (100 / √25)
Simplifying the expression:
Lower value = 535 + 1.96 * (100 / 5)
Lower value = 535 + 1.96 * 20
Lower value ≈ 535 + 39.2
Lower value ≈ 574.2
Therefore, the lower value for a 95 percent confidence interval for the mean SAT Math score of the student group is approximately 503.06.
To know more about confidence intervals, refer here:
https://brainly.com/question/32546207#
#SPJ11
Jenna borrowed $5,000 for 3 years and had to pay $1,350
simple interest at the end of that time. What rate of interest
did she pay?
Answer:
0.09 or 9%
Step-by-step explanation:
Formula:
I = Prt
r = I/(Pt)
Given:
I = 1350
P = 5000
t = 3
Finding r:
r = I/(Pt)
r = 1350/(5000 x 3)
r = 1350/15000
r = 0.09
0.09 or 9%
How to do this question
9514 1404 393
Answer:
AB = [[-6, -1][-4, 6][-15, 10]]
Step-by-step explanation:
Any of a number of on-line, spreadsheet, or calculator tools will find the matrix product for you.
The input and output of one such tool is shown below.
__
As you know, each term in the product matrix is the sum of products of a row in the left matrix and a column in the right matrix. The coordinates of that row and column are the coordinates of the result in the product matrix.
For example, row 2, column 1 of the product matrix is the sum of products ...
(4)(-3) +(-2)(-4) = -12 +8 = -4 . . . . row 2, column 1 of the result
(12) Which equation has irrational solutions?
Group of answer choices
Answer:
9(x+3)²=27
Step-by-step explanation:
hello :
9(x+3)²=27 means : (x+3)²=27/9
(x+3)²=3 because 3 is not the perfect square
the author use to characterize Roger
Chillingworth?
A. the dialogue of the jailer
B. the actions of Roger Chillingworth
C. Hester Prynne’s
D. The Sick child
The author uses the actions of Roger Chillingworth to characterize him. Chillingworth is a man who is consumed by revenge, and his actions reflect this.
In the novel "The Scarlet Letter" by Nathaniel Hawthorne, Roger Chillingworth is a central character who is portrayed as a vengeful and manipulative individual. Through his actions, such as his relentless pursuit of revenge against Arthur Dimmesdale and his attempts to uncover the truth about Hester Prynne's lover, Chillingworth's character is revealed. His actions reflect his sinister and malevolent nature, highlighting his obsession with seeking retribution. The author employs Chillingworth's actions to shape the readers' perception of him and to emphasize the destructive consequences of harboring hatred and seeking revenge.
To know more about Roger Chillingworth here: brainly.com/question/30095509
#SPJ11
simplify the expression.
Answer:
5^2
Step-by-step explanation:
Answer:
[tex]5^{2}[/tex]
Step-by-step explanation:
when dividing exponents with the same base (the number on the bottom) you subtract the exponents.
Determine the area of the following,in some cases leave the answer in terms of x
2.1.2 BCDJ
2.1.3 DEFJ
The area of trapezoid ABCD is 50 square units.
The formula for the area of a trapezoid is given by: area = (1/2) [tex]\times[/tex] (base1 + base2) [tex]\times[/tex] height.
In this case, base1 is AB and base2 is CD, and the height is given as 5 units.
Substituting the values into the formula, we have:
Area [tex]= (1/2) \times (8 + 12) \times 5[/tex]
[tex]= (1/2) \times20 \times 5[/tex]
[tex]= 10 \times5[/tex]
= 50 square units.
For similar question on trapezoid.
https://brainly.com/question/26687212
#SPJ8
The complete question may be like: Find the area of a trapezoid ABCD, where AB is parallel to CD, AB = 8 units, CD = 12 units, and the height of the trapezoid is 5 units.
please help me! i'm stuck on it
Answer:
x = 15.4
Step-by-step explanation:
Because this is a right triangle, you can use the pythagorean theorem to find the length of the hypotenuse. the theorem is a^2 + b^2 = c^2
so
9^2 + 12.5^2 = c^2
solving this will give you 15.4
PLSSSS HELP IN NEED OF HELP IMMEDIATELY! (check whole picture and pls don’t leave a link)
The time between calls to a corporate office is exponentially distributed random variable X with a mean of 10 minutes. Find: (A) fx(x) KD)
Given: The time between calls to a corporate office is exponentially distributed random variable X with a mean of 10 minutes.
Formula used: The probability density function of the exponential distribution is given by:
[tex]$f(x)=\frac{1}{\theta} e^{-x/\theta}$[/tex]
The cumulative distribution function of the exponential distribution is given by:
[tex]$F(x)=1 - e^{-x/\theta}$[/tex]
To find: [tex](A) $f_x(x)$[/tex] KD. The probability density function of the exponential distribution is given by: [tex]$f(x)=\frac{1}{\theta} e^{-x/\theta}$[/tex]
Here, [tex]$\theta$[/tex] = mean of the distribution = 10 minutes.
Substituting the values in the probability density function, we get: [tex]$f(x)=\frac{1}{10} e^{-x/10}$[/tex]
Therefore, the required density function of the distributed random variable X is: [tex]$(A) f_x(x) = \frac{1}{10}e^{-x/10}$[/tex]KD.
To know more about density function, visit:
https://brainly.com/question/31039386
#SPJ11
I need help on this question I need the answer
Answer:
11
Step-by-step explanation:
Each side on the smaller quadrilateral is half the length of the larger one. So since the corresponding side is 22, then half of that is 11.
ta da!
hope this helped :)
Kathleen has a $750 loan payment due in six months. What amount of money should she be able to pay today if the interest on her loan is 5.75% per annum? (Do not round intermediate calculations and round your final answer to 2 decimal places.)
The Kathleen should be able to pay approximately $702.82 today to cover her $750 loan payment due in six months.
If the initial amount is $5000 and it grows at an annual interest rate of 4.5%, compounded annually, what will be the value of the investment after 10 years?To calculate the present value of Kathleen's loan payment, we can use the formula for present value of a future sum of money:
Present Value = Future Value / (1 + r)^nFuture Value = $750 (the loan payment due in six months)r = 0.0575 (annual interest rate of 5.75% expressed as a decimal)n = 6 (number of periods, in this case, six months)Substituting the values into the formula:
Present Value = $750 / (1 + 0.0575)⁶Calculating the present value:
Present Value = $750 / (1.0575)⁶ ≈ $702.82Learn more about Kathleen
brainly.com/question/31889997
#SPJ11
Consider the following IVP: x' (t) = -λx (t), x(0)=xo¹ where λ=12 and x ER. What is the largest positive step size such that the midpoint method is stable?
The largest positive step size for which the midpoint method is stable in solving the given initial value problem (IVP) x' (t) = -λx (t), x₀ = xo¹, where λ = 12 and x ∈ ℝ, is h ≤ 0.04.
To determine the largest stable step size for the midpoint method, we consider the stability criterion. The midpoint method is a second-order accurate method, meaning that the local truncation error is on the order of h², where h is the step size. For stability, the absolute value of the amplification factor, which is the ratio of the error at the next time step to the error at the current time step, should be less than or equal to 1.
In the case of the midpoint method, the amplification factor is given by 1 + h/2 * λ, where λ is the coefficient in the differential equation. For stability, we require |1 + h/2 * λ| ≤ 1.
Substituting λ = 12 into the stability criterion, we have |1 + h/2 * 12| ≤ 1. Simplifying, we get |1 + 6h| ≤ 1. Solving this inequality, we find -1 ≤ 1 + 6h ≤ 1.
From the left inequality, we get -2 ≤ 6h, and from the right inequality, we have 6h ≤ 0. Since we are interested in the largest positive step size, we consider 6h ≤ 0, which gives h ≤ 0.
Therefore, the largest positive step size for the midpoint method to ensure stability in this IVP is h ≤ 0.04.
To know more about the midpoint method, refer here:
https://brainly.com/question/30242985#
#SPJ11
What is the area of this square?
4 km
____ square kilometers
Answer:
4 kilometers.
Step-by-step explanation:
Vertex:
Vertex form:
Answer:
y = (x + 1) - 4
Step-by-step explanation:
Vertex Form: y = a(x-h)^2 + k
First, we need to find the parent function. The parent function is (0,0)
Then we need to find where the parabola moved. WE don't need to look at the curved line, we just need to focus on the vertex. We see that the vertex is (-1,-4) Which means the vertex moved one unit towards the left and went down 4 units.
Now it is time to make the actual equation. First, we start with y=
y =
Now we need to put in the (x - h)^2. We see that the graph moved one unit towards the left, so we plug it in with h. Also, keep in mind, the graph isn't being stretched vertically, so the term is 1.
y = 1(x -- 1)^2 = 1(x + 1)^2
Now we need to find the k. The k term is how the graph changed by the y axis. Since it moved down 4 units. We can plug in -4.
y = 1(x + 1) + (-4) = 1(x + 1)^2 - 4
Our final answer is:
y = 1(x + 1) - 4
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 118.7-cm and a standard deviation of 2.2-cm. For shipment, 17 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 118.7- cm and 119.8-cm. P(118.7-cm M 119.8-cm) - Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z- scores rounded to 3 decimal places are accepted
The probability that a bundle of steel rods chosen at random has an average length that falls between P(118.7-cm M 119.8-cm) = -2.1018
We have the following information from the question is:
Steel rods are produced by a firm. Steel rod lengths have a mean of 118.7 cm and a standard deviation of 2.2 cm, and they are regularly distributed. 17 steel rods are packaged together for shipping.
Now, We have to determine the probability that a bundle of steel rods chosen at random has an average length that falls between 118.7- cm and 119.8-cm. P(118.7-cm M 119.8-cm).
We know that,
Mean =μ= 118.7
Standard deviation = σ = 2.2
n = 17
P(118.7 ) = (M-μ)/σ = P[118.7 - 118 /2.2] = 0.3182
P(119.8) = (M-μ)/σ = P [119.8 - 118.7/2.2] = 2.42
P[118.7-cm < M < 119.8-cm] = P(0.3182 < M < 2.42)
Using the z table:
0.3182 - 2.42
= -2.1018
Therefore, the probability that a bundle of steel rods chosen at random has an average length that falls between P(118.7-cm M 119.8-cm) = -2.1018
Learn more about Probability at:
https://brainly.com/question/31828911
#SPJ4
please help!! it’s due asap
Answer:
x = -4 and 2
Step-by-step explanation:
When x = -4 and 2, y = 0 so -4 and 2 are the roots