The angle of elevation to the top of a building changes from 15​° to ​30° as an observer advances 140 feet toward the building. Find the height of the​ building, x, to the nearest foot.
pls explain

Answers

Answer 1

Answer:

70 ft

Step-by-step explanation:

To find the height of the building, we can use the trigonometric relationship between the angle of elevation, the distance from the object, and the height of the object.

In this case, we have a right triangle formed by the observer, the top of the building, and the base of the building. Therefore, we can use the tangent trigonometric ratio, since the height of the building is the opposite the angle of elevation, and the distance between the observer and the building is the side adjacent the angle.

[tex]\boxed{\begin{minipage}{7 cm}\underline{Tangent trigonometric ratio} \\\\$\sf \tan(\theta)=\dfrac{O}{A}$\\\\where:\\ \phantom{ww}$\bullet$ $\theta$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle.\\\end{minipage}}[/tex]

Let "x" be the height of the building.

Let "d" be the initial distance from the observer to the building.

The angle of elevation changes from 15° to 30° as the observer advances 140 feet toward the building.

(See the attachment for a visual representation).

Based on this information, we can set up the following equations:

[tex]\tan 15^{\circ}=\dfrac{x}{d}[/tex]

[tex]\tan 30^{\circ}=\dfrac{x}{d-140}[/tex]

Rearrange both equations to isolate d:

[tex]d=\dfrac{x}{\tan 15^{\circ}}[/tex]

[tex]d=\dfrac{x}{\tan 30^{\circ}}+140[/tex]

Solve this system of equations by the method of substitution.

[tex]\dfrac{x}{\tan 15^{\circ}}=\dfrac{x}{\tan 30^{\circ}}+140[/tex]

[tex]\dfrac{x}{\tan 15^{\circ}}-\dfrac{x}{\tan 30^{\circ}}=140[/tex]

[tex]\dfrac{x\tan 30^{\circ}-x \tan 15^{\circ}}{\tan 30^{\circ}\tan 15^{\circ}}=140[/tex]

[tex]\dfrac{x(\tan 30^{\circ}- \tan 15^{\circ})}{\tan 30^{\circ}\tan 15^{\circ}}=140[/tex]

[tex]x=\dfrac{140\tan 30^{\circ}\tan 15^{\circ}}{\tan 30^{\circ}- \tan 15^{\circ}}[/tex]

[tex]x=\dfrac{140\cdot \frac{\sqrt{3}}{3}(2-\sqrt{3})}{\frac{\sqrt{3}}{3}- (2-\sqrt{3})}[/tex]

[tex]x=\dfrac{\dfrac{140(2\sqrt{3}-3)}{3}}{\dfrac{4\sqrt{3}-6}{3}}[/tex]

[tex]x=\dfrac{140(2\sqrt{3}-3)}{2(2\sqrt{3}-3)}[/tex]

[tex]x=\dfrac{140}{2}[/tex]

[tex]x=70[/tex]

Therefore, the height of the building is exactly 70 feet.

The Angle Of Elevation To The Top Of A Building Changes From 15 To 30 As An Observer Advances 140 Feet

Related Questions

A quality control company was hired to study the length of meter sticks produced by a certain company. The team carefully measured the length of many many meter sticks, and the distribution seems to be slightly skewed to the right with a mean of 100.06 cm and a standard deviation of 0.1 cm. (a) What is the probability of finding a meter stick with a length of more than 100.17 cm?


(b) What is the probability of finding a group of 10 meter sticks with a mean length of less than 100.03 cm?


(c) What is the probability of finding a group of 44 meter sticks with a mean length of more than 100.08 cm?


(d) What is the probability of finding a group of 50 meter sticks with a mean length of between 100.05 and 100.07 cm?


(e) For a random sample of 24 meter sticks, what mean length would be at the 92nd percentile?

Answers

Using the normal distribution and the central limit theorem, the probabilities are calculated as follows:

a) One meter stick greater than 100.17 cm: 0.1357 = 13.57%.

b) Group of 10 with mean less than 100.3: 0.1711 = 17.11%.

c) Group of 44 with mean greater than 100.08: 0.0918 = 9.18%.

d) Group of 50 with mean between 100.05 and 100.07: 0.5222 = 52.22%.

e) 92nd percentile of sample of 24: 100.09.

Normal Probability Distribution

The z-score of a measure X of a variable that has mean symbolized by [tex]\mu[/tex] and standard deviation symbolized by [tex]\sigma[/tex] is given by the rule presented as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The z-score represents how many standard deviations the measure X is above or below the mean of the distribution, depending if the calculated z-score is positive or negative.Using the z-score table, the p-value associated with the calculated z-score is found, and it represents the percentile of the measure X in the distribution.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].


Considering the Central Limit Theorem, the z-score formula can be given as follows:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

The mean and the standard deviation of the lengths are given as follows:

[tex]\mu = 100.06, \sigma = 0.1[/tex]

For item a, we have that n = 1 and the probability is one subtracted by the p-value of z when X = 100.17, hence:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]Z = \frac{100.17 - 100.06}{\frac{0.1}{\sqrt{1}}}[/tex]

Z = 1.1

Z = 1.1 has a p-value of 0.8643.

1 - 0.8643 = 0.1357.

For item b, we have that n = 10 and the probability is the p-value of Z when X = 100.03, hence:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]Z = \frac{100.03 - 100.06}{\frac{0.1}{\sqrt{10}}}[/tex]

Z = -0.95

Z = -0.95 has a p-value of 0.1711.

For item c, we have that n = 44 and the probability is one subtracted by the p-value of Z when X = 100.08, hence:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]Z = \frac{100.08 - 100.06}{\frac{0.1}{\sqrt{44}}}[/tex]

Z = 1.33.

Z = 1.33 has a p-value of 0.9082.

1 - 0.9082 = 0.0918 = 9.18%.

For item d, we have that n = 50 and the probability is the p-value of Z when X = 100.07 subtracted by the p-value of Z when X = 100.05, hence:

X = 100.07:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]Z = \frac{100.07 - 100.06}{\frac{0.1}{\sqrt{50}}}[/tex]

Z = 0.71.

Z = 0.71 has a p-value of 0.7611.

X = 100.05:

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]Z = \frac{100.05 - 100.06}{\frac{0.1}{\sqrt{50}}}[/tex]

Z = -0.71.

Z = -0.71 has a p-value of 0.2389.

0.7611 - 0.2389 = 0.5222 = 52.22%.

For item e, we have that n = 24, and the 92th percentile is X when Z = 1.405, hence;

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]1.405 = \frac{x - 100.06}{\frac{0.1}{\sqrt{24}}}[/tex]

x - 100.06 = 1.405 x 0.0204

X = 100.09.

More can be learned about the normal distribution and the central limit theorem at https://brainly.com/question/28853425

#SPJ1

Please help me correct my problem

Answers

1. For the first one just remove the x in (x+6) and put y instead (y+6) since their is no mention of x in the problem

2. Switch the order, put (y-1)(y-6)

Hope this helps!

Answer:

you accidentally put x+6 for the 1st part

An angle measures 88.8° less than the measure of its supplementary angle. What is the measure of each angle?

Answers

Answer:Hence, the measure of angle whose measure is 32∘ less than its supplement is 74∘.

Step-by-step explanation:

95 divided by 60 step by step

Answers

0 1
6 0 ⟌ 9 5
- 0
9 5
- 6 0
3 5

Brian is working his way through school. He works two part-time jobs for a total of 22 hours a week. Job A pays $6.10 per hour, and Job B pays $7.30 per hour. How many hours did he work at each job the week that he made $148.60.

Answers

Let a be the number of hours that Brian works at Job A in one week and b be the number of hours that he works at Job B .in one week

Since Brian worked 22 hours per week and he made $148.60, we can set the following system of equations:

[tex]\begin{gathered} a+b=22, \\ 6.10a+7.30b=148.60. \end{gathered}[/tex]

Subtracting b from the first equation we get:

[tex]\begin{gathered} a+b-b=22-b, \\ a=22-b\text{.} \end{gathered}[/tex]

Substituting the above equation in the second one we get:

[tex]6.10(22-b)+7.30b=148.60.[/tex]

Applying the distributive property we get:

[tex]\begin{gathered} 6.10\times22-6.10\times b+7.30b=148.60, \\ 134.20+1.20b=148.60. \end{gathered}[/tex]

Subtracting 134.20 from the above equation we get:

[tex]\begin{gathered} 134.20+1.20b-134.20=148.60-134.20, \\ 1.20b=14.40. \end{gathered}[/tex]

Dividing the above equation by 1.20 we get:

[tex]\begin{gathered} \frac{1.20b}{1.20}=\frac{14.40}{1.20}, \\ b=12. \end{gathered}[/tex]

Substituting b=12 in a=22-b we get:

[tex]a=22-12=10.[/tex]

Answer:

The product of two irrational numbers is an irrational number
a.True
b.False

Answers

False, The product of two irritational numbers is either rational or irrational numbers.

A rational number is a number expressed in the form of p/q where p and q are integers and q should not be zero. Example: 2/5, 24

Whereas an irrational number is a number that is not rational in nature means it neither be expressed in the form of p/q nor in ratio terms. Example: √12, √3

Product of two irrational numbers: √2* √2 = 4 (which is a rational number)

Product of again two irrational numbers: √2*√3= √6 ( which is an irrational number)

Therefore, the product of two irrational numbers can be rational or irrational numbers.

To learn more about an irrational number, follow the below link:

https://brainly.com/question/17450097

The product of two irrational numbers is an irrational number is false because it is either a rational or irrational number.

What is a rational number?

A rational number is defined as a numerical representation of a part of a whole that represents a fraction number.

It can be a/b of two integers, a numerator a, and a non-zero denominator b.

The product of two irrational numbers √3 ×√3 = 3

This is a rational number.

Again, the product of two irrational numbers: √5 ×√3 = √15

This is an irrational number.

As a result, the product of two irrational integers can be both rational and irrational.

Thus, the product of two irrational numbers is an irrational number is false because it is either a rational or irrational number.

Learn more about rational numbers here:

brainly.com/question/10354322

#SPJ12

hello! here is my question! the histogram shows the range of salary for employees at a company . if the mediansalary increased by $10,000 per year, what would be the new median salary?

Answers

Increasing amount = $10000

Median = Middle value = $40000

then

New median salary = $40000 + $10000 = $50000

Then answer is

OPTION C) $50-59 thousand

What is the mathematical model of different dimensions but same volume?

Answers

Prism is the mathematical model with different dimensions but same volume.

As given in the question,

Mathematical model represent different dimensions but same volume.

Prism is the mathematical model with different dimensions but same volume.

To prove it consider two different dimensions of prism.

Prism 1

length = 4cm

Width = 4cm

Height = 4cm

Surface area of the prism1 = 2( 4×4 + 4×4 +4×4)

                                            = 2(48)

                                            = 96cm²

Volume of prism1 = 4×4×4

                             = 64cm³

Prism 2

length = 8cm

Width = 2cm

Height = 4cm

Surface area of the prism1 = 2( 8×2 + 2×4 +4×8)

                                            = 2(56)

                                            = 112cm²

Volume of prism1 = 8×2×4

                             = 64cm³

Therefore, prism is the mathematical model with different dimensions but same volume.

Learn more about mathematical model here

brainly.com/question/10952874

#SPJ1

4: (x+5)=1:2
[tex]4 \div x + 5 = 1 \div 2[/tex]
4 is to (x + 5) and 1 is to 2​

Answers

Step-by-step explanation:

i2o2k2wkekekekk2k2o2o2o2o2o292

Brandon mows the neighbor's yard to earn extra cash during the summer. He estimates that he mows 1/4 an acre every 1/2 hour. How many acres does he mow each hour?

Answers

zymiyas, this is the solution:

Brandon mows 1/4 an acre every 1/2 hour, therefore:

1/2 hour * 2 = one hour

1/4 * 2 = 2/4 or 1/2 an acre

Brandon will mow 1/2 an acre every hour

Use the given special right triangle to find the value of cos 7 21 XV3 3 T

Answers

We have:

[tex]\cos (\frac{\pi}{6})=\frac{\sqrt[]{3}}{2}[/tex]

And

[tex]\cos (\frac{\pi}{3})=\frac{1}{2}[/tex]

After that, we proceed as follows:

[tex]\sin (\frac{\pi}{3})=\frac{x\sqrt[]{3}}{2x}\Rightarrow\sin (\frac{\pi}{3})=\frac{\sqrt[]{3}}{2}[/tex][tex]\cos (\frac{\pi}{3})=\frac{x}{2x}\Rightarrow\cos (\frac{\pi}{3})=\frac{1}{2}[/tex][tex]undefined[/tex]

Find the slope and y-intercept for the line.
Slope=
y-intercept = (0,

Answers

slope= 1/4

y intercept= -5

What is the sum of the first 5 numbers in the series 1+2+4+8+16+32+...?16313263

Answers

Given data:

The series is 1 + 2 + 4 + 8 + 16 + 32 + ....

The given series is G.P because the common ratio for GP is,

[tex]C\mathrm{}R\text{ = }\frac{a_2}{a_1}[/tex]

Here, the common ratio is 2.

Sum of the first five numbers ,

[tex]S_n=\frac{a(r^n-1)}{r-1}[/tex]

Here, a is first term that is 1

r is common ratio that is 2

n is the number

Therefore, sum is given as

[tex]S_5=\frac{1(2^5-1)}{2-1}[/tex][tex]\begin{gathered} S_5=\frac{32-1}{1} \\ \text{ = 31} \end{gathered}[/tex]

Thus, the sum of first five terms is 31

The correct option is (2).

Suppose an account pays 6% interest that is compounded annually. At the beginning of each year, $2,000 is deposited into the account (starting with $2,000 for the first year).

Answers

Using the future value formula, it is found that the value of the account after the tenth deposit is of $26,361.59.

What is the future value formula?

The future value formula is given by:

[tex]V(n) = P\left[\frac{(1 + r)^n - 1}{r}\right][/tex]

In which:

P is the payment.n is the number of payments.r is the interest rate.

For this problem, the parameters are given as follows:

P = 2000, r = 0.06, n = 10.

Hence the value of the account will be of:

[tex]V(10) = 2000\left[\frac{(1 + 0.06)^{10} - 1}{0.06}\right][/tex]

V(10) = $26,361.59.

What is the missing information?

The complete problem is:

"Suppose that there is an account that pays 6% interest that is compounded annually. At the beginning of each year, $2,000 is deposited into the account (starting with $2,000 for the first year).

What will be the value of the account after the tenth deposit if no withdrawals or additional deposits are made?"

More can be learned about the future value formula at https://brainly.com/question/5025949

#SPJ1

In a certain science experiment, it was required to estimate the nitrogen
content of the blood plasma of a certain colony of rats at their 37th day of age.
A sample of 9 rats was taken at random and the following data was obtained
(grams per 100cc of plasma):
0.98, 0.83, 0.99, 0.86, 0.90, 0.81, 0.94, 0.92, and 0.87.
Find the estimates for the average content and the variation in nitrogen
content in the colony.

Answers

The estimates for the average content is 0.9.

The variation in nitrogen content in the colony is 0.0036.

What is the average of a data set?

The average of a data set or the mean of a data set is found by adding all numbers in the data set and then dividing by the number of values in the set.

The sum of the data set is calculated as follows;

total = 0.98 + 0.83 + 0.99 + 0.86 + 0.9 + 0.81 + 0.94 + 0.92 + 0.87

total = 8.1

The estimated average of the nitrogen content  = 8.1/9 = 0.9

The deviation of each data from the mean;

= (0.98 - 0.9), (0.83 - 0.9), (0.99 - 0.9), (0.86 - 0.9), (0.9 - 0.9), (0.81 - 0.9), (0.94 - 0.9), (0.92 - 0.9), (0.87 - 0.9)

= 0.08, -0.07, 0.09, -0.04, 0, -0.09, 0.04, 0.02, -0.03

The sum of the square of each data from the mean;

= (0.08)² + (-0.07)²  + (0.09)² + (-0.04)² + (0.0)² + (-0.09)² + (0.04)² + (0.02)² + (-0.03)²

= 0.032

The variation of the data sample = (0.032)/9 = 0.0036

Learn more about average of dataset here: https://brainly.com/question/8610762

#SPJ1

Using truth tables

24) All businessmen wear suits.
Aaron wears a suit.
Therefore, Aaron is a businessman.
A) Valid
B) Invalid

Answers

Invalid because he doesn’t have to be a businessman to wear a suit. The true way to right it would be that aaron is a businessman, so he wears a suit, therefore invalid

Find the first four terms of the binomial series for the function shown below
(1+x^3)^-1/5

Answers

The first four terms of the binomial series are  1,  x³/5,  (12/25)x⁶ and  respectively.

The binomial provided to us is (1+x^3)^-1/5.

To find out the first four terms of the binomial, we shall first extend the standard binomial (1+x)^n.

[tex](1+x)^n = 1 + nx + [n(n - 1)/2!] x^{2} + [n(n - 1)(n - 2)/3!] x^{3} +...[/tex]

As we can see here,

The value of x = x³,

The value of n = -1/5.

We get,

[tex](1+x^{3})^{-\frac{1}{5} } = 1 - \frac{1}{5} (x^{3} ) + [\frac{-1}{5} (\frac{-1}{5} -1)/2!]x^{6} + [\frac{-1}{5} (\frac{-1}{5} -1)(\frac{-1}{5} -2)/3!]x^{27} +[/tex]

From the expansion, we can see,

First term = 1

Second term = x³/5

Third term = (12/25)x⁶

Fourth term = (-13/125)x²⁷

To know more about Binomial series, visit,

https://brainly.com/question/13800206

#SPJ1

This year nelson planted 6 more than one fifth of the tomato plants he planted last year. which expression represents the number of tomato plants he planted this year?
a 1/5x-6

b 1/5x+6

c 5x+6

d 5x-6

Answers

The expression to represent the number of tomato plants he planted this year  1 / 5 x  + 6.

How to represent expression?

This year Nelson planted 6 more than one fifth of the tomato plants he planted last year.  

The expression that can be used to represent the number of tomato plant he planted this year can calculated as follows:

Therefore,

let

x = number of tomato he planted last year.

Hence, the final expression is as follows:

1 / 5 x  + 6

learn more on expression here: https://brainly.com/question/2710205

#SPJ1

Consider the following total revenue function for a hammer. R = 36x − 0.01x2 (a) The sale of how many hammers, x, will maximize the total revenue in dollars? x = hammers Find the maximum revenue. $ (b) Find the maximum revenue if production is limited to at most 1000 hammers. $

Answers

The sales of the number of hammers that give the maximum revenue of 32400 is 1800

How to determine the number of sale of hammers

The equation of the revenue function is given as

R = 36x − 0.01x2

Rewrite the equation properly as a quadratic function

So, we have the following equation

R = 36x − 0.01x^2

Differentiate the above function

So, we have the following equation

R' = 36 - 0.02x

Set the differentiated function to 0

So, we have the following equation

36 - 0.02x = 0

This gives

0.02x = 36

Divide both sides by 0.02

So, we have

x = 1800

How to find the maximum revenue?

In (a), we have

36 - 0.02x = 0

0.02x = 36

x = 1800

Substitute x = 1800 in R = 36x − 0.01x^2

So, we have

R = 36 x 1800 − 0.01 * 1800^2

Evaluate

R = 32400

Hence, the maximum revenue is 32400

Read more about revenue functions at

https://brainly.com/question/16809127

#SPJ1

Let A(x) represent the area bounded by the graph, the horizontal axis, and the vertical lines at and t = x for the graph below. Evaluate A(x) for x = 1,2,3, and 4

Answers

Answer:

• A(1)=4

,

• A(2)=8

,

• A(3)=13

,

• A(4)=17.5

Explanation:

The graph is given below:

The area, A(x) represents the area bounded by the graph, the horizontal axis, and the vertical lines at t=0 and t = x.

(a)A(1)

Area, A(1) is the area of a trapezoid in which: a=3, b=5 and h=1

[tex]\begin{gathered} \text{ Area of a trapezoid}=\frac{1}{2}(a+b)h \\ A(1)=\frac{1}{2}(3+5)(1)=\frac{1}{2}\times8=4\text{ square units} \end{gathered}[/tex]

(b)A(2)

.

[tex]A(2)=2\times A(1)=2\times4=8\text{ square units}[/tex]

(c)A(3)

.

[tex]\begin{gathered} A(3)=A(2)+(5\times1) \\ =8+5 \\ =13\text{ square units} \end{gathered}[/tex]

(d)A(4)

[tex]\begin{gathered} A(4)=A(3)+\text{ Area of shape 4} \\ =13+\frac{1}{2}(5+4)(1) \\ =13+\frac{9}{2} \\ =13+4.5 \\ =17.5\text{ square units} \end{gathered}[/tex]

Graph the line y = kx + 1 given that point M belongs to the line.

M(1, 3)

Please help 25 points

Answers

The graph of the line y=kx+1 given that the  point M(1,3) belongs to the line is shown below .

In the question ,

it is given that

the line y=kx+1 has point (1,3) on it ,

which means that the point (1,3) will satisfy the equation y=kx+1 .

So, substituting x=1 and y=3 , we get

3=k*1+1

3-1=k

k=2

Hence , the equation of the line becomes y=2x+1 .

On comparing the equation with point slope form of the the line, y=mx+c ,

we get , the slope of the line = 2 and y intercept of the line = 1 .

the graph of the line y=2x+1 is shown below .

Therefore , the graph of the line y=kx+1 given that point M(1,3) belongs to the line is shown below .

Learn more about Line here

https://brainly.com/question/24896671

#SPJ1

The graph of a 3rd degree polynomial is shown below. Use the Fundamental Theorem of Algebra to determine the number of real and imaginary zeros.

Answers

[tex]\quad \huge \quad \quad \boxed{ \tt \:Answer }[/tex]

[tex]\qquad \tt \rightarrow \:\texttt{real roots : 2 }[/tex]

[tex]\qquad \tt \rightarrow \: imaginary \: \: roots = 1[/tex]

____________________________________

[tex] \large \tt Solution \: : [/tex]

The given polynomial is a 3rd degree polynomial so it has a total of three roots.

And we know, where the curve (of polynomial) cuts the x - axis is its real root. so, from the graph we can infer that the given polynomial has 2 real roots [ as it cuts the x - axis at two points, i.e x = -2 and x = 1 ]

Hence, Number of real roots = 2

Number of imaginary roots = total roots - real roots

i.e 3 - 2 = 1

So, number of imaginary roots = 1

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

I Need help with this

Answers

STEP - BY - STEP EXPLANATION

Balloon
1 reached
a height of X meters.
Balloon
2 reached a height of 7 times balloon 1.
Balloon 3 reached a height of half that of balloon 1.
Balloon 4 reached a height of 30 metres more than balloon 1.
The total height reached by all the balloons was 550 metres.
(a)
Formulate an algebraic expression to model the heights reached by balloons 2, 3
(b)
Find the heights reached by balloons 1, 2, 3 and 4.

Answers

Algebraic expression for Height of Balloon 2 = 7x and Height of Balloon 3 = x/2.

Heights reached by balloons 1, 2, 3 and 4 will be 54.73, 383.11, 27.36, 84.73 respectively.

We have the following given information as per the question

Balloon 1 reaches x m.

Balloon 2 reaches a height of 7 times balloon 1

∴ Balloon 2 reaches 7x m.

Balloon 3 reaches a height of half that of balloon 1.

∴ Balloon 3 reaches [tex] \frac{x}{2} [/tex] m.

Balloon 4 reaches a height of 30 meters more than balloon 1.

∴ Balloon 4 reaches ( x + 30 ) m.

Now As given The total height reached by all the balloons was 550 meters.

∴ Height of Balloon 1 + Height of Balloon 2 + Height of Balloon 3 + Height of Balloon 4 = 550 meter

∴ x + 7x + [tex] \frac{x}{2} [/tex] + (x + 30 ) =550

∴ 9.5x + 30 = 550

∴ 9.5x = 550 - 30

∴ 9.5x = 520

∴ x = 520/9.5

∴ x = 54.73 meter

(a) Algebraic expression to model the heights reached by balloons 2, 3 will be

Height of Balloon 2 = 7x = 7(54.73) = 383.11 meter

Height of Balloon 3 = x/2 = 54.73 / 2 = 27.36 meter

(b) The heights reached by balloons 1, 2, 3 and 4 will be as follows

Height of Balloon 1 = x = 54.73 meter.

Height of Balloon 2 = 7x = 7(54.73) = 383.11 meter

Height of Balloon 3 = x/2 = 54.73 / 2 = 27.36 meter

Height of Balloon 4 = x + 30 = 54.73 + 30 = 84.73 meter

For more details about balloon height problems visit link below

https://brainly.com/question/24720164

#SPJ9

(5-9i)-(2-6i)+(3-4i)

Answers

================================Simplifying - Solution and Explanation================================

Hello! So...

We are given the following:

[tex](5-9i)-(2-6i)+(3-4i)[/tex]

_____________________________________________

1. Simplify the given expression.

[tex](5-9i)-(2-6i)+(3-4i)=5-9i-(2-6i)+3-4i[/tex]

_____________________________________________

2. Group the like terms.

[tex]-9i-4i(-2-6i)+5+3[/tex]

_____________________________________________

3. Add similar elements ( [tex]-9i-4i=-13i[/tex] ).

[tex]=-13i-(2-6i)+5+3[/tex]

_____________________________________________

4. Add the numbers ( [tex]5+3=8[/tex] ).

[tex]-13i-(2-6i)+8[/tex]

_____________________________________________

5. Remove the parentheses ( [tex]-(a+bi)=-a-bi[/tex] ).

[tex]-13i+-2-(-6)i+8[/tex]

_____________________________________________

6. Group the like terms.

[tex]-13i-(-6)i-2+8[/tex]

_____________________________________________

7. Add similar elements ( [tex]-13i-(-6)i=-7i[/tex] ).

[tex]-7i-2+8[/tex]

_____________________________________________

8. Add the numbers ( [tex]-2+8=6[/tex] ).

[tex]-7i+6[/tex]

_____________________________________________

9. Rewrite in standard complex form.

[tex]6-7i[/tex]

^Hence, our solution.

_______________________________________________________

Hope this helps! If so, lmk! If you need anything else, feel free to comment below and I'll see what else I can do to assist you further. But for now, thank you for your time and good luck!

Warm-UpMatch the math vocabulary to parts of the expression w+ 5w. Two tiles will not be used.TilestermexponentconstantexpressionequationvariablecoefficientPairsw2 + 5wthe win w2 + 5wthe 2 in w2 + 5Wthe 5 in w2 + 5wthe w? or the 5w in w2 + 5wSubmit

Answers

We are given w^2 + 5w and we are asked to identify the terms for each of its parts.

First, let's start with w. The letter w is used to represent an unknown value. Thus, it is called a variable.

ext, 2. Here, 2 is useda as an exponent of w in the first term.

Meanwhile, 5 is used as a multiplier or a numerical coefficient of w in the second term.

Finally, the expression w^2 + 5w is

What else would need to be congruent to show that ABC=DEF by SAS?

Answers

Answer:

D). Angle B ≈ Angle E

Step-by-step explanation:

ASA means that for the relation to be true, there not only has to be the 3 given proportionate values, but 2 have to be angles and 1 has to be a side.

Since we already have the 1 side, option 1 and 2 are voided.

Then since we already have Angle A and D option 3 is as well, so through this we know the answer is number 4 or Angle B = Angle E

Hope this helps.

For
f(x) = 3

x
and
g(x) = x4 + 2,
find the following.
(a)
(f ∘ g)(x)

(b)
(g ∘ f)(x)

(c)
f(f(x))

(d)
f 2(x) = (f · f)(x)

Answers

Answer:

f(3) = (3)4 + 2

Step-by-step explanation:

y = (3)4 + 2

y = 12 + 2

y = 14

The depth of a local lake averages 26 ft, which is represented as |−26|. In February, it measured 5 ft deep, or |−5|, and in July, it was 18 ft deep, or |−18|. What is the difference between the depths in February and July?

21 feet
23 feet
8 feet
13 feet

Answers

The difference between the depths in February and July is D. 13 feet.

How to illustrate the information?

From the information illustrated, it was stated that the depth of a local lake average 26 ft is represented as |−26|. In February, it measured 5 ft deep, or |−5|, and in July, it was 18 ft deep, or |−18|.

Therefore, it should be noted that the depth in July is -18.

Therefore, the difference between the depths in February and July will be:

= -5 - (-18)

= -5 + 18

= 13

Therefore, the depth is 13 feet.

Learn more about depth on:

brainly.com/question/28516504

#SPJ1

Jessie incorrectly said the rate 1/4 1/16 can be written as the unit rate 1/64 what is the correct unit rate

Answers

Correct Unit rate is 4 pounds per gallons.

What is unit rate?

An item's unit rate is its price for one of it. This is expressed as a ratio with a one as the denominator. For instance, if you covered 70 yards in 10 seconds, you covered 7 yards on average every second. Seven yards in one second and 70 yards in ten seconds are both ratios, but only one of them is a unit rate. A unit rate is a ratio between two separate units with one as the denominator. Examples include miles/hour, kilometers/hour, meters/sec, salaries/month, etc.

Given Data

[tex]\frac{1}{4}[/tex] pounds = [tex]\frac{1}{16}[/tex] gallons

Rate = [tex]\frac{1}{4}[/tex] pounds ÷ [tex]\frac{1}{16}[/tex] gallons

Rate = [tex]\frac{1}{4}[/tex] × 16

Rate = 4

Unit rate is 4 pounds per gallons.

To learn more about unit rate, visit:

https://brainly.com/question/19339307

#SPJ9

Other Questions
Hello, I would really appreciate it if someone would help me out with this problem and explain how they did it if possible. If not that is completely alright. I hope you all have an amazing day. Thank you so much! :) (Even if you don't solve the problem feel free to give it your best guess or even just say "hello" to earn yourself some points. You deserve them.) :D (Will be looking for a brainliest!) The festival of Midnight Sun Theatre has 7875 seats arranged in 75 equal rows. How many seats are in each row? Find the ordered pair (x,y) 6x-y=6 deduce the relationship between e.m.u and e.s.u in technology . (FIRST TO ANSWER GETS BRAINLIEST)(EXPLANATION PLEASE AND THANK YOU I NEED THESE ANSWERS IN COMPLETE SENTANCES IF POSSIBLE I NEED THESE BY TODAY) What are eukaryotes? Give some examples..What happens as an organism increases in size? Why does this happen?What happens when a cell divides?Can multicellular organisms be microscopic?What is one structure found in giant kelp? What is its function?What is one structure found in a banyan tree? What is its function?What are the advantages of being multicellular?What is the function of collar cells in sponges?What are the disadvantages of being multicellular?How are multicellular organisms organized?Why do organisms have organ systems?What are some of the special organs that help a fish survive in its environment? The risk of transmission of infection through tears is discuss the importance of the louisiana purchase in regards to jeffersons presidency and the nation as a whole. A model of a rectangular stove top with four circular burners is shown. The side lengths of the stove top and the diameters of the burners are labeled.Which measurement is the best estimate of the area in square inches of the stove top that does not include the area of the burners?A)108 in.2B)492 in.2C)420 in.2D)528 in.2 Select the main out ones from Bacons Rebellion Which of the following does not need to be considered when selecting a bow?A. Is the bow made by hand?B. Will you shoot right or left handed?C. Will the bow be used for target shooting, hunting or both?D. Can the bow be held without straining? Reread lines 26-30. Notice thatAchilles suggests that his heartis guiding him rather than hishead. What characteristics doesAchilles reveal in these lines? How many moles of silver are present in a silver spoon that has a mass of 12.86 g?You do not need to type your units into the answer box. Please report your answer with three places after the decimal, and do not use scientific notation. o alil ContentWhat is King's message? What ideas anddetails does he include to make thatmessage clear? Match the parts of the following chemical equation to the correct description.CL2(g)+ALCl3(aq)-->__I2(aq)+___AlCl3(aq)Column A. Column b1.Cl2 + AlI3. a. Products2.I2 + AlCl3. b. Shows which way the reaction progresses3.(g) or (aq). c. Reactants4.-->. d. State of MatterPLEASE ANSWER QUICK calculate the 76- kg pilot's effective weight (the force with which the seat pushes up on him) at the bottom of the circle, and at the top of the circle (assume the same speed). What Propertys are used in each step?Step 1 5x+9+5x+12=(5x+9)+(5x+12)Step 2 = 5x+(9 +5x)+12Step 3 = 5x+(5x+9)+12Step 4 =(5x+5x)+(9+12)Step 5 = (5 + 5)x+ (9 + 12)Step 6 = 10x + 21 What were several effects of the large number of immigrants to the U.S. in the late 1800s to early 1900s A scientist needs 1.8 liters of a 22% alcohol solution. She has available a 33% and a17% solution. How many liters of the 23% and how many liters of the 17%solutions should she mix to make the 22% solution? what property does 5(a) = a(5) belong to? Associative PropertyCommutative PropertyInverse PropertyIdentity Property Carla works in the kitchen of nursing home. She is making chicken pot pie and serving fresh fruit. She cuts the chicken with a sharp knife on a cutting board. She only has one cutting board, so she washes it thoroughly after cutting the chicken. She also thoroughly washes the knife and her hands. She is trying to avoid _____.time/temperature abusecross-contaminationchemical contaminationphysical contamination