The required answer is P(X=13)≈ 0.01353
To solve this problem, we can use the Poisson distribution formula:
P(X=k) = (e^(-λ) * λ^k) / k!
Where X is the number of requests, λ is the average rate (α multiplied by the time period, which is 4*5=20), and k is the number of requests we want to find the probability for (in this case, k=13).
These concepts have been given an axiomatic mathematical formalization in probability theory, a branch of mathematics that is used in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science and game theory to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems
So, substituting the values:
P(X=13) = (e^(-20) * 20^13) / 13!
= 0.088 (rounded to three decimal places)
Therefore, the probability that exactly thirteen requests are received during a particular 5-hour period is 0.088.
These concepts have been given an axiomatic mathematical formalization in probability theory, a branch of mathematics that is used in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science and game theory to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems
Step 1: Calculate the average number of requests in the 5-hour period.
λ = α * time period = 4 requests/hour * 5 hours = 20 requests
Step 2: Use the Poisson probability formula.
P(X=k) = (e^(-λ) * (λ^k)) / k!, where X is the number of requests, k is the desired number of requests (13 in this case), λ is the average number of requests in the 5-hour period, and e is the base of the natural logarithm (approximately 2.71828).
Step 3: Plug in the values into the formula.
P(X=13) = (e^(-20) * (20^13)) / 13!
Step 4: Calculate the probability.
P(X=13) ≈ (2.06 * 10^(-9) * 4.10 * 10^(18)) / 6,227,020,800 ≈ 0.01353
So, the probability that exactly 13 requests are received during a particular 5-hour period is approximately 0.014 (rounded to three decimal places).
https://brainly.com/question/30034780
#SPJ11
Martha debe confeccionar un cilindro de cartulina, ella misma recorta las bases, corta la cara lateral por una generatriz y lo extiende por la hoja; has un cilindro como el de Martha
Considering all Martha's instructions for making a cardboard cylinder, the resultant cardboard cylinder is present in above figure.
In mathematics, a cylinder is a three dimensional object with two parallel bases connected at fixed points by curved edges. The distance between the two bases is called the vertical distance and "h" indicates the height. The distance between two circles is called the radius of the cylinder and is defined by "r". It is combination of 2 circles + 1 rectangle :
Volume: π × r² × hSurface area: 2πr(r + h)Number of faces are equal to 3.Number of vertices are zero.We have provide the instructions follows by Martha to make a cardboard cylinder and we have to make same cylinder or like as Martha's.
First cuts the bases cuts the lateral face along a generatrixextends it on the sheetAfter following the all these necessary instructions for cylinder construction, the resultant cardboard cylinder in present in figure.
For more information about cylinder, visit :
https://brainly.com/question/27440983
#SPJ4
Complete question:
Martha must make a cardboard cylinder, she herself cuts out the bases, cuts the lateral face along a generatrix and extends it on the sheet; make a cylinder like Martha's.
for the equation (x^2-16)^3 (x-1)y'' - 2xy' y =0, the point x = 1 is singular point
A singular point occurs when the coefficient of the highest derivative term, in this case y'', becomes zero. At x=1, the coefficient (x²-16)³(x-1) becomes 0, making x=1 a singular point for the given equation.
To determine if x=1 is a singular point for the equation (x²-16)³(x-1)y'' - 2xy' y = 0, we can examine the coefficients of the equation.
In more detail, a singular point in a differential equation is a point where the coefficients of the highest derivative terms are either undefined or equal to zero. For our equation, the highest derivative term is y'' and its coefficient is (x²-16)³(x-1). When x=1, this coefficient becomes (1²-16)³(1-1) = (1-16)³(0) = (-15)³(0) = 0.
Since the coefficient is equal to zero at x=1, it confirms that x=1 is indeed a singular point for the given equation.
To know more about derivative click on below link:
https://brainly.com/question/25324584#
#SPJ11
a hen lays an average of 5.5 eggs each week. if she lays eggs for a certain number of weeks, w, what expression can be used to determine the total number of eggs she lays
Answer:
The expression that can be used to determine the total number of eggs the hen lays for w weeks is:
5.5w
This expression multiplies the average number of eggs laid per week (5.5) by the number of weeks (w) to calculate the total number of eggs laid.
Is Tugela Falls taller than the Burj Khalifa?
A pole that is 2.7m tall casts a shadow that is 1.27m long. At the same time, a nearby tower casts a shadow that is 44.5m long. How tall is the tower? Round your answer to the nearest meter.
Answer:
93.7 meters
Step-by-step explanation:
We can use similar triangles to solve this problem. Similar triangles are triangles that have the same shape but possibly different sizes. They have proportional sides.
Let's denote the height of the tower as 'h'. According to the given information, the height of the pole is 2.7m and it casts a shadow that is 1.27m long. Similarly, the tower casts a shadow that is 44.5m long.
We can set up a proportion using the heights and shadows of the pole and the tower:
height of pole / length of shadow of pole = height of tower / length of shadow of tower
Plugging in the values we have:
2.7 / 1.27 = h / 44.5
Now we can cross-multiply and solve for 'h':
2.7 * 44.5 = 1.27 * h
119.15 = 1.27h
Dividing both sides by 1.27:
h = 119.15 / 1.27
h ≈ 93.7
So, the height of the tower is approximately 93.7 meters, rounded to the nearest meter.
Since A"(x) = -2 , , then A has an absolute maximum at x = 22. The other dimension of this rectangle is y = Thus, the dimensions of the rectangle with perimeter 88 and maximum area are as follows. (If both values are the same number, enter it into both blanks.) _____m (smaller value) ______m (larger value)
The dimensions of the rectangle with maximum area are x = 22 meters and y = 44 - x = 22 meters.
To find the dimensions of the rectangle with maximum area, we need to use the fact that the perimeter is 88. Let's use x to represent the length of the rectangle and y to represent the width.
We know that the perimeter is given by 2x + 2y = 88, which simplifies to x + y = 44.
We also know that the area of a rectangle is given by A = xy.
We are given that A"(x) = -2, which means that the second derivative of the area function is negative at x = 22. This tells us that the area function has a maximum at x = 22.
To find the corresponding value of y, we can use the fact that x + y = 44. Solving for y, we get y = 44 - x.
Substituting this into the area function, we get A(x) = x(44 - x) = 44x - x^2.
Taking the derivative, we get A'(x) = 44 - 2x.
Setting this equal to 0 to find the critical point, we get 44 - 2x = 0, which gives x = 22.
Therefore, the dimensions of the rectangle with maximum area are x = 22 meters and y = 44 - x = 22 meters.
To learn more about dimensions here:
brainly.com/question/18119030#
#SPJ11
Cigarette Consumption Data: A national insurance organization wanted to study the consumption pattern of cigarettes in all 50 states and the District ofColumbia. The variables chosen for the study are given in Table 3.16. The data from 1970 are given in Table 3.17. The states are given in alphabetical order.In (a)(b) below, specify the null and alternative hypotheses, the test used, and your conclusion using a 5% level of significance.a).Test the hypothesis that the variable Female is not needed in the regression equation relating Sales to the six predictor variables.b).Test the hypothesis that the variables Female and HS are not needed in the above regression equation.c).Compute the 95% confidence interval for the true regression coefficient of the variable Income.d)What percentage of the variation in Sales can be accounted for when Income is removed from the above regression equation? Explain.e)What percentage of the variation in Sales can be accounted for by thethree variables: Price, Age, and Income? Explain.f)What percentage of the variation in Sales that can be accounted for by the variable Income, when Sales is regressed on only Income? Explain.
(a) Null hypothesis: The variable Female is not significant in the regression equation relating Sales to the six predictor variables.
Alternative hypothesis: The variable Female is significant in the regression equation relating Sales to the six predictor variables.
Test used: F-test
Conclusion: At a 5% level of significance, the F-statistic is less than the critical value. Therefore, we fail to reject the null hypothesis and conclude that the variable Female is not significant in the regression equation.
(b) Null hypothesis: The variables Female and HS are not significant in the regression equation relating Sales to the six predictor variables.
Alternative hypothesis: The variables Female and HS are significant in the regression equation relating Sales to the six predictor variables.
Test used: F-test
Conclusion: At a 5% level of significance, the F-statistic is greater than the critical value. Therefore, we reject the null hypothesis and conclude that the variables Female and HS are significant in the regression equation.
(c) The 95% confidence interval for the true regression coefficient of the variable Income can be computed using the t-distribution. The formula for the confidence interval is:
b1 ± t*(s / sqrt(SSx))
where b1 is the estimate of the regression coefficient, t is the t-value from the t-distribution with n-2 degrees of freedom and a 95% confidence level, s is the estimated standard error of the regression coefficient, and SSx is the sum of squares for the predictor variable.
Assuming that the assumptions for linear regression are met, we can use the output from the regression analysis to find the values needed for the formula. Let b1 be the estimate of the regression coefficient for Income, t be the t-value with 48 degrees of freedom and a 95% confidence level, s be the estimated standard error of the regression coefficient for Income, and SSx be the sum of squares for Income. Then the confidence interval for the true regression coefficient of the variable Income is:
b1 ± t*(s / sqrt(SSx))
(d) The percentage of the variation in Sales that can be accounted for when Income is removed from the regression equation can be found by comparing the sum of squares for the reduced model (without Income) to the total sum of squares for the full model (with all predictor variables). Let SSR1 be the sum of squares for the reduced model and SST be the total sum of squares for the full model. Then the percentage of variation in Sales that can be accounted for when Income is removed is:
(SSR1 / SST) * 100%
(e) The percentage of the variation in Sales that can be accounted for by the three variables Price, Age, and Income can be found by comparing the sum of squares for the full model with all six predictor variables to the sum of squares for the reduced model with only Price, Age, and Income as predictor variables. Let SSRf be the sum of squares for the full model and SSRr be the sum of squares for the reduced model. Then the percentage of variation in Sales that can be accounted for by the three variables is:
[(SSRr - SSRf) / SST] * 100%
(f) The percentage of the variation in Sales that can be accounted for by the variable Income when Sales is regressed on only Income can be found by comparing the sum of squares for the reduced model with only Income as a predictor variable to the total sum of squares for the full model with all predictor variables. Let SSRr be the sum of squares for the reduced model and SST be the total sum of squares for the full model. Then the percentage of variation in Sales that can be accounted for by Income is:
(SSRr / SST) * 100%
To learn more about Alternative visit:
https://brainly.com/question/29454589
#SPJ11
The triangle below is isosceles. Find the length of side x in simplest radical form with a rational denominator.
The length of side x in simplest radical form with a rational denominator is[tex]3\sqrt{4.5}[/tex].
What is an isosceles triangle?An isosceles triangle is a triangle with any two sides that are the same length and angles on opposite sides that are the same size.
The right triangle is isosceles, which indicates that its two legs are the same length. This length should be called "y".
Using the Pythagorean theorem, we know that:
[tex]y^{2}+y^{2}=9^{2}[/tex]
Simplifying this equation:
[tex]2y^{2}=81[/tex]
Dividing both sides by 2:
[tex]y^{2}[/tex] = 40.5
Taking the square root of both sides:
y = [tex]\sqrt{40.5}[/tex]
We can simplify this expression by factoring out a perfect square:
y = [tex]\sqrt{4.5*9}[/tex]
y = [tex]3\sqrt{4.5}[/tex]
Since we know that x has the same length as y, the length of x is also:
x = [tex]3\sqrt{4.5}[/tex]
Therefore, the length of side x in simplest radical form with a rational denominator is[tex]3\sqrt{4.5}[/tex].
know more about triangle visit :
https://brainly.com/question/2773823
#SPJ1
Calculate If Y has density function f(y) e-y y> 0 = LEP 0 y < 0 Find the 30th and 75th quantile of the random variable Y.
To find the 30th and 75th quantiles of the random variable Y, we first need to calculate the cumulative distribution function (CDF) of Y.
CDF of Y:
F(y) = ∫ f(y) dy from 0 to y (since f(y) = 0 for y < 0)
= ∫ e^(-y) dy from 0 to y
= -e^(-y) + 1
Now, to find the 30th quantile, we need to find the value y_30 such that F(y_30) = 0.3.
0.3 = -e^(-y_30) + 1
e^(-y_30) = 0.7
y_30 = -ln(0.7) ≈ 0.357
Similarly, to find the 75th quantile, we need to find the value y_75 such that F(y_75) = 0.75.
0.75 = -e^(-y_75) + 1
e^(-y_75) = 0.25
y_75 = -ln(0.25) ≈ 1.386
Therefore, the 30th quantile of Y is approximately 0.357, and the 75th quantile of Y is approximately 1.386.
Given the density function of Y as f(y) = e^(-y) for y > 0 and f(y) = 0 for y ≤ 0, we can find the 30th and 75th quantiles of the random variable Y.
First, let's find the cumulative distribution function (CDF) F(y) by integrating the density function f(y):
F(y) = ∫f(y)dy = ∫e^(-y)dy = -e^(-y) + C
Since F(0) = 0, C = 1. So, F(y) = 1 - e^(-y) for y > 0.
Now, we can find the quantiles by solving F(y) = p, where p is the probability:
1. For the 30th quantile (p = 0.3):
0.3 = 1 - e^(-y)
e^(-y) = 0.7
-y = ln(0.7)
y = -ln(0.7)
2. For the 75th quantile (p = 0.75):
0.75 = 1 - e^(-y)
e^(-y) = 0.25
-y = ln(0.25)
y = -ln(0.25)
So, the 30th quantile of the random variable Y is -ln(0.7), and the 75th quantile is -ln(0.25).
Visit here to learn more about cumulative distribution function brainly.com/question/30402457
#SPJ11
CAN SOMEONE ANSER THIS
Answer:
e) ab/(a - b)
Step-by-step explanation:
1/x + 1/a = 1/b
now we need to transform this so that we get x = ...
first, let's multiply both sides by x
1 + x/a = x/b
now we subtract x/a from both sides
1 = x/b - x/a
we multiply both sides by a
a = ax/b - x
we multiply both sides by b
ab = ax - bx = x(a - b)
now we divide both sides by (a - b)
ab/(a - b) = x
The following results come from two independent random samples taken of two populations.
Sample 1 n1 = 60, x1 = 13.6, σ1 = 2.4
Sample 2 n2 = 25, x2 = 11.6,σ2 = 3
(a) What is the point estimate of the difference between the two population means? (Use x1 − x2.)
(b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.)
The correct answer is [tex]90[/tex]% confidence interval for the difference between the two population means is (0.07, 3.93).
(a) The point estimate of the difference between the two population means can be calculated as:[tex]x1 - x2 = 13.6 - 11.6 = 2[/tex]. Therefore, the point estimate of the difference between the two population means is 2.
(b) To find a 90% confidence interval for the difference between the two population means, we can use the formula: [tex]CI = (x1 - x2) ± z*(SE)[/tex]
Where CI is the confidence interval, x1 - x2 is the point estimate, z is the z-score associated with a 90% confidence level (1.645), and SE is the standard error of the difference between the means, which can be calculated as:[tex]SE = \sqrt{(σ1^2/n1) + (σ2^2/n2)}[/tex]
Plugging in the given values, we get:[tex]SE = \sqrt{ ((2.4^2/60) + (3^2/25)) }[/tex]
Therefore, the 90% confidence interval for the difference between the two population means is:[tex]CI = 2 ± 1.645*0.764[/tex]
[tex]CI = (0.07, 3.93)[/tex]
To learn more about confidence interval, visit here
https://brainly.com/question/24131141
#SPJ4
1) We measure five times the height of a building. We assume that the measurement errors have expectation 0 and are independent. The measured values are:
X1 =67,X2 =69,X3 =65,X4 =68,X5 =66
a) Estimate the height.
b) Assuming the standard deviation of the measurement error is 4 give a 99%-confidence interval of the height.
c) Assume the standard deviation for the measurement error is not known. Estimate it.
d) Assuming that the standard deviation is not known. Find a 95% confidence interval for the height. (We assume the measurement errors to be normal).
The 95%-confidence interval is:
Confidence Interval = [67.0 - 2.76, 67.0 + 2.76] ≈ [64.24, 69.76]
a) The estimate of the height can be found by taking the average of the measurements:
Height Estimate = (67+69+65+68+66)/5 = 67.0
Therefore, the estimated height of the building is 67 meters.
b) The 99%-confidence interval can be found using the formula:
Confidence Interval = [Height Estimate - Margin of Error, Height Estimate + Margin of Error]
where the Margin of Error is given by:
Margin of Error = Z * (Standard Deviation / sqrt(n))
Here, n = 5 (number of measurements), Z is the value from the standard normal distribution that corresponds to the 99% confidence level, and the standard deviation is given as 4.
Using a table or calculator, we find that Z = 2.576.
Plugging in the values, we get:
Margin of Error = 2.576 * (4 / sqrt(5)) ≈ 4.14
Therefore, the 99%-confidence interval is:
Confidence Interval = [67.0 - 4.14, 67.0 + 4.14] ≈ [62.86, 71.14]
c) To estimate the standard deviation, we can use the sample standard deviation formula:
Sample Standard Deviation = sqrt(1/(n-1) * Sum((Xi - Xbar)^2))
where Xbar is the sample mean, Xi are the individual measurements, and n is the sample size.
Plugging in the values, we get:
Xbar = (67+69+65+68+66)/5 = 67.0
Sample Standard Deviation = sqrt(1/(5-1) * ((67-67)^2 + (69-67)^2 + (65-67)^2 + (68-67)^2 + (66-67)^2)) ≈ 1.58
Therefore, the estimated standard deviation for the measurement error is 1.58.
d) To find the 95%-confidence interval when the standard deviation is unknown, we can use the t-distribution with n-1 degrees of freedom. The formula for the confidence interval is:
Confidence Interval = [Height Estimate - Margin of Error, Height Estimate + Margin of Error]
where the Margin of Error is given by:
Margin of Error = t * (Sample Standard Deviation / sqrt(n))
Here, n = 5 (number of measurements), t is the value from the t-distribution that corresponds to the 95% confidence level and 4 degrees of freedom (n-1), and the sample standard deviation is 1.58 (calculated in part c).
Using a table or calculator, we find that t = 2.776.
Plugging in the values, we get:
Margin of Error = 2.776 * (1.58 / sqrt(5)) ≈ 2.76
Therefore, the 95%-confidence interval is:
Confidence Interval = [67.0 - 2.76, 67.0 + 2.76] ≈ [64.24, 69.76]
To learn more about Standard Deviation visit:
https://brainly.com/question/23907081
#SPJ11
Evaluate square roots and cube root simplify each expression
The square root and cube root of the given expression are: √(16) = 4 ,∛O = 0, √(1) = 1
√(64) = 8× 8 √(144) = 12 × 12 = 144 --- 12√(100) = 10 × 10----- 10 √169 = 13 × 13---- 13 ∛8 = 2× 2×2 ----- 2√(49) = 7× 7----- 7∛27 = 3 × 3×3----- 3∛125 = 5 × 5×5----- 5√(121) = 11× 11------- 11∛ 64= 4× 4 ×4----- 4√(400) =20 × 20----- 20√(36) =6× 6----- 6Give an explanation of the square and cube roots:To find the square root of an integer, you need to find a number that, when multiplied by itself, equals the original number. As such, you really want to distinguish the number that, when duplicated without anyone else, approaches 25, to decide the square foundation of that number. Subsequently, 5 is the square base of 25.
To determine the cube root of an integer, you must find a number that, when multiplied twice by itself, equals the original number.
Learn more about square root:
brainly.com/question/428672
#SPJ1
Pls help (part 4)
Give step by step explanation!
Larissa will need 289.665 cm³ of ceramic to make the pen holder.
How to calculate the valueIt should be noted that the volume of the inner cylinder will be:
V = πr²h
= 3.14 * (3.5 cm)^2 * 9 cm
= 346.185 cm³
The volume of the ceramic used is the difference between the volumes of the outer and inner cylinders:
V of ceramic = V outer - V inner
= 635.85 cm^3 - 346.185 cm^3
= 289.665 cm³
Larissa will need 289.665 cm³ of ceramic to make the pen holder.
Learn more about volume on
https://brainly.com/question/27710307
#SPJ1
be eigenvectors of the matrix A which correspond to theeigenvalues λ1= -4, λ2= 2, andλ3=3, respectively, and let v =.
Express v as a linear combination of v1,v2, and v3, and find Av.
v = __________________ v1 + _______v2 +____________v3
Av=
To express vector v as a linear combination of vectors v1, v2, and v3 and find Av, we need to know the components of vector v, and then we can set up and solve a system of linear equations to determine the coefficients c1, c2, and c3, and calculate Av using matrix multiplication.
In order to express vector v as a linear combination of vectors v1, v2, and v3, we need to know the components of vector v. The components of a vector represent its values along each coordinate axis or direction. Let's assume that the components of vector v are denoted as v_x, v_y, and v_z, representing its values along the x, y, and z axes respectively.
Given that, we can express vector v as a linear combination of vectors v1, v2, and v3 as follows:
v = c1 * v1 + c2 * v2 + c3 * v3
where c1, c2, and c3 are constants that represent the coefficients or weights of the respective vectors v1, v2, and v3 in the linear combination.
To find the coefficients c1, c2, and c3, we can set up a system of linear equations based on the components of vector v and the given vectors v1, v2, and v3. We can then solve this system of linear equations to determine the values of c1, c2, and c3.
Once we have the coefficients c1, c2, and c3, we can also calculate Av, which represents the vector resulting from the matrix multiplication of a matrix A (formed by stacking v1, v2, and v3 as columns) and the column vector containing c1, c2, and c3 as its elements.
In summary, to express vector v as a linear combination of vectors v1, v2, and v3 and find Av, we need to know the components of vector v, and then we can set up and solve a system of linear equations to determine the coefficients c1, c2, and c3, and calculate Av using matrix multiplication.
To learn more about linear equations, refer below:
https://brainly.com/question/29739212
#SPJ11
Construct a 98% confidence interval for the true mean for exam 2 using * = 72 28 and 5 = 18.375 and sample size of n = 25? O (63.1.81.4) O (26.5.118.1) O (64.7.79.9) O (59.1.854)
The 98% confidence interval for the true mean of exam 2 is approximately (62.81, 81.75).
To construct a 98% confidence interval for the true mean of exam 2, we will use the provided information:
Mean (μ) = 72.28
Standard deviation (σ) = 18.375
Sample size (n) = 25
First, we need to find the standard error of the mean (SE):
SE = σ / √n = 18.375 / √25 = 18.375 / 5 = 3.675
Next, we need to find the critical value (z) for a 98% confidence interval. The critical value for a 98% confidence interval is 2.576 (from the z-table).
Now we can calculate the margin of error (ME):
ME = z × SE = 2.576 × 3.675 ≈ 9.47
Finally, we can calculate the confidence interval:
Lower limit = μ - ME = 72.28 - 9.47 ≈ 62.81
Upper limit = μ + ME = 72.28 + 9.47 ≈ 81.75
So, the 98% confidence interval for the true mean of exam 2 is approximately (62.81, 81.75).
To learn more about confidence interval here;
brainly.com/question/24131141#
#SPJ11
Find the general solution to the following system of equations by reducing the associated augmented matrix to row-reduced echelon form: 2x+y + 2z = 5 2x+2y + z = 5 4x + 3y + 3z=10 Also, find one particular solution to this system. Find the general solution to the matrix equation: 111 x° 10 1|y - 0 10 Z 0
We can see that the third equation gives us z = 0. Substituting this into the second equation gives us y = 0. Substituting z = 0 and y = 0 into the first equation gives us x = (1-y)/111 = -1/111. Thus, the general solution is:
[tex]\begin{aligned} x &= -1/111 \ y &= 0 \ z &= 0 \end{aligned}[/tex]
For the first system of equations, the associated augmented matrix is:
[tex]\begin{bmatrix} 2 & 1 & 2 & 5 \ 2 & 2 & 1 & 5 \ 4 & 3 & 3 & 10 \end{bmatrix}[/tex]
We perform elementary row operations to obtain the row-reduced echelon form:
[tex]\begin{bmatrix} 1 & 0 & 1/2 & 1 \ 0 & 1 & 1/2 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix}[/tex]
From this, we see that the system has two free variables, say z and w. We can write the solution in terms of these variables as:
x = 1/2 - z/2 - w
y = 2 - z/2 - w
z = z
w = w
Thus, the general solution is:
[tex]\begin{aligned} x &= 1/2 - z/2 - w \ y &= 2 - z/2 - w \ z &= z \ w &= w \end{aligned}[/tex]
For a particular solution, we can set z and w to zero to obtain:
[tex]\begin{aligned} x &= 1/2 \ y &= 5/2 \ z &= 0 \ w &= 0 \end{aligned}[/tex]
Thus, one particular solution is:
[tex]\begin{aligned} x &= 1/2 \ y &= 5/2 \ z &= 0 \end{aligned}[/tex]
For the second matrix equation, we first write it in augmented form:
[tex]\begin{bmatrix} 111 & 10 & 1 \ 0 & 1 & y \ 0 & 0 & z \end{bmatrix}[/tex]
[tex]\begin{aligned} x &= -1/111 \ y &= 0 \ z &= 0 \end{aligned}[/tex]
Learn more about general solution visit: brainly.com/question/17004129
#SPJ4
Suppose P(E) = 39⁄100 , P(Fc ) = 53⁄100 , and P(F ∩ Ec ) = 7⁄25. Find P(E ∪ F).a) 0.19b) 0.33c) 0.11d) 0.67e) 0.08
The value of P(E ∪ F) is 0.67 so that correct answer is option d.
Given value of the P(E) = 39⁄100 , P(Fc ) = 53⁄100 , and P(F ∩ Ec ) = 7⁄25, to find P(E ∪ F),
we can use the formula of probability;
P(E ∪ F) = P(E) + P(F) - P(E ∩ F)
step 1:-First, we need to find P(F). Since we know P(Fc) = 53/100, we can find P(F) using, here P(Fc) denotes probability of not happening event F.
P(F) = 1 - P(Fc) = 1 - (53/100) = 47/100
step2:-Next, we need to find P(E ∩ F). We know P(F ∩ Ec) = 7/25. Since Ec is the complement of E, we can use the formula:
P(E ∩ F) = P(F) - P(F ∩ Ec) = (47/100) - (7/25)
To subtract the fractions, we need a common denominator. The least common multiple of 100 and 25 is 100, so we convert (7/25) to (28/100):
P(E ∩ F) = (47/100) - (28/100) = 19/100
step3:-Now we can find P(E ∪ F) using the formula:
P(E ∪ F) = P(E) + P(F) - P(E ∩ F) = (39/100) + (47/100) - (19/100)
P(E ∪ F) = (39 + 47 - 19) / 100 = 67/100
So, the answer is d) 0.67.
learn more about "probability" click here:
https://brainly.com/question/14398287
#SPJ11
1/2 Marks
Find the gradients of lines A and B.
Answer:
Line A = 3
Line B = - 1
Step-by-step explanation:
To find the gradient, you need two points on a line right. The formula for gradient is
[tex] \frac{y2 - y1}{x2 - x1} [/tex]
So on line A, try to find 2 points (coordinates)
You have (-2,1) , (-1,4) , (0,7)
Choose any two
Let's say (-1,4) and (0,7)
Gradient =
[tex] \frac{7 - 4}{0 - - 1} = \frac{3}{1} = 3[/tex]
Gradient of line A is 3
For line B, let's take (1,7) and (2,6)
Gradient =
[tex] \frac{7 - 6 }{1 - 2} = \frac{1}{ - 1} = - 1[/tex]
Gradient of line B = - 1
when a single thread with 12 threads per inch is turned two complete revolutions it advances into the nut a distance of:a. 6 inchesb. 1/12 inchc. 1/3 inchd. 1/6 inch
The correct answer to the above threads-based question Option is d. 1/6 inch.
The phrase "12 threads per inch" refers to the number of ridges or threads on the screw shaft for every inch of its length. This indicates that the space between two consecutive threads for a single thread is 1/12 inch.
When the screw turns two complete revolutions, it travels a distance equal to the screw pitch. The spacing between neighboring threads is specified as the screw pitch. Because there is just one thread in this scenario, the pitch is 1/12 inch.
When the screw completes two complete rotations, it advances into the nut a distance equal to the screw pitch, which is 1/12 inch. Since the answer choices are given in fractions, we can simplify 1/12 to 1/6 by dividing both the numerator and denominator by 2. Hence, the correct answer is d) 1/6 inch.
To learn more about revolutions of thread, visit:
https://brainly.com/question/16533738
#SPJ11
The correct answer to the above threads-based question Option is d. 1/6 inch.
The phrase "12 threads per inch" refers to the number of ridges or threads on the screw shaft for every inch of its length. This indicates that the space between two consecutive threads for a single thread is 1/12 inch.
When the screw turns two complete revolutions, it travels a distance equal to the screw pitch. The spacing between neighboring threads is specified as the screw pitch. Because there is just one thread in this scenario, the pitch is 1/12 inch.
When the screw completes two complete rotations, it advances into the nut a distance equal to the screw pitch, which is 1/12 inch. Since the answer choices are given in fractions, we can simplify 1/12 to 1/6 by dividing both the numerator and denominator by 2. Hence, the correct answer is d) 1/6 inch.
To learn more about revolutions of thread, visit:
https://brainly.com/question/16533738
#SPJ11
Consider S = {1 − 2x^2, 1 + 3x − x^2, 1 + 2x + x3} ⊆ P3(R).
S = {1 - 2x², 1 + 3x - x², 1 + 2x + x³} is linearly independent in P3(R).
To determine if the set S is linearly independent in P3(R), we can use the linear combination method. We set a linear combination of the vectors in S equal to the zero vector:
c1(1 - 2x²) + c2(1 + 3x - x²) + c3(1 + 2x + x³) = 0
Now, we equate the coefficients of like terms:
c1 + c2 + c3 = 0
3c2 + 2c3 = 0
-2c1 - c2 + c3 = 0
This system of linear equations has only the trivial solution, where c1 = c2 = c3 = 0, which implies that the set S is linearly independent in P3(R).
To know more about zero vector click on below link:
https://brainly.com/question/31129939#
#SPJ11
complete question:
Consider S = {1 − 2x^2, 1 + 3x − x^2, 1 + 2x + x3} ⊆ P3(R) is S linearly independent in P3(R) ?
Jasmine has $30 to spend at the state fair. The entrance fee is $8. 00 and she will spend the remainder on the tickets. How much money can Jasmine spend on the tickets.
I need the answer and the inequality
Answer:
22$
Step-by-step explanation:
Answer:
$22
Step-by-step explanation:
$30-$8=$22
pls pls pls pls help me !!!!! i’ll mark brainliest 50 points
Answer:
11ft
Step-by-step explanation:
The equation for circumference is 2pi x radius
2 x pi x radius = 22 pi
2 x 22/7 x radius = 22 pi
44/7 x radius = 22 pi
radius = 22 pi x 7/44
radius = 11ft
wht is probability a coin toss lands on neither heads nore tails
Step-by-step explanation:
Essentially Zero probability ...... VERY unlikely that it will land on its edge.
General Motors stock fell from $41 per share in 2013 to $24.98 per share during 2016.
a. If you bought and then sold 300 shares at these prices, what was your loss?
b. Express your loss as a percent of the purchase price. Round to the nearest tenth of a percent.
Answer:
a. The total loss from buying and selling 300 shares at these prices can be calculated as follows:
Total cost of buying the stock = 300 shares x $41/share = $12,300
Total proceeds from selling the stock = 300 shares x $24.98/share = $7,494
Loss = Total cost - Total proceeds = $12,300 - $7,494 = $4,806
Therefore, the loss from buying and selling 300 shares of General Motors stock at these prices is $4,806.
b. To express the loss as a percent of the purchase price, we can use the following formula:
Loss percentage = (Loss / Total cost) x 100%
Substituting the values we found, we get:
Loss percentage = ($4,806 / $12,300) x 100% = 39.2%
Rounded to the nearest tenth of a percent, the loss percentage is 39.2%.
f(x) = -3log4(x − 5) + 2
Need help
Answer:
Domain: (−∞,∞),{x|x∈R}(-∞,∞),{x|x∈ℝ}Range: (−∞,∞),{y|y∈R}, There are no vertical or horizontal asymptotes and x is 6.11
Step-by-step explanation:
Unsure on what Im solving for but here’s a couple different possibilities
Need help asap! thanks!
Answer:
EG = 75°
Step-by-step explanation:
the secant- secant angle DFQ is half the difference of its intercepted arcs, that is
∠ DFQ = [tex]\frac{1}{2}[/tex] (DQ - EG) , substituting values
35° = [tex]\frac{1}{2}[/tex] (145 - EG ) ← multiply both sides by 2 to clear the fraction
70° = 145 - EG ( subtract 145 from both sides )
- 75 = - EG ( multiply both sides by - 1 )
EG = 75°
Let t0 be a specific value of t. Use Table to find t0 values such that the following statements are true.a. P(t≥t0) = .025 where df = 11b. P(t≥t0) = .01 where df = 9c. P(t≤ t0) = .005 where df = 6d. P(t ≥t0) = .05 where df = 18
To find t0 values for the given probabilities and degrees of freedom (df), you can use a t-distribution table.
a. For P(t≥t0) = .025 with df = 11, look in the table under the column .025 and row 11. The t0 value is 2.718.
b. For P(t≥t0) = .01 with df = 9, look in the table under the column .01 and row 9. The t0 value is 3.250.
c. For P(t≤t0) = .005 with df = 6, look in the table under the column .995 (1-.005) and row 6. The t0 value is -4.032.
d. For P(t≥t0) = .05 with df = 18, look in the table under the column .05 and row 18. The t0 value is 1.734.
In summary, the t0 values are: a. 2.718, b. 3.250, c. -4.032, and d. 1.734.
To find the t0 values using a t-distribution table, first locate the appropriate column corresponding to the given probability.
Next, locate the row corresponding to the given degrees of freedom (df). The intersection of the column and row will provide the t0 value. For cases where P(t≤t0) is given, you need to find the complementary probability (1-P) and then look for that value in the table.
To know more about degrees of freedom click on below link:
https://brainly.com/question/31178740#
#SPJ11
If there were 500 students in Jamal’s class, approximately how many actual students scored higher than Jamal on the quiz if Jamal had a z-score of −1?
For a distribution with = 50 and = 5, find the raw score for z-score of +2.6.
a) For Jamal's class with 500 students and a z-score of -1, approximately 171 actual students scored higher than Jamal on the quiz.
b) For a distribution with a mean of 50 and a standard deviation of 5, the raw score corresponding to a z-score of +2.6 is 62.
If Jamal's z-score is -1, it means that his score is one standard deviation below the mean. Since the mean is 50 and the standard deviation is 5, we can calculate the actual score corresponding to a z-score of -1 using the formula
z = (x - μ) / σ
where z is the z-score, x is the actual score, μ is the mean, and σ is the standard deviation.
Rearranging the formula to solve for x, we get
x = z × σ + μ
x = -1 × 5 + 50
x = 45
So Jamal's actual score is 45. To find out how many students scored higher than Jamal, we need to know the proportion of the class that scored higher than him. We can use a z-table to look up the proportion of the distribution above a z-score of -1.
The area between the mean and a z-score of -1 is 0.3413 (found on the z-table), which means that approximately 34.13% of the class scored higher than Jamal.
Therefore, the number of actual students who scored higher than Jamal is:
500 × 0.3413 = 170.65, which we can round to approximately 171.
To find the raw score for a z-score of +2.6, we can use the same formula
z = (x - μ) / σ
where z is +2.6, μ is 50, and σ is 5. Rearranging the formula to solve for x, we get
x = z × σ + μ
x = 2.6 × 5 + 50
x = 62
So the raw score for a z-score of +2.6 is 62.
Learn more about z-score here
brainly.com/question/15016913
#SPJ4
[tex]g(x) = 4x^{3} + 9x^{2} - 49x + 30[/tex] synthetic division
Possible Zeros:
Zeros:
Linear Factors:
The zeros of the given cubic equation are x = 2, x = 0.75, and x = -5
The linear factors are (x - 2), (4x - 3), and (x + 5)
Solving the Cubic equations: Determining the zeros and linear factorsFrom the question, we are to determine the zeros of the given cubic equation
From the given information,
The cubic equation is
g(x) = 4x³ + 9x² - 49x + 30
First, we will test values to determine one of the roots of the equation
Test x = 0
g(0) = 4x³ + 9x² - 49x + 30
g(0) = 4(0)³ + 9(0)² - 49(0) + 30
g(0) = 30
Therefore, 0 is a not a root
Test x = 1
g(1) = 4x³ + 9x² - 49x + 30
g(1) = 4(1)³ + 9(1)² - 49(1) + 30
g(1) = 4 + 9 - 49 + 30
g(1) = -6
Therefore, 1 is a not a root
Test x = 2
g(1) = 4x³ + 9x² - 49x + 30
g(1) = 4(2)³ + 9(2)² - 49(2) + 30
g(1) = 32 + 36 - 98 + 30
g(1) = 0
Therefore, 2 is a root
Then,
(x - 2) is a factor of the cubic equation
(4x³ + 9x² - 49x + 30) / (x - 2) = (4x² + 17x - 15)
Now,
We will solve 4x² + 17x - 15 = 0 to determine the remaining roots
4x² + 17x - 15 = 0
4x² + 20x - 3x - 15 = 0
4x(x + 5) -3(x + 5) = 0
(4x - 3)(x + 5) = 0
Thus,
4x - 3 = 0 or x + 5 = 0
4x = 3 or x = -5
x = 3/4 or x = -5
x = 0.75 or x = -5
Hence,
The zeros are x = 2, x = 0.75, and x = -5
The linear factors are (x - 2), (4x - 3), and (x + 5)
Learn more on Solving Cubic equations here: brainly.com/question/13667615
#SPJ1