If A is invertible, the value of e is 0.
How to find the value of e when A is invertible?When A is an invertible matrix, the projection matrix P is given by [tex]P = A(A^T A)^{(-1)}A^T[/tex], where [tex]A^T[/tex] represents the transpose of matrix A.
The value of e, which represents the error or residual, can be computed using the formula e = b - Pb.
Substituting the expression for P into the formula for e, we have [tex]e = b - A(A^T A)^{(-1)}A^Tb[/tex]. However, when A is invertible, [tex]A(A^T A)^{(-1)}A^T[/tex]reduces to the identity matrix I.
Therefore, the equation simplifies to e = b - Ib, which is equal to e = 0.
In other words, if A is invertible, the projection matrix P perfectly projects any vector b onto the subspace spanned by the columns of A.
Consequently, the error or residual e becomes zero, indicating that the projected vector matches the original vector exactly.
Learn more about projection matrices
brainly.com/question/32555056
#SPJ11
I need to know what mistakes he made (if any)
Will mark brainiiest help please <3
Answer:
0.029g
Step-by-step explanation:
use the information provided to write the equation of each circle
Answer:
1.
centre(h,k)=(-13,9)
radius (r)=6
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x+13)²+(y-9)²=6²
x²+26x+169+y²-18y+81=36
x²+y²+26x-18y+169+81-36=0
x²+y²+26x-18y +214=0
is a required equation of the circle.
2.
centre(h,k)=(1,-1)
radius (r)=11
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x-1)²+(y+1)²=11²
x²-2x+1+y²+2y+1=121
x²+y²-2x+2y=121-2
x²+y²-2x+2y=119
is a required equation of the circle.
What are closing costs and how do you calculate closing costs?
Answer:
Closing costs are fees paid at the closing of a real estate transaction. Typically home owners will pay between 2 to 5 percent of the purchase price of their home in closing fees. So, if your home cost $150,000, you might pay between $3,000-$7,000 in closing costs.
What’s the answer plzzzzzzzz?
Step-by-step explanation:
please forgive me if I have done something wrong there I am in a hurry I have to go ccooking. if there's something wrong there you can tell me I check it out when I come back good luck.
Answer:
1. 4310.3
2.1809.6
3. 2414.7
4. 230.9
5. 767.8
6. 70.3
7.1143.4
8.125.7
9. 1382.0
10. 158.5
Step-by-step explanation:
For the linear function(straight line) y = 7x - 3,ar function(straight line) y = 7x - 3,
a) What is the slope of the given function?
b) Is the function increasing or decreasing?
c) What is the y-intercept(0, b) of the given function?
Answer:
a) slope is 7
b) slope is positive, so Increasing
c) y-intercept is -3
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
Which is true about the solution to the system of inequalities shown?
y > 3x + 1
y < 3x – 3
On a coordinate plane, 2 solid straight lines are shown. The first line has a positive slope and goes through (negative 2, negative 5) and (0, 1). Everything to the left of the line is shaded. The second line has a positive slope and goes through (0, negative 3) and (1, 0). Everything to the right of the line is shaded.
Only values that satisfy y > 3x + 1 are solutions.
Only values that satisfy y < 3x – 3 are solutions.
Values that satisfy either y > 3x + 1 or y < 3x – 3 are solutions.
There are no solutions. Edge 2022
Athletes were doing a timed 100-metre dash. Athletes times were organized into a Normal Curve distribution of frequencies. If the mean was 10 seconds (µ), with a standard deviation of 2(σ), create the 1-2-3 curve. Place the actual research data values in the 1-2-3 curve sketch.
If an athlete got a time of 9 seconds (x), calculate their Z-score and place it on the curve.
Use the Z-tables to determine what percentage of the team was below the athlete and above the athlete
The Z-score for an athlete with a time of 9 seconds is -0.5. Approximately 30.85% of the team was below the athlete, and approximately 69.15% of the team was above the athlete based on the Z-score.
To create the 1-2-3 curve, we can use the mean (µ) and standard deviation (σ) to mark the values on the curve. The 1-2-3 curve represents the standard deviations away from the mean.
1-2-3 Curve:
1st Standard Deviation: Mean ± σ
2nd Standard Deviation: Mean ± 2σ
3rd Standard Deviation: Mean ± 3σ
We have that the mean (µ) is 10 seconds and the standard deviation (σ) is 2 seconds, we can mark the 1-2-3 curve as follows:
1st Standard Deviation: 8 to 12 seconds
2nd Standard Deviation: 6 to 14 seconds
3rd Standard Deviation: 4 to 16 seconds
If an athlete has a time of 9 seconds (x), we can calculate their Z-score using the formula: Z = (x - µ) / σ.
Z-score: (9 - 10) / 2 = -0.5
Placing the Z-score of -0.5 on the curve, we find that it falls between the mean and the first standard deviation (8 to 12 seconds).
To determine the percentage of the team below the athlete and above the athlete, we can use the Z-table. Looking up the Z-score of -0.5 in the table, we find that the area below the Z-score is 0.3085. This means that approximately 30.85% of the team's times were below the athlete's time of 9 seconds.
To compute the area above the Z-score, we subtract the area below from 1: 1 - 0.3085 = 0.6915. This indicates that approximately 69.15% of the team's times were above the athlete's time of 9 seconds.
Therefore, approximately 30.85% of the team was below the athlete, and approximately 69.15% of the team was above the athlete based on the Z-score of -0.5.
To know more about Z-score refer here:
https://brainly.com/question/30557336#
#SPJ11
In January of 2022, an outbreak of the PROBAB-1550 Virus occurred at the Johnaras Hospital in wards A, B and C. It is known that:
• Ward A has 35 patients, 10 percent of whom have the virus,
• Ward B has 70 patients, 15 percent of whom have the virus,
• Ward C has 50 patients, 20 percent of whom have the virus. (1 point)
(a) What is the probability that a randomly selected student from these three wards has the virus? (1 point)
(b) If a randomly selected student from the hospital has the virus, what is the proba- bility that they are in Ward C?
(a) The probability that a randomly selected student from the three wards has the virus is 24%.
(b) The probability that a randomly selected student from the hospital who has the virus is in Ward C is approximately 24.5%
a) The probability that a randomly selected student from the three wards has the virus is: (10% of 35) + (15% of 70) + (20% of 50) = 3.5 + 10.5 + 10 = 24%.Thus, the probability that a randomly selected student from the three wards has the virus is 24%.
b) If a randomly selected student from the hospital has the virus, the probability that they are in Ward C is given by Bayes' theorem. The formula for Bayes' theorem is:P(A|B) = P(B|A) x P(A) / P(B)where:P(A|B) is the probability of event A occurring given that event B has occurred. In this case, A is the event that the student is in Ward C and B is the event that the student has the virus.P(B|A) is the probability of event B occurring given that event A has occurred. In this case, it is the proportion of patients in Ward C who have the virus, which is 20%.P(A) is the probability of event A occurring. In this case, it is the proportion of all patients in the hospital who are in Ward C, which is 50 / (35 + 70 + 50) = 0.2941.P(B) is the probability of event B occurring. In this case, it is the probability of a randomly selected student having the virus, which is 24%.Thus, the probability that a randomly selected student from the hospital who has the virus is in Ward C is:P(A|B) = 0.2 x 0.2941 / 0.24 ≈ 0.245 or 24.5%.Hence, the probability that a randomly selected student from the hospital who has the virus is in Ward C is approximately 24.5%.
To know more about probability visit:
https://brainly.com/question/13604758
#SPJ11
A randomly selected student from the hospital has the virus, the probability that they are in Ward C is 0.2.
The solution to the given problem is explained as follows:
(a) What is the probability that a randomly selected student from these three wards has the virus.
The total number of students in the three wards is:
35 + 70 + 50 = 155 students.
Thus, the probability that a randomly selected student from these three wards has the virus is given by:
P(Probab-1550) = P(A U B U C) = P(A) + P(B) + P(C) - P(A ∩ B) - P(B ∩ C) - P(C ∩ A) + P(A ∩ B ∩ C)
WhereP(A) = probability of selecting a student from ward A and
having the virus = 0.1,
P(B) = probability of selecting a student from ward B and
having the virus = 0.15,
P(C) = probability of selecting a student from ward C and
having the virus = 0.2,
P(A ∩ B) = probability of selecting a student from both wards A and B and having the virus.
P(B ∩ C) = probability of selecting a student from both wards B and C and having the virus.
P(C ∩ A) = probability of selecting a student from both wards C and A and having the virus.
P(A ∩ B ∩ C) = probability of selecting a student from all three wards and having the virus = 0.
From the given information:•
Ward A has 35 patients, 10 percent of whom have the virus,•
Ward B has 70 patients, 15 percent of whom have the virus,•
Ward C has 50 patients, 20 percent of whom have the virus
,Thus,P(A) = 35 × 0.1 / 100 = 0.035,
P(B) = 70 × 0.15 / 100 = 0.105,
P(C) = 50 × 0.2 / 100 = 0.10,
And,P(A ∩ B) = 0.035 × 0.105
= 0.00367,P(B ∩ C)
= 0.105 × 0.1 = 0.0105,
P(C ∩ A) = 0.1 × 0.035 = 0.0035,
P(Probab-1550) = 0.035 + 0.105 + 0.1 - 0.00367 - 0.0105 - 0.0035 + 0
= 0.22333
So, the probability that a randomly selected student from these three wards has the virus is 0.22333.
(b) If a randomly selected student from the hospital has the virus, what is the probability that they are in Ward C?
The probability that a randomly selected student from the hospital has the virus is
P(Probab-1550) = 0.22333.
From Bayes’ theorem,
P(C | Probab-1550) = P(Probab-1550 | C) × P(C) / P(Probab-1550)
where,P(C | Probab-1550) is the probability that a randomly selected student from Ward C has the virus,
P(Probab-1550 | C) is the probability that a student from Ward C has the virus,
P(C) is the probability of selecting a student from Ward C.P(Probab-1550 | C) = 0.2
= probability of selecting a student from Ward C and having the virus,
P(C) = 50 / 155 = probability of selecting a student from Ward C,
Therefore,P(C | Probab-1550) = 0.2 × 0.22333 / 0.22333
= 0.2
Thus, if a randomly selected student from the hospital has the virus, the probability that they are in Ward C is 0.2.
To know more about probability , visit ;
https://brainly.com/question/13604758
#SPJ11
A movie theater gave away coupons for smallmediumand large drinks. Customers could randomly pull a coupon from a box that held 75 small drink coupons , 125 drink coupons , and 150 large drink coupons . What is the probability that the first customer to pull a coupon from the box got a medium drink coupon ?
Answer: 35.7%
Step-by-step explanation:
First find out the total number of all coupons in the box.
= 75 + 125 + 150
= 350 drink coupons
There are 125 medium coupons so the probability that the first customer will pick a medium one is:
= Number of medium coupons / Number of total coupons
= 125 / 350
= 35.7%
janice exercises everyday. she spends 35% of her exercise time swimming. she spends the rest of her exercise time jogging.which percent bar represents the percent of exercise time janice spends swimming
Answer:
35%
Step-by-step explanation:
100% - 35% = 65%
Janice spends 35% swimming
And spends 65% jogging
6. give the figure at the right,what is the measure of dbc
A. 54°
b. 36°
C. 126°
D. 116°
Answer:
c.126
Step-by-step explanation:
180-54=126
An angle measures 52° more than the measure of its complementary angle. What is the measure of each angle?
lora has 9 fish and dylan has 2 fish. lora wants to know how many more fish does she has then dylan lora has 9 fish and dylan has 2 fish. lora wants to know how many more fish does she has then dylan lora has 9 fish and dylan has 2 fish. lora wants to know how many more fish does she has then dylan lora has 9 fish and dylan has 2 fish. lora wants to know how many more fish does she has then dylan
Answer:
7
Step-by-step explanation:
Answer: 7
Because 9-2=7
A computer selects a number X from 4 to 11 randomly and uniformly. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X-U b. Suppose that the computer randomly picks 35 such numbers. What is the distribution of for this selection of numbers. 2- N c. What is the probability that the average of 35 numbers will be more than 7.77 Hint: Some Helpful Videos: Progress saved Done 0/1 pt 0.1
The probability that the average of 35 randomly selected numbers will be more than 7.77 is approximately 0.2157.
How to calculate probability of average?a. The distribution of X is uniform, meaning each number from 4 to 11 has an equal probability of being selected. The probability of selecting any specific number is 1/8 since there are 8 numbers in the range.
b. If the computer randomly picks 35 numbers, the distribution of the selection can be approximated by a normal distribution. This is known as the Central Limit Theorem. The mean of the distribution will still be the same as in part a, which is (4 + 11) / 2 = 7.5. The standard deviation of the distribution can be calculated using the formula:
Standard deviation = (b - a) / √(12)
where a and b are the lower and upper bounds of the range, respectively. In this case, a = 4 and b = 11.
Standard deviation = (11 - 4) / √(12) ≈ 1.6794
Therefore, the distribution of the selection of 35 numbers can be approximated by a normal distribution with a mean of 7.5 and a standard deviation of 1.6794.
c. To find the probability that the average of 35 numbers will be more than 7.77, we need to calculate the z-score and then use the standard normal distribution table.
z-score = (7.77 - 7.5) / (1.6794 / √35) ≈ 0.7832
Using the standard normal distribution table or a calculator, we can find the probability associated with the z-score of 0.7832. Let's assume it is P(Z > 0.7832).
The probability that the average of 35 numbers will be more than 7.77 can be calculated as:
P(Z > 0.7832) = 1 - P(Z < 0.7832)
Referencing the standard normal distribution table or using a calculator, we find the probability to be approximately 0.2157.
Therefore, the probability that the average of 35 numbers will be more than 7.77 is approximately 0.2157 (rounded to 4 decimal places).
Learn more about distribution
brainly.com/question/29664127
#SPJ11
You want to fit a least-squares regression line to the following data {(1, 2), (2, 4), (3, 5), (4,7)}. Find the equation of the fitted regression line.
The equation of the fitted regression line for the given data {(1, 2), (2, 4), (3, 5), (4, 7)} is y = 1.5x + 0.5, calculated using least-squares method.
To find the equation of the regression line, we can use the least-squares method. This method aims to minimize the sum of the squared differences between the actual data points and the predicted values on the line. In this case, we want to find a line of the form y = mx + b, where m represents the slope and b represents the y-intercept.
To calculate the slope (m) and y-intercept (b), we can use the following formulas:
m = (nΣ(xy) - ΣxΣy) / (nΣ(x^2) - (Σx)^2)
b = (Σy - mΣx) / n
where n is the number of data points, Σxy is the sum of the products of x and y, Σx is the sum of x values, Σy is the sum of y values, and Σ(x^2) is the sum of squared x values.
Using these formulas and the given data, we can calculate the slope and y-intercept as follows:
Σx = 1 + 2 + 3 + 4 = 10
Σy = 2 + 4 + 5 + 7 = 18
Σxy = (1 * 2) + (2 * 4) + (3 * 5) + (4 * 7) = 2 + 8 + 15 + 28 = 53
Σ(x^2) = (1^2) + (2^2) + (3^2) + (4^2) = 1 + 4 + 9 + 16 = 30
n = 4
Now, let's substitute these values into the slope formula:
m = (4 * 53 - 10 * 18) / (4 * 30 - 10^2)
m = (212 - 180) / (120 - 100)
m = 32 / 20
m = 1.6
Next, we can substitute the calculated slope and the sum values into the y-intercept formula:
b = (18 - 1.6 * 10) / 4
b = (18 - 16) / 4
b = 2 / 4
b = 0.5
Therefore, the equation of the fitted regression line is y = 1.5x + 0.5.
To know more about the least-squares method, refer here:
https://brainly.com/question/13084720#
#SPJ11
Let S denote the vector space of solutions to the differential equation my" - 8«y' + 18y = 0. Circle each set below, if any, that is a basis for S. Show work or explanation to justify your answer: Si = {x} S2 = {x",) S3 = {3.8 +67"} Su = {z + 4x0,728 - } Ss = {x....) b). • Prove that if S-AS = B for some invertible matrix S and v is an eigenvector of A corresponding to then S-lv is an eigenvector of B corresponding to . c) • Let {vi. Va be a linearly independent set of vectors in a vector space V. Prove that if va span{ V1.va). then {V1, V2, V3} is a linearly independent set. d). TRUE or FALSE: If A is a 13 x 4 matrix will nullity(A) 0, then colspace(A) = R'.
The sets given are not bases for the vector space of solutions to the differential equation. A property of invertible matrices is explained. If a set of vectors is linearly independent and spans a subspace, then adding another vector to the set maintains linear independence. The statement about nullity and column space is false.
a) None of the sets Si, S2, S3, Su, or Ss is a basis for the vector space S of solutions to the given differential equation.
b) Let A be the matrix associated with the linear transformation defined by the differential equation. If S is an invertible matrix such that SAS⁻¹ = B, where B is another matrix, and v is an eigenvector of A corresponding to the eigenvalue λ, then S⁻¹v is an eigenvector of B corresponding to the eigenvalue λ.
c) Suppose {v₁, v₂, v₃} is a linearly independent set of vectors in a vector space V. If va spans the subspace span{v₁, v₂}, then {v₁, v₂, v₃} is also a linearly independent set.
d) FALSE. If A is a 13 x 4 matrix with nullity(A) = 0, it means that the matrix has no nontrivial solutions to the homogeneous system Ax = 0. This implies that the columns of A are linearly independent, but it does not guarantee that colspace(A) = ℝⁿ. The column space of A could still be a proper subspace of ℝⁿ.
To know more about the rank-nullity theorem, refer here:
https://brainly.com/question/32674032#
#SPJ11
which values of p and q would make the value of the following expression equal to 58i? (3 – 7i)(p qi)i p = 3, q = 7 p = –3, q = 7 p = 3, q = –7 p = –3, q = –7
The values p = 3 and q = -7 would make the expression (3 – 7i)(p + qi)i equal to 58i.
Let's expand the expression:
(3 - 7i)(p + qi)i = (3 - 7i)(pi - q)
Using the distributive property, we have:
= 3pi - 7pi^2 - 3qi + 7qi^2
Since i^2 is equal to -1, we can substitute -1 for i^2:
= 3pi - 7p - 3qi - 7q
Now, equating the imaginary part to 58i:
-7p - 7q = 58
Dividing both sides by -7:
p + q = -8
From the given options, only p = 3 and q = -7 satisfy this equation:
3 + (-7) = -4
Therefore, the values p = 3 and q = -7 would make the expression (3 – 7i)(p + qi)i equal to 58i.
For more information on value of p and q visit: brainly.com/question/11014549
#SPJ11
Is (3,10) a solution to this system of equations?
y=2x+3
y=x+7
Answer: no
Step-by-step explanation:
plug in (3,10) to y=2x+3
10=2(3)+3
10=6+3
10[tex]\neq[/tex]9
Employees in 2016 paid 4.15% of their gross wages towards social security (FICA tax), while employers paid another 6.3%. How much will someone earning $47,000 a year pay towards social security out of their gross wages?
Someone earning $47,000 a year will pay a total of $4,911.50 towards social security out of their gross wages.
Understanding FICA TaxEmployee Contribution:
The employee paid 4.15% of their gross wages towards social security. So, to calculate the employee's contribution:
Employee Contribution = (4.15/100) * Gross Wages
For someone earning $47,000 a year:
Employee Contribution = (4.15/100) * $47,000
= (0.0415) * $47,000
= $1,950.50
The employee will pay $1,950.50 towards social security.
Employer Contribution:
The employer paid 6.3% of the employee's gross wages towards social security. So, to calculate the employer's contribution:
Employer Contribution = (6.3/100) * Gross Wages
For someone earning $47,000 a year:
Employer Contribution = (6.3/100) * $47,000
= (0.063) * $47,000
= $2,961.00
The employer will pay $2,961.00 towards social security.
Total Social Security Contribution:
To find the total social security contribution, we add the employee and employer contributions:
Total Contribution = Employee Contribution + Employer Contribution
Total Contribution = $1,950.50 + $2,961.00
= $4,911.50
Therefore, someone earning $47,000 a year will pay a total of $4,911.50 towards social security out of their gross wages.
Learn more about FICA tax here:
https://brainly.com/question/2288869
#SPJ4
19. Linda mixed 5.15 lb of cashews with 4.32 lb of pistachios. After filling up 6 bags that were the same size with the mixture, he had 0.05 lb of nuts left. What was the weight of each bag? Use a tape diagram and show your calculations. Focus
The weight of each bag of the mixture can be determined by using a tape diagram. Given that Linda mixed 5.15 lb of cashews with 4.32 lb of pistachios, and after filling up 6 bags that were the same size with the mixture, he had 0.05 lb of nuts left.
A tape diagram is a bar model that is used to represent fractions and ratios visually. It is useful when comparing different quantities that are related to each other.Tape DiagramTo solve the problem using a tape diagram, we begin by representing the total weight of the mixture and the weight of each bag using a single length unit. For example, we can choose 1 inch to represent the weight of 1 pound.
In this case, we would represent the total weight of the mixture as 5.15 + 4.32 = 9.47 inches. Next, we divide the total length by the number of bags to find the length of each bag. If the total length of the mixture is 9.47 inches and there are 6 bags, then the length of each bag is:9.47 ÷ 6 = 1.578 inches. Finally, we convert the length of each bag back to pounds by multiplying by the weight of 1 pound, which is 1 inch in our tape diagram. Thus, the weight of each bag is:1.578 × 1 = 1.578 lb. Therefore, the weight of each bag of the mixture is 1.578 lb.
Know more about tape diagram:
https://brainly.com/question/29208618
#SPJ11
Help please with number 1. Writw the orderd pair that coresponds to Point H.
Answer: yeah you got it
Step-by-step explanation:
Solve the following exponential equations
Answer:
x = 2, y = - 25
Step-by-step explanation:
(1)
note that 36 = 6² , then
[tex]6^{x}[/tex] = 6²
Since bases on both sides are equal then equate the exponents
x = 2
------------------------------------------
(2)
Using the rule of exponents
[tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]
note that 25 = 5² , then
[tex]25^{11+3y}[/tex] = [tex](5^2)^{11+3y}[/tex] = [tex]5^{22+6y}[/tex]
Then
[tex]5^{5y-3}[/tex] = [tex]5^{22+6y}[/tex]
Since bases on both sides are equal then equate the exponents
22 + 6y = 5y - 3 ( subtract 5y from both sides )
22 + y = - 3 ( subtract 22 from both sides )
y = - 25
Brian has deposited $2,200 in a savings account that earns 7%
simple interest every year. His friend, Carlos, deposited $2,100 in a
saving account that earns 8% simple interest. Both Brian and Carlos
opened their accounts on the same day and have not made any more
deposits in either account. What will be the difference in their savings
accounts after 5 years?
Answer:
The difference after 5 years is 772.57
MATH
NATION
The data from a survey of ages of people taking an exercise class was skewed to the left.
Part C: The box plot represents the data. Calculate the appropriate measure of spread.
Answer choices:
A. IQR= 45
B. IQR= 13
C. Standard deviation = 8
D. Standard deviation=55
Answer:
IQR=13 im pretty sure
Step-by-step explanation:
The measure interquartile range is 13 option (B) IQR= 13 is correct.
What is the box and whisker plot?A box and whisker plot is a method of abstracting a set of data that is approximated using an interval scale. It's also known as a box plot. These are primarily used to interpret data.
We have a box plot, and the data from a survey of ages of people taking an exercise class was skewed to the left.
We know on the left side skewed has more data on the right and on the left side, there are fewer data.
From the dot plot, the end point is not given, so we are assuming the end point is 58.
IQR = 58 - 45 = 13
Thus, the measure interquartile range is 13 option (B) IQR= 13 is correct.
Learn more about the box and whisker plot here:
brainly.com/question/3209282
#SPJ2
12% of what number is 1044?
8,700*
12/100=1044/y Equation
1044 x 100= 104,400 Cross multiply
104,400÷12=8700 Divide quotient by pecentage out of 100 (12)
Plz help!!!! Geometry
The little lines inside the two angles mean they are the same.
The 3 inside angles of a triangle equal 180 degrees.
One angle is 146 , so the other two need to equal 180-146 = 34 total.
34/ 2 = 17
Both angle 1 and angle 2 are 17 degrees each.
17, 17
Step-by-step explanation:
assuming both 1 and 2 are congruent and the total amount of angles should add up to 180* we can subtract 180(total) - 146(given) to get 34(angle 1+2) and and divide by 2 since both 1 and 2 are congruent they are the exact same angle
2
Select the correct answer from each drop-down menu.
Consider polynomial function f.
f(x) = (1 - 1)?(1 + 3)3 (+ 1)
Use the equation to complete each statement about this function.
The zero located at x = 1 has a multiplicity of , and the zero located at x = -3 has a multiplicity of
The graph of the function will touch, but not cross, the x-axis at an x-value of
Reset
Next
Answer:
2 of the 3 answers in picture
Step-by-step explanation:
Answer:
The answers are 2, 3, and 1 only
Step-by-step explanation:
This is the correct answer for plato users
Which is a better deal: 30 fluid ounces of shampoo for $3.55 or 50 fluid ounces of shampoo for $6?
30 fl oz for $3.55
if we make them each 10 fl oz then here are the costs:
$1.18 (originally 30 fl oz)
$1.20 (originally 50 fl oz)
Find the unit rate.
2 2/5 to 3 3/4
Answer:
2 2/5=5/5+5/5+2/5=12/5
3 3/4= [(3•4)+3]/4=15/4
(12/5) / (15/4)= 12/5 • 4/15=12•4/5•15=
48/75 kilometers in 1 minute
Step-by-step explanation:
How that this helps! :)
Have a great rest of your day/night!
In the June 1986 issue of Consumer Reports, some data on the calorie content of beef hot dogs are given. Here are the numbers of calories in 20 different hot dog brands: 186, 181, 176, 149, 184, 190, 158, 139, 175, 148, 152, 111, 141, 153, 190, 157, 131, 149, 135, 132. Assume that these numbers are the observed values from a random sample of independent normal random variables with standard deviation o= 4 calories. Find a 90% confidence interval for the mean number of calories u.
The 90% confidence interval for the mean number of calories is 155.3 to 158.4
Finding a 90% confidence interval for the mean number of calories u.From the question, we have the following parameters that can be used in our computation:
The dataset
The mean is calculated as
x = sum/count
So, we have
x = (186 + 181 + 176 + 149 + 184 + 190 + 158 + 139 + 175 + 148 + 152 + 111 + 141 + 153 + 190 + 157 + 131 + 149 + 135 + 132) / 20
x = 156.85
Calculate the margin of error using
E = t * σ/√n
Where t = 1.729 i.e. the critical value
So, we have
E = 1.729 * 4/√20
Evaluate
E = 1.55
The confidence interval is then calculated as
CI = x ± E
So, we have
CI = 156.85 ± 1.55
Evaluate
CI = 155.3 to 158.4
Hence, the 90% confidence interval for the mean number of calories is 155.3 to 158.4
Read more about confidence interval at
https://brainly.com/question/15712887
#SPJ4