Answer:
arrange them: -9x^3+2x^3-4x^2+x^2-6x-5x
the simplified is: -7x^3-3x^2-11x
find the derivitive of f(x)=(x+9)/(x+1)
[tex]\dfrac{d}{dx} \left(\dfrac{x+9}{x+1}\right)\\\\\\=\dfrac{(x+1)\dfrac{d}{dx}(x+9) - (x+9) \dfrac{d}{dx}(x+1)}{(x+1)^2}\\\\\\=\dfrac{(x+1) - (x+9)}{(x+1)^2}\\\\\\=\dfrac{x+1-x-9}{(x+1)^2}\\\\\\=-\dfrac{8}{(x+1)^2}[/tex]
A self-storage center has many storage rooms that are 6 feet wide, 10 feet deep, and 12 feet high. What is the volume of the room?
Answer:
720 ft^3
Step-by-step explanation:
6 * 10 *12
v = l * w * h
6 * 10 * 12 = 720
Volume is a three-dimensional scalar quantity. The volume of the self-storage centre room is 720 ft³.
What is volume?A volume is a scalar number that expresses the amount of three-dimensional space enclosed by a closed surface.
The volume of a room or box that is the shape of a rectangular prism is calculated by multiplying the length, width, and height of the prism.
Volume = Length × Width × Height
Given that the self-storage centre room's are 6 feet wide, 10 feet deep, and 12 feet high. Therefore, the dimension of the room can be written as,
Length = 10 ft
Width = 6 ft
Height = 12 ft
Now, the volume of the room can be written as,
Volume of the room = 10ft × 6ft × 12ft
= 720 ft³
Hence, the volume of the self-storage centre room is 720 ft³.
Learn more about Volume:
https://brainly.com/question/13338592
#SPJ5
negative eight i multiplied by five i
A line has a slope of and passes through the point (4, 7). What is its equation in
slope-intercept form?
Answer:
y = (7/4)x + 0
Step-by-step explanation:
yeah-ya....... right?
Some one help me? ill give 50 points
Answer:
v=[tex]\frac{(w+v)/t}{2}[/tex]
Step-by-step explanation:
just inverse operations and you will always get your answer :)
Which of the following is the graph of y=x+3
Answer:ITS THE SECOND ONE
Step-by-step explanation:
The average of eight different numbers is 5. If 1 is added to the largest number, what is the resulting average of the eight numbers?
Answer:
Step-by-step explanation:
X/8 = 5
X = 40
Adding 1 to the largest number (or any other of the numbers, for that matter) makes the sum 41 and the average 41/8 or 5 1/8.
The average of a given number is the sum of the given numbers divided by the number of numbers in the given set.
The resulting average of the eight numbers after adding 1 to the largest number is 5.125.
What is a mean?It is the average value of the set given.
It is calculated as:
Mean = Sum of all the values of the set given / Number of values in the set
Example:
2, 3, 4, 5
The average number of 1, 2, 4, and 5 is 3.
i.e 12 ÷ 4 = 3
We have,
The average of eight different numbers is 5.
Let the sum of 8 different numbers be M.
Average = M / 8
5 = M / 8
M = 8 x 5
M = 40
Now,
If 1 is added to the largest number.
This means,
40 + 1 = 41
The resulting average of the eight numbers:
= 41/8
= 5.125
Thus,
The resulting average of the eight numbers after adding 1 to the largest number is 5.125.
Learn more about mean here:
https://brainly.com/question/23263573
#SPJ2
10. Flora rented a space at the flea market.
Her space included electricity.
Booth Space
each day:$25
Electricity:$2
Which expression gives the total cost of
the day's rental if she used h hours of
electricity?
A. 25-2h
B. 25 + 2h
C.(25+2) x h
D. 25h+2
Answer:
It is D
Step-by-step explanation:
I am not exactly sure how to explain but i'll try.
The 2 dollars is added to her price, so it is not A.
The 25 dollars is every day, so it is mutlipled by x. So its not B.
The 2 dollars is not everyday like the 25 dollars, so its not C b/c its not everyday.
Omar needs at least $8 to buy lunch. Which number line represents this scenario?
Answer:
I'd say none, as we're missing something in this problem. Make sure you've included everything to solve this problem. Thanks.
What is the solution to the equation −6z+1=−4−7z , given the replacement set {−5, −3, −1} ?
−5
−3
−1
I don't know.
the solution to the system of equation from the replacement set is -5
Given the equation −6z+1=−4−7z, we are to find the value of z from the given equation:
Given
−6z+1=−4−7z
Collect the like terms;
-6z + 7z = -4 - 1
Simplify the result
z = -4 -1
z= -5
Hence the solution to the system of the equation from the replacement set is -5
Learn more on equation here: https://brainly.com/question/2972832
Answer:
-5
Step-by-step explanation:
I took the quiz in k12
-2(x-6)=6 help me out
Answer:
x = 9
Step-by-step explanation:
i took the quiz
[tex]\mathfrak{-2(x-6)=6} [/tex]
[tex]\mathfrak{-2x+12=6} [/tex]
[tex]\mathfrak{-2x=6-12} [/tex]
[tex]\mathfrak{-2x=-6} [/tex]
[tex]\boxed{\mathfrak{x=3} }[/tex]
2x+7y+7x=18
Find the value of Y
Answer:
y=−9/7x+18/7
Step-by-step explanation:
2x+7y+7x=18
9x+7y=18
Step 1: Add -9x to both sides.
9x+7y+−9x=18+−9x
7y=−9x+18
Step 2: Divide both sides by 7.
7y/7=−9x+18/7
y=−9/7x+18/7
Given :
2x + 7y + 7x = 18To Find :
The value of ySolution :
[tex]\qquad { \dashrightarrow \: { \sf{2x + 7y + 7x = 18}}}[/tex]
Adding the like terms :
[tex]\qquad { \dashrightarrow \: { \sf{ 7y + 9x = 18}}}[/tex]
Transposing 9y to the other side which then becomes negative :
[tex]\qquad { \dashrightarrow \: { \sf{ 7y = 18 - 9x}}}[/tex]
Dividing both sides by 7 :
[tex]\qquad { \dashrightarrow \: { \sf{ \dfrac{7y}{7} = \dfrac{18 - 9x}{7} }}}[/tex]
[tex]\qquad { \dashrightarrow \: { \sf{ y = \dfrac{18 - 9x}{7} }}}[/tex]
⠀
Therefore, the value of y = 18 – 9x/7 .
Help help math math math
Answer:
-3/7,0
Step-by-step explanation:
A middle school took all of its 6th grade students on a field trip to see a symphony at a theater that has 4500 seats. The students filled 2205 of the seats in the theater. What percentage of the seats in the theater were filled by the 6th graders on the trip?
Answer:
49%.
Step-by-step explanation:
2205 100 220500
........... x .......... = .................. = 49 (49%).
4500 1 4500
The theater filled up with 49% of seats with 6th grade students.
What is a expression? What is a mathematical equation? What is Equation Modelling?A mathematical expression is made up of terms (constants and variables) separated by mathematical operators. A mathematical equation is used to equate two expressions. Equation modelling is the process of writing a mathematical verbal expression in the form of a mathematical expression for correct analysis, observations and results of the given problem.
We have a middle school that took all of its 6th grade students on a field trip to see a symphony at a theater that has 4500 seats. The students filled 2205 of the seats in the theater.
Assume that the theater filled up [x]% of seats at the theater. Then, we can write -
[x]% = (2205/4500) x 100
[x]% = 0.49 x 100
[x]% = 49%
Therefore, the theater filled up with 49% of seats with 6th grade students.
To solve more questions on Equations, Equation Modelling and Expressions visit the link below -
brainly.com/question/14441381
#SPJ2
9
00
8-
7+
6+
5-
3+
H
-9-8-7-6-5-4-3-2
2 3 4 5 6 7 8 9
-2+
-3+.
-4+
-5+
-6+
-7+
op -
what is the slope of the graph
Answer:
-5+
Step-by-step explanation:
Slope of the line passing through the points (1, 4) and (3, 2) is -1.
What is Slope of Line?The slope of the line is the ratio of the rise to the run, or rise divided by the run. It describes the steepness of line in the coordinate plane.
The slope intercept form of a line is y=mx+b, where m is slope and b is the y intercept.
The slope of line passing through two points (x₁, y₁) and (x₂, y₂) is
m=y₂-y₁/x₂-x₁
The line passing through the points (1, 4) and (3, 2)
Plug in the points in the slope formula.
Slope = 2-4/3-1
=-2/2
=-1
Hence, slope of the line passing through the points (1, 4) and (3, 2) is -1.
To learn more on slope of line click:
https://brainly.com/question/16180119
#SPJ7
If f (x) = 3x + 2 and g(x) = x2 – x, find the value.
-
f (2)+1
Answer:
......
Step-by-step explanation:
Henry used his GPS to measure the distances from his house to two locations to the thousandth mile. Then, he rounded both values to the nearest hundredth. Which pair of distances could be the actual distances Henry measured?
school: 3.26 miles
piano lessons: 5.84 miles
If sin ∅ = a/b then prove that (sec ∅ + tan ∅) = √b+a/b-a
Given that
Sin θ = a/b
LHS = Sec θ + Tan θ
⇛(1/Cos θ) + (Sin θ/ Cos θ)
⇛(1+Sin θ)/Cos θ
We know that
Sin² A + Cos² A = 1
⇛Cos² A = 1-Sin² A
⇛Cos A =√(1-Sin² A)
LHS = (1+Sin θ)/√(1- Sin² θ)
⇛ LHS = {1+(a/b)}/√{1-(a/b)²}
= {(b+a)/b}/√(1-(a²/b²))
= {(b+a)/b}/√{(b²-a²)/b²}
= {(b+a)/b}/√{(b²-a²)/b}
= (b+a)/√(b²-a²)
= √{(b+a)(b+a)/(b²-a²)}
⇛ LHS = √{(b+a)(b+a)/(b+a)(b-a)}
Now, (x+y)(x-y) = x²-y²
Where ,
x = b and y = aOn cancelling (b+a) then
⇛LHS = √{(b+a)/(b-a)}
⇛RHS
⇛ LHS = RHS
Sec θ + Tan θ = √{(b+a)/(b-a)}
Hence, Proved.
Answer: If Sinθ=a/b then Secθ+Tanθ=√{(b+a)/(b-a)}.
also read similar questions:- i) sin^2 A sec^2 B + tan^2 B cos^2 A = sin^2A + tan²B..
https://brainly.com/question/12997785?referrer
Sec x -tan x sin x =1/secx Help me prove it..
https://brainly.com/question/20791199?referrer
Which of the following is a rational number?
Can i get some help with this inductive reasoning test, the answer and the explanation please. Thank you.
Answer:
8, 2.
Step-by-step explanation:
2*4 is 8 so I think line them up together and 12/6 is 2
According to the website www.olx.uz, monthly rent for a two-bedroom apartment has a mean of
$250 and a standard deviation of $100 in the city of Andijan. The distribution of the monthly rent does not
follow the normal distribution. In fact, it is positively skewed. What is the probability of selecting a sample
of 40 two-bedroom apartments and finding the mean to be at least $275 per month?
Using the normal distribution and the central limit theorem, it is found that there is a 0.0571 = 5.71% probability of selecting a sample of 40 two-bedroom apartments and finding the mean to be at least $275 per month.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem:
The mean is of $250, hence [tex]\mu = 250[/tex].The standard deviation is of $100, hence [tex]\sigma = 100[/tex].The sample is of 40 apartments, hence [tex]n = 40, s = \frac{100}{\sqrt{40}}[/tex].The probability of selecting a sample of 40 two-bedroom apartments and finding the mean to be at least $275 per month is the p-value of Z when X = 275, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{275 - 250}{\frac{100}{\sqrt{40}}}[/tex]
[tex]Z = 1.58[/tex]
[tex]Z = 1.58[/tex] has a p-value of 0.9429.
1 - 0.9429 = 0.0571
0.0571 = 5.71% probability of selecting a sample of 40 two-bedroom apartments and finding the mean to be at least $275 per month.
You can learn more about the normal distribution and the central limit theorem at https://brainly.com/question/24663213
The function v(t) is the velocity in m/sec of a particle moving along the x-axis. Use analytic methods to do each of the following: (a) Determine when the particle is moving to the right, to the left, and stopped. (b) Find the particle's displacement for the given time interval. If s(0) = 3, what is the particle's final position? (c) Find the total distance traveled by the particle. v(t) = 5 (sint)^2(cost); 0 ≤ t ≤ 2π
Answer:
(a) The particle is moving to the right in the interval [tex](0 \ , \ \displaystyle\frac{\pi}{2}) \ \cup \ (\displaystyle\frac{3\pi}{2} \ , \ 2\pi)[/tex] , to the left in the interval [tex](\displaystyle\frac{\pi}{2}\ , \ \displaystyle\frac{3\pi}{2})[/tex], and stops when t = 0, [tex]\displaystyle\frac{\pi}{2}[/tex], [tex]\displaystyle\frac{3\pi}{2}[/tex] and [tex]2\pi[/tex].
(b) The equation of the particle's displacement is [tex]\mathrm{s(t)} \ = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(t)} \ + \ 3[/tex]; Final position of the particle [tex]\mathrm{s(2\pi)} \ = \ 3[/tex].
(c) The total distance traveled by the particle is 9.67 (2 d.p.)
Step-by-step explanation:
(a) The particle is moving towards the right direction when v(t) > 0 and to the left direction when v(t) < 0. It stops when v(t) = 0 (no velocity).
Situation 1: When the particle stops.
[tex]\-\hspace{1.7cm} v(t) \ = \ 0 \\ \\ 5 \ \mathrm{sin^{2}(t)} \ \mathrm{cos(t)} \ = \ 0 \\ \\ \-\hspace{0.3cm} \mathrm{sin^{2}(t) \ cos(t)} \ = \ 0 \\ \\ \mathrm{sin^{2}(t)} \ = \ 0 \ \ \ \mathrm{or} \ \ \ \mathrm{cos(t)} \ = \ 0 \\ \\ \-\hspace{0.85cm} t \ = \ 0, \ \displaystyle\frac{\pi}{2}, \ \displaystyle\frac{3\pi}{2} \ \ \mathrm{and} \ \ 2\pi[/tex].
Situation 2: When the particle moves to the right.
[tex]\-\hspace{1.67cm} v(t) \ > \ 0 \\ \\ 5 \ \mathrm{sin^2(t) \ cos(t)} \ > \ 0[/tex]
Since the term [tex]5 \ \mathrm{sin^{2}(t)}[/tex] is always positive for all value of t of the interval [tex]0 \ \leq \mathrm{t} \leq \ 2\pi[/tex], hence the determining factor is cos(t). Then, the question becomes of when is cos(t) positive? The term cos(t) is positive in the first and third quadrant or when [tex]\mathrm{t} \ \epsilon \ (0, \ \displaystyle\frac{\pi}{2}) \ \cup \ (\displaystyle\frac{3\pi}{2}, \ 2\pi)[/tex] .
*Note that parentheses are used to demonstrate the interval of t in which cos(t) is strictly positive, implying that the endpoints of the interval are non-inclusive for the set of values for t.
Situation 3: When the particle moves to the left.
[tex]\-\hspace{1.67cm} v(t) \ < \ 0 \\ \\ 5 \ \mathrm{sin^2(t) \ cos(t)} \ < \ 0[/tex]
Similarly, the term [tex]5 \ \mathrm{sin^{2}(t)}[/tex] is always positive for all value of t of the interval [tex]0 \ \leq \mathrm{t} \leq \ 2\pi[/tex], hence the determining factor is cos(t). Then, the question becomes of when is cos(t) positive? The term cos(t) is negative in the second and third quadrant or [tex]\mathrm{t} \ \epsilon \ (\displaystyle\frac{\pi}{2}, \ \displaystyle\frac{3\pi}{2})[/tex].
(b) The equation of the particle's displacement can be evaluated by integrating the equation of the particle's velocity.
[tex]s(t) \ = \ \displaystyle\int\ {5 \ \mathrm{sin^{2}(t) \ cos(t)}} \, dx \ \\ \\ \-\hspace{0.69cm} = \ 5 \ \displaystyle\int\ \mathrm{sin^{2}(t) \ cos(t)} \, dx[/tex]
To integrate the expression [tex]\mathrm{sin^{2}(t) \ cos(t)}[/tex], u-substitution is performed where
[tex]u \ = \ \mathrm{sin(t)} \ , \ \ du \ = \ \mathrm{cos(t)} \, dx[/tex].
[tex]s(t) \ = \ 5 \ \displaystyle\int\ \mathrm{sin^{2}(t) \ cos(t)} \, dx \\ \\ \-\hspace{0.7cm} = \ 5 \ \displaystyle\int\ \ \mathrm{sin^{2}(t)} \, du \\ \\ \-\hspace{0.7cm} = \ 5 \ \displaystyle\int\ \ u^{2} \, du \\ \\ \-\hspace{0.7cm} = \ \displaystyle\frac{5u^{3}}{3} \ + \ C \\ \\ \-\hspace{0.7cm} = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(t)} \ + \ C \\ \\ s(0) \ = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(0)} \ + \ C \\ \\ \-\hspace{0.48cm} 3 \ = \ 0 \ + \ C \\ \\ \-\hspace{0.4cm} C \ = \ 3.[/tex]
Therefore, [tex]s(t) \ = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(t)} \ + \ 3[/tex].
The final position of the particle is [tex]s(2\pi) \ = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(2\pi)} \ + \ 3 \ = \ 3[/tex].
(c)
[tex]s(\displaystyle\frac{\pi}{2}) \ = \ \displaystyle\frac{5}{3} \ \mathrm{sin^{3}(\frac{\pi}{2})} \ + \ 3 \\ \\ \-\hspace{0.85cm} \ = \ \displaystyle\frac{14}{3} \qquad (\mathrm{The \ distance \ traveled \ initially \ when \ moving \ to \ the \ right})[/tex]
[tex]|s(\displaystyle\frac{3\pi}{2}) - s(\displatstyle\frac{\pi}{2})| \ = \ |\displaystyle\frac{5}{3} \ (\mathrm{sin^{3}(\frac{3\pi}{2})} \ - \ \mathrm{sin^{3}(\displaystyle\frac{\pi}{2})})| \ \\ \\ \-\hspace{2.28cm} \ = \ \displaystyle\frac{5}{3} | (-1) \ - \ 1| \\ \\ \-\hspace{2.42cm} = \displaystyle\frac{10}{3} \\ \\ (\mathrm{The \ distance \ traveled \ when \ moving \ to \ the \ left})[/tex]
[tex]|s(2\pi) - s(\displaystyle\frac{3\pi}{2})| \ = \ |\displaystyle\frac{5}{3} \ (\mathrm{sin^{3}(2\pi})} \ - \ \mathrm{sin^{3}(\displaystyle\frac{3\pi}{2})})| \ \\ \\ \-\hspace{2.28cm} \ = \ \displaystyle\frac{5}{3} | 0 \ - \ 1| \\ \\ \-\hspace{2.42cm} = \displaystyle\frac{5}{3} \\ \\ (\mathrm{The \ distance \ traveled \ finally \ when \ moving \ to \ the \ right})[/tex].
The total distance traveled by the particle in the given time interval is[tex]\displaystyle\frac{14}{3} \ + \ \displaystyle\frac{5}{3} \ + \ \displaystyle\frac{10}{3} \ = \ \displaystyle\frac{29}{3}[/tex].
A bakery sold a total of 500 cupcakes in a day, and 190 of them were vanilla flavored. What percentage of cupcakes sold that day were vanilla flavored?
Answer: 50/19
Step-by-step explanation:
I'm no math genius however I believe this is division.
500/190 gave me a fraction which is 50/19.
Ron wants to make money painting portraits of people at the local mall. The mall
charges Ron $22.00 a day for Ron to set up his materials to sell his portraits. He
charges $15.50 a portrait, but it costs him $3.25 in materials to make that portrait.
If x represents the number of portraits that Ron sells at the mall, which of the
following expressions would represent Ron's profit (how much money Ron will walk
away with at the end of the day)? (There is more than one answer)
12. 25x – 22.00
15.50x – 22.00
0-22.00 + 15.50x – 3.25x
15.50x
3. 25x – 22.00
22.00x – 3.25x
15.50
Answer:
A and CStep-by-step explanation:
With the amount x of portraits the daily balance is:
- $22.00+ $15.50x- $3.25xThe total is:
15.50x - 3.25x - 22.00 ⇒ 12.25x - 22.00Correct choices are A and C
With the amount x of portraits the daily balance is:
- $22.00
+ $15.50x
- $3.25x
The total is:15.50x - 3.25x - 22.00 ⇒ 12.25x - 22.00
Correct choices are A and Cx-5y=16 , 4x-2y=-8 solve using elimination method
Answer:
x = -4
y = -4
Step-by-step explanation:
L1 x - 5y = 16
L2 4x - 2y = -8
4*L1 - L2
4x - 20y = 64
-4x + 2y = 8
-----------------------
-18y = 72
y = 72 / -18
y = -4
x - 5y = 16
x = 16 + 5y
x = 16 + 5(-4)
x = 16 - 20
x = -4
Helpppppppp me …………………..
Answer:
first let's solve for x
x + (x + 30) + 2x = 180
4x + 30 = 180
-30 -30
4x = 150
/4 /4
x = 37.5
Now solve for the angle measures:
(x + 30) = (37.5 + 30) = 67.5
2x = 2(37.5) = 75
x = 37.5
Answer:
X= 37.5
Step-by-step explanation:
There is a line that includes the point (4, 1) and has a slope of 1. What is its equation in
slope-intercept form?
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Answer:
y = x - 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = 1 , then
y = x + c ← is the partial equation
To find c substitute (4, 1 ) into the partial equation
1 = 4 + c ⇒ c = 1 - 4 = - 3
y = x - 3 ← equation of line
How do I simplify the ratio of
42 : 28 : 21
Answer:
6:4:3
Step-by-step explanation:
each can be divided by 7
Answer:
6 4 3
Step-by-step explanation:
Susan loaned Marcel $19,080 at an interest rate of 17% for 5 years. How much will Marcel pay Susan at the end of 5 years? Round your answer to the nearest cent, if necessary.
Match each shape with its area formula.
square: A=s^2
triangle: A=(1/2)bh
rectangle: A=lw
parallelogram: A=bh