The probability that exactly ten requests are received during a particular 2-hour period, with a rate of α = 4 requests per hour, is approximately 0.0194 or 1.94%.
Let's denote the random variable X as the number of requests received during a 2-hour period. Since the rate of requests per hour is α = 4, we can calculate the rate for a 2-hour period as λ = α × 2 = 4 × 2 = 8.
The probability mass function (PMF) of a Poisson distribution is given by the formula:
[tex]P(X = k) = (e^{-\lambda} \times \lambda ^k) / k![/tex]
where e is Euler's number (approximately 2.71828), λ is the average number of events (rate) during the given time period, and k is the number of events we are interested in.
In this case, we want to find the probability of exactly ten requests, so k = 10 and λ = 8. Plugging these values into the formula, we get:
P(X = 10) = (e⁻⁸ * 8¹⁰) / 10!
To calculate this probability, we need to evaluate the values of e⁻⁸, 8¹⁰, and 10!.
e⁻⁸ is approximately 0.0003354626 (rounded to 10 decimal places).
8¹⁰ is equal to 1,073,741,824.
10! (10 factorial) is equal to 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1, which is 3,628,800.
Plugging these values back into the formula, we have:
P(X = 10) = (0.0003354626 * 1,073,741,824) / 3,628,800
Evaluating this expression gives us the probability that exactly ten requests are received during the two-hour period.
P(X = 10) ≈ 0.0194 or 1.94%.
To know more about probability here
https://brainly.com/question/11234923
#SPJ4
Solve the following equation for x.
Answer:
If you just solve normally, you will get x=2 and x=-3. But if you plug these in to check your work, you will find that they are wrong. Your answer is no solution
Step-by-step explanation:
ln(2x+3)+ln(x-2)=ln(x^2-2x)
Rule: log(a) + log(b) = log(a*b)
ln( (2x+3)(x-2) ) = ln(x^2-2x)
Rule: If log(a) = log(b) then a = b
(2x+3)(x-2) = x^2 - 2x
2x^2-x-6=x^2-2x
x^2+x-6=0
Using Quadratic Formula:
x = 2 and x = -3
But, plugging these numbers back into the original equation is false!
math because im very bad at it
add the following fraction give me the answer in lowest terms and mixed numbers if necessary. 10/12 +1/2 =
Answer:
[tex]1\frac{1}{3}[/tex]
Step-by-step explanation:
A square has a perimeter of 36 inches and a smaller square has a side length of 4 inches. What is the ratio of the areas of the larger square to the smaller square?
Answer:
3:2
Step-by-step explanation:
a square has the same side lengths so just √36 = 6 to find the sides of the squares then compare the two sides in ratio form 6:4 then reduce
Function 1 is represented by the equation y = -4/3x-2, and function 2 is represented by the
graph below.
FUNCTION 2
For which of the functions are all the output values less than -1?
A. Both functions
B. Only function 1
C. Only function 2
D. Neither functions
HURRY PLEASEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Answer:
48 is the answer
Step-by-step explanation:
9*4 +. 6*2
36 + 12
48
HOW MANY TABLESPOONS ARE IN 400 MILLIMETERS? 1 TSP = 5mL
Answer:
80 tsp.
Step-by-step explanation:
400 divided by 5 is 80, so 80 tsp's.
Answer:
80 tsp.
Step-by-step explanation:
400 mL = 80 tsp
Solve the system of differential equations S x1 = – 5x1 + 0x2 – 16x1 + 322 X2' x1(0) = 1, X2(0) = 5 21(t) = = 22(t) - = X2
The solution to the system of differential equations is x₁(t) = e⁻⁵ˣ + 3e³ˣ and x₂(t) = 2e⁻⁵ˣ + 5e³ˣ
Let's solve the given system of differential equations: x₁' = -5x₁ + 0x₂ ...(1) x₂' = -16x₁ + 3x₂ ...(2)
To solve this system, we can rewrite it in matrix form. Let's define the vector X = [x₁, x₂] and the matrix A as:
A = [[-5, 0], [-16, 3]]
The system can then be written as X' = AX, where X' is the derivative of X with respect to time.
Now, let's find the eigenvalues and eigenvectors of matrix A. The eigenvalues are obtained by solving the characteristic equation det(A - λI) = 0, where I is the identity matrix.
A - λI = [[-5 - λ, 0], [-16, 3 - λ]]
det(A - λI) = (-5 - λ)(3 - λ) - 0(-16) = λ² + 2λ - 15 = (λ + 5)(λ - 3)
Setting the characteristic equation equal to zero, we find the eigenvalues: λ₁ = -5 λ₂ = 3
To find the corresponding eigenvectors, we substitute each eigenvalue back into the matrix A - λI and solve the system of equations (A - λI)v = 0, where v is the eigenvector.
For λ₁ = -5: A - (-5)I = [[0, 0], [-16, 8]]
Using Gaussian elimination, we can solve the system of equations to find the eigenvector corresponding to λ₁: -16v₁ + 8v₂ = 0 => -2v₁ + v₂ = 0 => v₁ = (1/2)v₂
Let v₂ = 2, then v₁ = 1. Therefore, the eigenvector corresponding to λ₁ is v₁ = [1, 2].
For λ₂ = 3: A - 3I = [[-8, 0], [-16, 0]]
Solving the system of equations, we find: -8v₁ = 0 => v₁ = 0
Thus, the eigenvector corresponding to λ₂ is v₂ = [0, 1].
Now, let's express the solution of the system in terms of the eigenvalues and eigenvectors.
X(t) = c₁e(λ₁t)v₁ + c₂e(λ₂t)v₂
Substituting the eigenvalues and eigenvectors we found earlier, we have: X(t) = c₁e⁻⁵ˣ[1, 2] + c₂e³ˣ[0, 1]
Using the initial conditions, x₁(0) = 1 and x₂(0) = 5, we can find the values of c₁ and c₂.
At t = 0: [1, 5] = c₁[1, 2] + c₂[0, 1] 1 = c₁ 5 = 2c₁ + c₂
Solving these equations, we find: c₁ = 1 c₂ = 3
To know more about differential equation here
https://brainly.com/question/30074964
#SPJ4
Complete Question:
Solve the system of differential equations
x₁' = – 5x₁ + 0x₂
x₂' = – 16x₁ + 3x₂
x₁(0) = 1, x₂(0) = 5
Which value of x satisfies the equation below? 1/2 (3x + 17) = 1/6 (8x-10)
Choice answers:
A. -61
B -55
C. -41
D-35
In sarah classroom, There are 6 girls or every 2 boys. What is the ratio of boys to the total number of student
Answer:
3:1 (Girls:Boys)
6 divided by 2
could any body help me with this
Answer:
1) 1.2 minutes
2) 8.3 laps
3) 25.2 minutes
Which of these shapes is not a parallelogram? HELP ASAP 15 BRAINLY POINTS! TYSM GOD BLESS YOU AND YOUR FAMILY!
Answer:
The answer would be D____________________________________________________________
Why?
Trapezoids have only one pair of parallel sides; parallelograms have two pairs of parallel sides. A trapezoid can never be a parallelogram. The correct answer is that all trapezoids are quadrilaterals.
____________________________________________________________
What's a parallelogram?
Its a four-sided plane rectilinear figure with opposite sides parallel.
____________________________________________________________
Please don't be afraid to point out errors :)
____________________________________________________________
Cute copy and pastteeeee ☏ ♡ ☆⋆◦★◦⋆°*•°
. * . . ° . ● ° .
¸ . ★ ° :. . • ° . * :. ☆
° :. ° .☆ . ● .° °★
★ ★°★ . * . °☆ . ● . ★ ° . • ○ ● . ☆ ★ ° ☆ ¸. ¸ ★ . • ° . *
¸ . ★ ° :. :. . ¸ . ● ¸ ° ¸. * ● ¸ °☆
☆ °☆ . * ● ¸ . ★¸ .
. * . . ° . ● ° .
° :. ° . ☆ . . • . ● .° °★ Not sure how to copy and paste? Just right click your mouse and choose copy in options, to release repeat the process and just paste it. No mouse? Select the text with your computer pad and use ctrl c to release, ctrl v. On mobile? Press on your screen and select the text, use the option copy and paste wherever you would like!
The correct shape which is not a parallelogram is shown in Option D.
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
There are four shapes are shown.
Now, We know that;
In a parallelogram, there are two pair of parallel lines.
But In option D;
There are only one pair of parallel lines.
Hence, The correct shape which is not a parallelogram is shown in Option D.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ2
Andrea constructed a triangle. Angle 1 and 3 are the same size and angle 2 has a measurement of 70 degrees. What is the measurement of angle 1 and 3
Answer:
Step-by-step explanation:
By triangle sum theorem,
Sum of all angles of a triangle is 180°.
m∠1 + m∠2 + m∠3 = 180°
(m∠1 + m∠3) + m∠2 = 180°
2(m∠1) + 70° = 180° {Given → m∠1 = m∠3]
2(m∠1) = 110°
m∠1 = 55°
Therefore, m∠1 = m∠3 = 55°
Part A is already answered
Part B asks: What is the length of the hypotenuse?
Answer:
52
Step-by-step explanation:
Using the Pythagorean theorem
a^2+b^2 = c^2
20^2 + 48^2 = c^2
400 +2304=c^2
2704=c^2
Taking the square root of each side
sqrt(2704) = sqrt(c^2)
52 = c
Answer:
[tex]hypotenuse^{2}[/tex] = [tex]altitude^{2}[/tex] + [tex]base^{2}[/tex]
[tex]hyp^{2}[/tex] = [tex]48^{2}[/tex] + [tex]20^{2}[/tex]
= 2304 + 400
= 2704
∴[tex]hyp[/tex] = [tex]\sqrt{2704}[/tex]
= 52
hope this answer helps you....
There were 32 volunteers to donate blood. Unfortunately, n of the volunteers did not meet the health
requirements, so they couldn't donate. The rest of the volunteers donated 470 milliliters each.
How many milliliters of blood did the volunteers donate?
Write your answer as an expression.
A UMass student is starting their junior year and has accumulated 60 credits so far. Their current cumulative average is a C, or a Grade Point Average (GPA) of 2.0. Their employer has a scholarship program for students who have GPAs of 2.3 or higher. This student wants to get that scholarship to help pay for their senior year. They plan on taking 15 credits each for the fall and spring semesters of their junior year.
a. Can they raise their cumulative average to 2.3 after completing 15 fall semester credits? What semester GPA would they need?
b. What average GPA would they need for their two junior year semesters combined (30 credits) to achieve their goal of a 2.3 cumulative GPA and 90 credits?
According to the information, we can infer that no, they cannot raise their cumulative average to 2.3 after completing 15 fall semester credits. On the other hand, they would need an average GPA of 3.25 for their two junior year semesters combined (30 credits) to achieve their goal of a 2.3 cumulative GPA and 90 credits.
How to calculate the new cumilative GPA?In order to calculate the new cumulative GPA, we need to consider both the current cumulative GPA and the GPA earned in the fall semester. Since the student's current cumulative GPA is 2.0 and they have already accumulated 60 credits, their total grade points earned so far would be 2.0 multiplied by 60, which equals 120 grade points.
To raise the cumulative GPA to 2.3, the student would need a total of 2.3 multiplied by (60 + 15) = 2.3 multiplied by 75 = 172.5 grade points by the end of the fall semester.
Since the student has already accumulated 120 grade points, they would need to earn an additional 52.5 grade points in the fall semester. To calculate the required semester GPA, we divide 52.5 by 15 credits, which gives us a required semester GPA of 3.5.
So, the student would need a semester GPA of 3.5 in order to raise their cumulative average to 2.3 after completing 15 fall semester credits.
What average gpa would they need for their two junior year semesters combined to achieve their goal?They would need an average GPA of 3.25 for their two junior year semesters combined (30 credits) to achieve their goal of a 2.3 cumulative GPA and 90 credits.
Explanation: To calculate the average GPA for the two junior year semesters, we need to consider the total grade points earned and the total number of credits taken.
Currently, the student has accumulated 60 credits and 120 grade points. In order to achieve a cumulative GPA of 2.3 after completing 90 credits, they would need a total of 2.3 multiplied by 90 = 207 grade points.
To calculate the required grade points for the two junior year semesters, we subtract the current grade points (120) from the desired total grade points (207), which gives us 207 - 120 = 87 grade points needed for the junior year.
Since the student plans to take 30 credits during their junior year, they would need to earn 87 grade points in those 30 credits. Dividing 87 by 30 gives us an average GPA of approximately 2.9 for the two junior year semesters.
According to the above, the student would need an average GPA of 3.25 (rounded up) for their two junior year semesters combined to achieve their goal of a 2.3 cumulative GPA and 90 credits.
Learn more about credits in: https://brainly.com/question/24272208
#SPJ4
How many sides do 4 pentagons and 3 nonagons have in all?
Answer:
47
Step-by-step explanation:
^
x(x-4)=12 solve for x
Answer:
x=6 and x=-2
Step-by-step explanation:
so
x(x-4)=12
first distribute
then move the terms
and the u get
x=6 and x=-2
hope this helped
Answer:
x=6, x=-2
Step-by-step explanation:
x(x-4)=12
distributive property, x^2-4x=12
x^2-4x-12=0
(x-6)(x+2)
therefore, x=6, x=-2
solve the system of substitution y=-2x y=5x-21
Answer:
x = 3 is the answerStep-by-step explanation:
1. Write the equation.
y = -2x
y = 5x - 21
2. Substitute the values.
(-2x) = 5x - 21
3. Solve the equation.
-2x = 5x - 21
-5x - 5x
-7x = -21
4. Both negatives cancel
7x = 21
5. Divide both sides by 7
7x = 21
/7 /7
6. x = 3
7. Check the answer.
-2(3) = 5(3) - 21
-6 = 15 - 21
-6 = -6
x = 3 is the answerHope this helped,
Kavitha
P.S Sorry for taking so long.
a lamina occupies the part of the disk 2 2≤16 in the first quadrant and the density at each point is given by the function (,)=3(2 2).
A lamina occupies the region of a disk in the first quadrant where 2 ≤ r ≤ 16, and the density at each point is given by the function ρ(r, θ) = 3[tex](r^2).[/tex] Further analysis is required to determine the mass and other properties of the lamina.
The given information describes a lamina occupying a region in the first quadrant of a disk. The radial distance from the origin is limited to the range 2 ≤ r ≤ 16. The density of the lamina at any point within this region is determined by the function ρ(r, θ) = 3[tex](r^2)[/tex], where r represents the radial distance and θ represents the angle in the polar coordinate system.
To fully analyze the lamina, additional calculations are necessary. One important calculation is determining the mass of the lamina, which involves integrating the density function over the given region. By integrating the function ρ(r, θ) = 3[tex](r^2)[/tex] over the appropriate range of r and θ, we can find the total mass of the lamina. Additionally, other properties such as the center of mass or moment of inertia of the lamina could be determined by using appropriate formulas and integration techniques.
Learn more about integration here:
https://brainly.com/question/31744185
#SPJ11
Four minutes is what percent of an hour?
Answer
6 and 2/3 percent of an hour OR 6.666.... hour
I don’t know if you have to round or not but if it does just round
Step-by-step explanation:
Well 4 minutes of an hour is basically 4/60
4/60=1/15
1/15=x/100
solve the proportion by cross multiplying
100=15x
x=6.66666666
That is yoru percent
Which one would result an integer
Answer:
c is the only one that would result in an integer
Step-by-step explanation:
i hope this helps :)
Option c ∛ 27 would result in an integer.
what are integers?An integer is the number zero, a positive natural number or a negative integer with a minus sign. The negative numbers are the additive inverses of the corresponding positive numbers.
Given here, ∛27= 3 while the other options ∛60 is not an integer because 60 is not cubic number similarly for 9 , 18 are not cubic numbers and thus their subsequent cubic roots will not yield an integer.
Hence, Option c ∛ 27 would result in an integer.
Learn more about integers here:
https://brainly.com/question/15276410
#SPJ2
round 3.060 to the nearest whole number.
Answer:
3
Step-by-step explanation:
dude kinda obv that its 3
Answer:
answer would be 3
Step-by-step explanation:
Help please I need this today
Answer:
a = 15
t = 5
Step-by-step explanation:
[tex] \frac{12}{a} = \frac{16}{20} \\ \\ 16a = 12 \times 20 \\ \\16 a = 240 \\ \\ a = \frac{240}{16} \\ \\ a = 15 \\ \\ \\ \frac{2}{8} = \frac{t}{20} \\ \\ 8t = 40 \\ \\ t = \frac{40}{8} \\ \\ t = 5[/tex]
Let λ be an eigenvalue of an invertible matrix a. show that λ^−1 is an eigenvalue of A^−1. [hint: suppose a nonzero x satisfies Ax=λx.]
Let λ be an eigen value of an invertible matrix. Then, [tex]\lambda^{-1}[/tex] is surely an eigenvalue of [tex]A^{-1}[/tex].
What is an invertible matrix?
For a matrix to be invertible, it must have a unique matrix that, when multiplied with the original matrix, gives the identity matrix.
[tex]A * B = B * A = I[/tex]
Suppose A is an invertible matrix and λ is an eigenvalue of A with a corresponding nonzero eigenvector x, i.e., Ax = λx.
To show that [tex]\lambda^{-1}[/tex] is an eigenvalue of [tex]A^{-1}[/tex], we need to find a nonzero vector y such that [tex]A^{-1}y[/tex] = [tex]\lambda^{-1}y[/tex].
Let's start by multiplying both sides of the equation Ax = λx by [tex]A^{-1}[/tex]:
[tex]A^{-1}(Ax) = A^{-1}(\lambda x)[/tex]
(x is nonzero, so we can divide by x)
[tex]A^{-1}(Ax/x) = A^{-1}(\lambda x/x)\\A^{-1}(A(x/x)) = A^{-1}(\lambda)[/tex]
Since [tex]A^{(-1)}A = I[/tex] (identity matrix), and x/x = 1, we have:
[tex]A^{(-1}(I) = A^{(-1)}[/tex] λ
[tex]A^{(-1)}[/tex] = λ[tex]A^{(-1)}[/tex]
Now, let y = A^(-1)x. We can rewrite the equation above as:
[tex]A^{(-1)}x[/tex] = λ[tex]A^{(-1)}y[/tex]
([tex]A^{(-1)}x[/tex]/λ) = [tex]A^{(-1)}y[/tex]/λ
(x is nonzero, so we can divide by x)
([tex]A^{(-1)}x/x[/tex])/λ = [tex](A^{(-1)}y/y[/tex])/λ
([tex]A^{(-1)}(x/x)[/tex])/λ = ([tex]A^{(-1)}y/y[/tex])/λ
([tex]A^{(-1)}(1)[/tex])/λ = ([tex]A^{(-1)}y/y[/tex])/λ
([tex]A^{(-1)}[/tex])/λ = ([tex]A^{(-1)}y[/tex])/λ
Since [tex]A^{(-1)}[/tex] is a matrix and λ is a scalar, we can rearrange the equation as follows:
([tex]A^{(-1)}[/tex])/λ = [tex]A^{(-1)}[/tex]y/λ
(1/λ)[tex]A^{(-1)}[/tex] =[tex]A^{(-1)}[/tex]y/λ
This shows that 1/λ is an eigenvalue of [tex]A^{(-1)}[/tex] with the corresponding eigenvector y. Therefore, we have shown that if λ is an eigenvalue of A, then [tex]\lambda^{(-1)}[/tex] is an eigenvalue of [tex]A^{(-1)}[/tex]
To know more about eigen value, refer here:
https://brainly.com/question/30357013
#SPJ4
A box contains 12 cereal bars. The empty box weighs 1.75 oz. The box and cereal bars together weighs 18.55 oz. How much does each cereal bar weigh?
Answer:
Each cereal bar weighs 16.8 oz
Step-by-step explanation:
Multiply 12 times 1.4 to get 16.8
Add 16.8 and 1.75 to get 18.55
Hope this helps! Pls mark brainliest
A random sample of nı = 19 securities in Economy A produced mean returns of X 1 = 6.6% with sı = 2.3% while another random sample of n2 = 22 securities in Economy B produced mean returns of # 2 = 5% with s2 = 7.7%. Construct a 98% confidence interval estimate for pl H2 Assume that the samples are independent and randomly selected from normal populations with unequal population variances (012 + 022). T-Distribution Table % % < (H 1 - 2) < Round to two decimal places if necessary
The 98% confidence interval for the distribution of differences is given as follows:
(-2.58%, 5.78%).
How to obtain the confidence interval?The difference of the sample means is given as follows:
6.6 - 5 = 1.6%.
The standard error for each sample is given as follows:
[tex]s_1 = \frac{2.3}{\sqrt{19}} = 0.53[/tex] [tex]s_2 = \frac{7.7}{\sqrt{22}} = 1.64[/tex]The standard error for the distribution of differences is then given as follows:
[tex]s = \sqrt{0.53^2 + 1.64^2}[/tex]
s = 1.72.
The critical value, using a t-distribution calculator, for a two-tailed 98% confidence interval, with 19 + 22 - 2 = 39 df, is t = 2.4286.
The lower bound of the interval is given as follows:
1.6 - 2.4286 x 1.72 = -2.58%.
The upper bound of the interval is given as follows:
1.6 + 2.4286 x 1.72 = 5.78%.
More can be learned about the t-distribution at https://brainly.com/question/17469144
#SPJ4
How much Interest(in dollars) is earned by Investing $2200 at a simple interest rate of 8% for 12 years? Write the correct answer.
A = $4,312.00
I = A - P = $2,112.00
hey!
Equation:
A = P(1 + rt)
Calculation:
First, converting R percent to r a decimal
r = R/100 = 8%/100 = 0.08 per year.
Solving our equation:
A = 2200(1 + (0.08 × 12)) = 4312
A = $4,312.00
The total amount accrued, principal plus interest, from simple interest on a principal of $2,200.00 at a rate of 8% per year for 12 years is $4,312.00.
-------------------------------------------------
have a good day! hope i helped in some way
25x+20y=200 in slope intercept form.
Answer:
5x+4y-40=0
Step-by-step explanation:
12. from the slope of your best-fit line, what is the velocity of the pacific plate, as expressed in cm/yr? (2 significant figures required)
The velocity of the Pacific plate, expressed in centimeters per year (cm/yr), can be determined from the slope of the best-fit line in a geologic study.
In a geologic study, if data points representing the position of the Pacific plate are collected over a period of time, a best-fit line can be calculated to represent the trend of plate movement.
- The slope of this line represents the rate of change of position over time, which corresponds to the velocity of the plate. By examining the slope of the best-fit line and converting it to centimeters per year, we can determine the velocity at which the Pacific plate is moving.
To learn more about data points click here :
brainly.com/question/17148634
#SPJ11