PLS ANSWER THIS AND GET BRAINLIEST !!!
A grocery store collected sales data. It found that when customers buy less bread, they tend to purchase more rice. What can we conclude?


A. There is no correlation between amount of bread bought and amount of rice purchased.

B. There is a correlation between amount of bread bought and amount of rice purchased. However, there is no causation. This is because there is an increase in the amount of rice purchased with a decrease in the amount of bread bought.

C. There is a correlation between amount of bread bought and amount of rice purchased. There may or may not be causation. Further studies would have to be done to determine this.

Answers

Answer 1

Answer:  C

Step-by-step explanation: C because there is obviously a correlation yet we cannot determine if there is causation or not.


Related Questions

unknown Population mean practice
Standard Deviation = 5000
Sample # (n) = 80
Sample mean=58,800.
Confidence interval = 98% -
Construct a 98% confidence interval For the unknown population mean Salary Of PPCC associates in education gradudtes
288,000 = underachievement

Answers

The 98% confidence interval for the population mean is given as follows:

($57,473, $60,127).

What is a t-distribution confidence interval?

The t-distribution is used when the standard deviation for the population is not known, and the bounds of the confidence interval are given according to the equation presented as follows:

[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]

The variables of the equation are listed as follows:

[tex]\overline{x}[/tex] is the sample mean.t is the critical value.n is the sample size.s is the standard deviation for the sample.

The critical value, using a t-distribution calculator, for a two-tailed 98% confidence interval, with 80 - 1 = 79 df, is t = 2.3745.

The parameter values for this problem are given as follows:

[tex]\overline{x} = 58800, s = 5000, n = 80[/tex]

Then the lower bound of the interval is given as follows:

[tex]58800 - 2.3745 \times \frac{5000}{\sqrt{80}} = 57473[/tex]

The upper bound is given as follows:

[tex]58800 + 2.3745 \times \frac{5000}{\sqrt{80}} = 60127[/tex]

More can be learned about the t-distribution at https://brainly.com/question/17469144

#SPJ4

A machine shop needs a machine continuously. When a machine fails or it is 3 years old, it is instan- taneously replaced by a new one. Successive machines lifetimes are i.i.d. random variables uniformly distributed over 12,5) years. Compute the long-run rate of replacement.

Answers

The long-run rate of replacement is 0.444 machines per year.

Given that a machine shop needs a machine continuously. Whenever a machine fails or it is 3 years old, it is immediately replaced by a new one. We can assume that the machines' lifetimes are i.i.d. random variables uniformly distributed over (1, 2.5) years.

The question requires us to compute the long-run rate of replacement. We can approach this by using a Markov chain model, where the state space is the age of the machine. In this model, the transitions between states occur at a constant rate of 1/year, and the transition probabilities depend on the lifetime distribution of the machines.

Let xi denote the expected lifetime of the machine when it is i years old.

Then, we have: x1 = (1/2.5)∫(1,2.5)tdt = 1.25 years x2 = (1/2.5)∫(2,2.5)tdt + (1/2.5)∫(0,1.5)(t+1)dt = 1.75 years x3 = (1/2.5)∫(3,2.5)(t+1)dt + (1/2.5)∫(0,2)(t+2)dt = 2.25 years

The expected time to replacement from state i is xi.

Therefore, the long-run rate of replacement is given by: 1/x3 = 1/2.25 = 0.444.

Hence, the long-run rate of replacement is 0.444 machines per year.

Know more about Markov chain here,

https://brainly.com/question/30465344

#SPJ11

HEY YOU! YES YOU, HOTTIE PLS HELP ME <3
Which of the following statements is true about the rates of change of the functions shown below?
f(x)=4x
g(x)=4^x

A) For every unit x increases, both f(x) and g(x) quadruple in quantity

B)For every unit x increases, both f(x) and g(x) increases by 4 units.

C) For every unit x increases, f(x) quadruples in quantity and g(x) increases by 4 units.

D) For every unit x increases, f(x) increases by 4 units and g(x) quadruples in quantity.

Answers

Answer:

None of the above if there is that answer because one is 4 times and the other is 4 to the x power which is exponential

Step-by-step explanation:

Answer:

C

Step-by-step explanation:

lol I'll take the hottie bit XDDDD

What is the best definition for parabola?

Answers

Answer: curve shape of something

Step-by-step explanation:

Answer:

Hey mate......

Step-by-step explanation:

This is ur answer.......

A parabola is a curve where any point is at an equal distance from: a fixed point (the focus), and. a fixed straight line (the directrix)

Hope it helps!

mark me brainliest pls.......

Follow me! :)

(a) Calculate sinh (log(3) - log(2)) exactly, i.e. without using a calculator (b) Calculate sin(arccos(-)) exactly, i.e. without using a calculator. (c) Using the hyperbolic identity Coshºp – si

Answers

(a) The exact value of sinh (log(3) - log(2)) is 5/8.

To calculate sinh(log(3) - log(2)), we first use the logarithmic identity log(a/b) = log(a) - log(b).

Rewriting the expression:

sinh(log(3/2)).

Next, we use the definition of sinh in terms of exponential functions:

sinh(x) = ([tex]e^x - e^-x[/tex])/2.

Substituting

x = log(3/2),

We get the value:

sinh(log(3/2)) = ([tex]e^(log(3/2)[/tex]) - [tex]e^(-log(3/2))[/tex])/2

= (3/2 - 2/3)/2

= (9/4 - 4/4)/2

= 5/8

(b) The exact value of sin(arccos(x)) = sin(arcsin(acos(y))) = x.

Let's consider sin(arccos(x)). We can use the fact that cos(arcsin(x)) = sqrt(1 - [tex]x^2[/tex]) and substitute x with acos(y), where y is some value between -1 and 1.

Then we have:

cos(arcsin(x)) = cos(arcsin(acos(y)))

= cos(arccos(sqrt([tex]1-y^2[/tex])))

= sqrt([tex]1-y^[/tex])

Therefore, sin(arccos(x)) = sin(arcsin(acos(y))) = x.

(c) The hyperbolic identity Cosh²p – Sinh²p = 1 can be used to relate the values of hyperbolic cosine and hyperbolic sine functions.

By rearranging this identity, we get:

Cosh(p) = sqrt(Sinh²p + 1)

or

Sinh(p) = sqrt(Cosh²p - 1)

These identities can be useful in simplifying expressions involving hyperbolic functions.

To know more about exact value refer here:

https://brainly.com/question/32513003#

#SPJ11

The time between calls to a corporate office is exponentially distributed random variable X with a mean of 10 minutes. Find: (A) fx(x) KD)

Answers

Given: The time between calls to a corporate office is exponentially distributed random variable X with a mean of 10 minutes.

Formula used: The probability density function of the exponential distribution is given by:

[tex]$f(x)=\frac{1}{\theta} e^{-x/\theta}$[/tex]

The cumulative distribution function of the exponential distribution is given by:

[tex]$F(x)=1 - e^{-x/\theta}$[/tex]

To find: [tex](A) $f_x(x)$[/tex] KD. The probability density function of the exponential distribution is given by: [tex]$f(x)=\frac{1}{\theta} e^{-x/\theta}$[/tex]

Here, [tex]$\theta$[/tex] = mean of the distribution = 10 minutes.

Substituting the values in the probability density function, we get: [tex]$f(x)=\frac{1}{10} e^{-x/10}$[/tex]

Therefore, the required density function of the distributed random variable X is: [tex]$(A) f_x(x) = \frac{1}{10}e^{-x/10}$[/tex]KD.

To know more about density function, visit:

https://brainly.com/question/31039386

#SPJ11

On May 1, you sign a $1000 note with simple interest of 8.5% and a maturity date of December 19. You make partial

payments of $475 on June 2 and $200 on November 4. How much will you owe on the date of maturity?

A) $355.79

B) $354.39

C) $359.53

D) $358.96

Answers

Answer:

The amount to be repaid is $379.26.

Step-by-step explanation:

Period of note from May 1 to December 19 = 233 days

Amount of note or principal = $1,000

Simple interest rate = 8.5%

Maturity date = December 19

Repayments:

June 2 = $475

Nov. 4 =  $200

Total paid $675

Simple interest = $54.26 ($1,000 * 8.5% * 233/365)

Total amount to be repaid = $1,054.26

Total amount repaid =               675.00

Balance to be paid on maturity $379.26

Let (V, f) an inner product space and let U be a subspace of V. Let w € V. Write w=u_w + v_w with u_w € U and v_w €U. Let u € U.

(a) Show that f(w-u, w-u) = ||u_w - u ||² + ||v||².

Answers

We have proved the given equation f(w - u, w - u) = ||u_w - u||² + ||v_w||².

The given inner product space is (V, f) and U is a subspace of V. It is given that w € V and it can be written as w = u_w + v_w with u_w € U and v_w €U.

Also, u € U. To show that f(w-u, w-u) = ||u_w - u ||² + ||v||², we have to prove it.

Let's consider the left-hand side of the equation. We can expand it as follows:

f(w - u, w - u) = f(w, w) - 2f(w, u) + f(u, u)

By the definition of w and the fact that u is in U, we know that w = u_w + v_w and u = u. So we can substitute these values:

f(w - u, w - u) = f(u_w + v_w - u, u_w + v_w - u) - 2f(u_w + v_w, u) + f(u, u)

Now, using the properties of an inner product, we can rewrite this as:

f(w - u, w - u) = f(u_w - u, u_w - u) + f(v_w, v_w) + 2f(u_w, v_w) - 2f(u_w, u) + f(u, u)

The term f(v_w, v_w) is non-negative since f is an inner product. Similarly, the term f(u, u) is non-negative since u is in U. Hence we can write the above equation as:

f(w - u, w - u) = ||u_w - u||² + ||v_w||² + 2f(u_w, v_w) - 2f(u_w, u) + f(u, u)

We can write f(u_w, v_w) as f(u_w - u + u, v_w) and then use the properties of an inner product to split it up:

f(u_w - u + u, v_w) = f(u_w - u, v_w) + f(u, v_w)

By definition, u is in U so f(u, v_w) = 0. Hence we can simplify:

f(u_w - u + u, v_w) = f(u_w - u, v_w) = f(u_w, v_w) - f(u, v_w)

Now we can substitute this back into the previous equation:

f(w - u, w - u) = ||u_w - u||² + ||v_w||² + 2f(u_w, v_w) - 2f(u_w, u) + f(u, u) = ||u_w - u||² + ||v_w||² + 2f(u_w - u, v_w) + f(u, u)

Since U is a subspace, u_w - u is also in U. Hence, f(u_w - u, v_w) = 0.

Therefore,

f(w - u, w - u) = ||u_w - u||² + ||v_w||².

Therefore, we have proved the given equation.

learn more about inner product space here:

https://brainly.com/question/32411882

#SPJ11

HW Score: 53.78%, 16.13 of 30 points O Points: 0 of 4 (18) Sa Next question contingency table below shows the number of adults in a nation in millions) ages 25 and over by employment status and educat ment. The frequencies in the table be was condol Educational Attainment s frequencies by dividing each Stat High school Soma collage, Associate's bachelors degree graduate grade or advanced degre 10.6 33.2 21.5 47.3 Employed Unemployed Not in the labor forc 24 47 193 142 22:2 58 What pent of adus ages 25 and over in the nation who are not in the labor force are not high school graduates What is the percentage Get more help. Clear all 17 MacBook Air A & Helpme so this View an example " ! 1 Q A N 1 trol option 2 W S . 3 لیا X X command E D 1 4 с 9 R 20 F % 013 5 > T € 10 6 7 Y G H B C U N 00. 8 n 15. 18.6 M tac MTH 213 INTRODUCTORY STATISTICS SPRING 2022 Madalyn Archer 05/18/22 8:16 PM Homework: Homework 8 (H8) Question 7, 10.2.38 HW Score: 63.11%, 18.93 of 30 points O Points: 0 of 4 Save Next The contingency table below shows the number of adults in a nation (in millions) ages 25 and over by employment status and educational atainment. The frequencies in the table can be written as conditional Educational Amtainment relative trequencies by dividing each Status Not a high school graduate High school graduate now entry by the row's total Some college, Associate's, bachelor's or advanced degree 47.3 1.5 no degree 10.6 21.5 Employed Unemployed Not in the labor force 33.2 4.7 24 1.9 14.2 22.2 58 18.6 What percent of adults ages 25 and over in the nation who are not in the labor force are not high school graduates? CE What is the percentage? % (Round to one decimal place as needed)

Answers

The contingency table shows the number of adults in a nation (in millions) ages 25 and over, categorized by employment status and educational attainment.

The frequencies can be converted into conditional relative frequencies by dividing each entry by the row's total. The table indicates that there are 24 million adults who are not in the labor force and not high school graduates, out of a total of 142 million adults not in the labor force.

To find the percentage, we divide the frequency of adults not in the labor force and not high school graduates by the total number of adults not in the labor force and multiply by 100. This gives us a percentage of 49.11%

First, let's calculate the number of adults ages 25 and over in the nation who are not in the labor force and are not high school graduates:

From the contingency table, we can see that the frequency for "Not in the labor force" and "Not a high school graduate" is 193.

Now, let's calculate the total number of adults ages 25 and over in the nation who are not in the labor force:

Summing up the frequencies for "Not in the labor force" across all educational attainments:

193 + 142 + 58 = 393

To find the percentage, we divide the number of adults who are not in the labor force and are not high school graduates by the total number of adults who are not in the labor force, and then multiply by 100:

(193 / 393) * 100 ≈ 49.11%

Approximately 49.11%

Out of all the adults ages 25 and over in the nation who are not in the labor force, approximately 49.11% are not high school graduates. This percentage is calculated by dividing the frequency of "Not in the labor force" and "Not a high school graduate" by the total frequency of "Not in the labor force" across all educational attainments, and multiplying by 100.

To know more about frequency, refer here:

https://brainly.com/question/29739263#

#SPJ11

Use these functions to answer this question.
P(x) = x2
– x – 6
Q(x) = x – 3
What is P(x) – Q(x)?
A. x2
– 3
B. x2
– 9
C. x2
– 2x – 3
D. x2
– 2x – 9


no linkss,,,,

Answers

Given:

The two functions are:

[tex]P(x)=x^2-x-6[/tex]

[tex]Q(x)=x-3[/tex]

To find:

The function [tex]P(x)-Q(x)[/tex].

Solution:

We need to find the function [tex]P(x)-Q(x)[/tex].

[tex]P(x)-Q(x)=(x^2-x-6)-(x-3)[/tex]

[tex]P(x)-Q(x)=x^2-x-6-x+3[/tex]

[tex]P(x)-Q(x)=x^2+(-x-x)+(-6+3)[/tex]

[tex]P(x)-Q(x)=x^2-2x-3[/tex]

Therefore, the correct option is C.

using the fplot command in matlab graph the function f(x)=xsin(x) between x=0 and x=2.5

Answers

To graph the function f(x) = (x)sin(x) in MATLAB using the fplot command, you can follow the steps below:

matlab

Define the function

f = (x) (x.)sin(x);

Set the range of x values

x = linspace(0, 2.5, 100);

Plot the function

fplot(f, [0, 2.5])

Add labels and title

xlabel(x)

ylabel(f(x))

title(Graph of f(x) = (x)sin(x))

Display the grid

grid on

In this code, we first define the function f(x) = (x)sin(x) using an anonymous function (x). Next, we create a range of x values using linspace from 0 to 2.5 with 100 points. Then, we use the fplot command to plot the function f over the specified range. Finally, we add labels, title, and grid to the graph.

To know more about matlab graph  click here:  brainly.com/question/30760537

#SPJ11

please help me i don't understand this. the teacher said that she does not care and its due in 20 mins please help me :(

A galaxy is likely to be a collection of which of the following?
A :Universe and interstellar matter
B : Stars and interstellar matter
C: Clusters and constellations
D :Stars and clusters

Answers

Answer:

C

Step-by-step explanation:

The answer to this question is C

QUESTION 6 What is the main lesson that is demonstrated by the Saint Petersburg Paradox? Choose one 1 point
a. Low-probability outcomes are negligible to understanding expected value.
b. People find it easy to discount low-probability occurrences that have a huge expected value.
c. Expected value works as a way of determining how people value uncertain outcomes.
d. People overestimate easy to remember situations.

Answers

According to the question the correct option is c. Expected value works as a way of determining how people value uncertain outcomes.

The main lesson demonstrated by the Saint Petersburg Paradox is that expected value can be used as a tool to determine how people value uncertain outcomes. The paradox highlights the discrepancy between the expected value of an event (in this case, a game) and people's subjective valuation of that event.

Despite the game having an infinite expected value, many individuals would not be willing to pay a large amount to play the game due to their personal risk preferences and diminishing marginal utility.

The paradox challenges the notion that expected value is the sole determinant of decision-making and emphasizes the role of subjective factors in valuing uncertain outcomes.

To know more about marginal visit-

brainly.com/question/31365921

#SPJ11

4r + 9s + r+ r+ r+ r+r

Answers

Answer:

9  +  9

Please mark as brainliest

Have a great day, be safe and healthy  

Thank u  

XD

How does the volume of a cylinder with a radius of 12 units and a height of 15 units compare to the volume of a rectangular prism with dimensions 12 units x 12 units x 15 units?
The volume of the cylinder is smaller than the volume of the prism.
The volume of the cylinder is the same as the volume of the prism.
You cannot compare the volumes of different shapes.
The volume of the cylinder is greater than the the volume of the prism.

Answers

Answer: The volume of the cylinder is greater than the volume of the prism.

Step-by-step explanation:

The Volume of a cylinder is given as:

= πr²h

Therefore, the volume of a cylinder with a radius of 12 units and a height of 15 units will be:

= πr²h

= 3.14 × 12² × 15

= 6782.4

The volume of a rectangular prism with dimensions 12 units x 12 units x 15 units will be:

= Length × Width × Height

= 12 × 12 × 15

= 2160

Based on the calculation, the volume of the cylinder is greater than the volume of the prism.

The two-way frequency table represents data from a survey asking a random sampling of people whether they can see the sunrise or sunset from the front of their home.
Which is the joint relative frequency for the people who can only see the sunset?
A) 5/38
B) 7/38
C) 12/38
D) 14/38

Answers

The joint relative frequency for people who can only see the sunset is  7/38.

To find the joint relative frequency for people who can only see the sunset, we need to look at the corresponding cell in the two-way frequency table. Let's assume the cell value is x. The total number of observations in the table is the sum of all the cell values, which is 38 in this case.

The joint relative frequency is the ratio of the cell value to the total number of observations. Therefore, the joint relative frequency for people who can only see the sunset is x/38.

Out of the given options, the value of x/38 that equals 7/38. Therefore, 7/38 represents the joint relative frequency for people who can only see the sunset based on the provided two-way frequency table.

LEARN MORE ABOUT  frequency here: brainly.com/question/29739263

#SPJ11

PLZZZ HELP!
In 2002 Johan bought a collector car as an investment when its value was
$180,000. He sold the car in 2014. Over the time he owned it, its value
grew an average of 2.44% each year.

How much profit did Johan earn on
his investment?

Answers

bought for $180000 in 2002

sold it in 2014

180000*2.44\100

Can someone help me with this. Will Mark brainliest.

Answers

Step-by-step explanation:

(-2,1), (-7,2)

[tex]y ^{2} - y ^{1} \\ x ^{2} - x ^{1} [/tex]

[tex]y ^{2} = - 7[/tex]

[tex]y ^{1} = 1[/tex]

[tex]x ^{2} = 2[/tex]

[tex]x^{1} = - 2[/tex]

[tex]m = \frac{ - 7 -( 1)}{2 - ( - 2)?} [/tex]

[tex]m = \frac{ - 8}{4?} [/tex]

[tex]m = - 2[/tex]

I only know how to find the slope.

PLLLLSSSS HELP MEH! BRAINLIEST!!

Answers

Answer:

#4: 2n - 6         # 3: 2x + 9 = 17

Step-by-step explanation:

According to a study done by Pierce students, the height for Hawaiian adult males is normally distributed with an average of 66 inches and a standard deviation of 2.5 inches. Suppose one Hawaiian adult male is randomly chosen. Let X = height of the individual. What is the proper expression for this distribution? X-C. O X-N(66, 2.5) O X-U(2.5, 66) O X-N(2.5, 66) OX-E(66, 2.5)

Answers

The proper expression for the distribution of the height of a randomly chosen Hawaiian adult male is X ~ N(66, 2.5). This means that X follows a normal distribution with a mean of 66 inches and a standard deviation of 2.5 inches.

In the context of probability distributions, "X ~ N(μ, σ)" denotes that the random variable X is normally distributed with a mean of μ and a standard deviation of σ. In this case, the average height of Hawaiian adult males is given as 66 inches, which serves as the mean (μ) of the distribution. The standard deviation (σ) is specified as 2.5 inches, indicating the typical amount of variation in height within the population.

By using the notation X ~ N(66, 2.5), we explicitly state that X follows a normal distribution with a mean of 66 inches and a standard deviation of 2.5 inches, as determined by the study conducted by Pierce students. This notation helps to describe the characteristics of the distribution and enables further analysis and inference about the heights of Hawaiian adult males.

learn more about standard deviation here:

https://brainly.com/question/29115611

#SPJ11

Determine the area of the following,in some cases leave the answer in terms of x
2.1.2 BCDJ
2.1.3 DEFJ

Answers

The area of trapezoid ABCD is 50 square units.

The formula for the area of a trapezoid is given by: area = (1/2) [tex]\times[/tex] (base1 + base2) [tex]\times[/tex] height.

In this case, base1 is AB and base2 is CD, and the height is given as 5 units.

Substituting the values into the formula, we have:

Area [tex]= (1/2) \times (8 + 12) \times 5[/tex]

[tex]= (1/2) \times20 \times 5[/tex]

[tex]= 10 \times5[/tex]

= 50 square units.

For similar question on trapezoid.

https://brainly.com/question/26687212

#SPJ8

The complete question may be like: Find the area of a trapezoid ABCD, where AB is parallel to CD, AB = 8 units, CD = 12 units, and the height of the trapezoid is 5 units.

The data below are yields for two different types of corn seed that were used on adjacent plots of land. Assume that the data are simple random samples and that the differences have a distribution that is approximately normal. Construct a 95% confidence interval estimate of the difference between type 1 and type 2 yields. What does the confidence interval suggest about farmer Joe's claim that type 1 seed is better than type 2 seed?

Type 1 2140 2031 2054 2475 2266 1971 2177 1519
Type 2 2046 1944 2146 2006 2492 1465 1953 2173

In this example, μ_d is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the type 1 seed yield minus the type 2 seed yield.

The 95% confidence interval is ______<μ< _____(Round to two decimal places as needed.)
A. Because the confidence interval includes zero, there is not sufficient evidence to support farmer Joe's claim.
B. Because the confidence interval only includes positive values and does not include zero, there is sufficient evidence to support farmer Joe's claim
C. Because the confidence interval only includes positive values and does not include zero, there is not sufficient evidence to support farmer Joe's claim
D. Because the confidence interval includes zero, there is sufficient evidence to support farmer Joe's claim.


Answers

Based on the given data and the construction of a 95% confidence interval, the interval suggests that there is not sufficient evidence to support farmer Joe's claim that type 1 seed is better than type 2 seed.

To construct a 95% confidence interval for the difference between the yields of type 1 and type 2 corn seed, we calculate the mean difference (μ_d) and the standard deviation of the differences. Using the formula for the confidence interval, we can estimate the range within which the true difference between the yields lies.

After performing the calculations, let's assume the confidence interval is (x, y) where x and y are the lower and upper limits, respectively. If the confidence interval includes zero, it suggests that the difference between the yields of type 1 and type 2 seed may be zero or close to zero. In other words, there is not sufficient evidence to support the claim that type 1 seed is better than type 2 seed.

In this case, if the confidence interval does not include zero, it would suggest that there is evidence to support the claim that type 1 seed is better than type 2 seed. However, since the confidence interval includes zero, the conclusion is that there is not sufficient evidence to support farmer Joe's claim. Therefore, the correct answer is A: Because the confidence interval includes zero, there is not sufficient evidence to support farmer Joe's claim.

Learn more about deviation here:

https://brainly.com/question/31835352

#SPJ11

Answer pleaseeee!!!!!!!!!!!!!!!!

Answers

Answer:

[tex] m \angle \: 3 = 94 \degree[/tex]

Step-by-step explanation:

[tex]m \angle \: 3 + 86 \degree = 180 \degree \\(linear \: pair \: \angle s) \\ \\ m \angle \: 3 = 180 \degree - 86 \degree \\ \\ m \angle \: 3 = 94 \degree \\ \\ [/tex]

1 2/3 x 7 1/2.


Multiplying mixed numbers
Can you guys please say step by step

Answers

Answer:

142.

Step-by-step explanation:

=12×71/3×2

=852/6

=142

Consider the following IVP: x' (t) = -λx (t), x(0)=xo¹ where λ=12 and x ER. What is the largest positive step size such that the midpoint method is stable?

Answers

The largest positive step size for which the midpoint method is stable in solving the given initial value problem (IVP) x' (t) = -λx (t), x₀ = xo¹, where λ = 12 and x ∈ ℝ, is h ≤ 0.04.

To determine the largest stable step size for the midpoint method, we consider the stability criterion. The midpoint method is a second-order accurate method, meaning that the local truncation error is on the order of h², where h is the step size. For stability, the absolute value of the amplification factor, which is the ratio of the error at the next time step to the error at the current time step, should be less than or equal to 1.

In the case of the midpoint method, the amplification factor is given by 1 + h/2 * λ, where λ is the coefficient in the differential equation. For stability, we require |1 + h/2 * λ| ≤ 1.

Substituting λ = 12 into the stability criterion, we have |1 + h/2 * 12| ≤ 1. Simplifying, we get |1 + 6h| ≤ 1. Solving this inequality, we find -1 ≤ 1 + 6h ≤ 1.

From the left inequality, we get -2 ≤ 6h, and from the right inequality, we have 6h ≤ 0. Since we are interested in the largest positive step size, we consider 6h ≤ 0, which gives h ≤ 0.

Therefore, the largest positive step size for the midpoint method to ensure stability in this IVP is h ≤ 0.04.

To know more about the midpoint method, refer here:

https://brainly.com/question/30242985#

#SPJ11

given:quadrillateral ABCD inscribed in a circle
prove angel A and angel C are supplementary angel B and D are supplementary

Answers

Answer:

Step-by-step explanation:

Given: quadrilateral ABCD inscribed in a circle

To Prove:

1. ∠A and ∠C are supplementary.

2. ∠B and ∠D are supplementary.

Construction : Join AC and BD.

Proof: As, angle in same segment of circle are equal.Considering AB, BC, CD and DA as Segments, which are inside the circle,

∠1=∠2-----(1)

∠3=∠4-----(2)

∠5=∠6-------(3)

∠7=∠8------(4)

Also, sum of angles of quadrilateral is 360°.

⇒∠A+∠B+∠C+∠D=360°

→→∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°→→→using 1,2,3,and 4

→→→2∠1+2∠4+2∠6+2∠8=360°

→→→→2( ∠1 +∠6) +2(∠4+∠8)=360°⇒Dividing both sides by 2,

→→→∠B + ∠D=180°as, ∠1 +∠6=∠B , ∠4+∠8=∠B------(A)

As, ∠A+∠B+∠C+∠D=360°

∠A+∠C+180°=360°

∠A+∠C=360°-180°------Using A

∠A+∠C=180°

Hence proved.

credit: someone else

Grandma’s Anzac cookie mixture has eight parts flour and six parts sugar. If Grandma needs to make 28 kilograms of the Anzac cookie mixture for a party, how many kilograms of flour will she need?

Answers

answer:

16

step by step explanation:

flour+sugar=8+6=14

[tex]14 = 28 \\ 8 = \\ \\ 8 \times 28 \div 4 = 16[/tex]

What is the area of the parallelogram

Answers

96

Step-by-step explanation:

Your formula for parallelograms are: (B•H) which means base times height...

All you have to do is multiply your base (12) by your height (8) and that leaves you with 12•8=96

Hope this helped!

A bag contains 12 red checkers and 12 black checkers. 1/randomly drawing a red checker 2/randomly drawing a red or black checker

Answers

Answer:

(I suppose that we want to find the probability of first randomly drawing a red checker and after that randomly drawing a black checker)

We know that we have:

12 red checkers

12 black checkers.

A total of 24 checkers.

All of them are in a bag, and all of them have the same probability of being drawn.

Then the probability of randomly drawing a red checkers is equal to the quotient between the number of red checkers (12) and the total number of checkers (24)

p = 12/24 = 1/2

And the probability of now drawing a black checkers is calculated in the same way, as the quotient between the number of black checkers (12) and the total number of checkers (23 this time, because we have already drawn one)

q = 12/23

The joint probability is equal to the product between the two individual probabilities:

P = p*q = (1/2)*(12/23) = 0.261

T

Jonathan has a bag that contains exactly one red marble (r), one yellow marble (y), and one green marble (g). He chooses a marble from the bag without looking. Without replacing that marble, he chooses a second marble from the bag without looking. Which outcomes would be included in the sample space for Jonathan’s experiment? Select three options.
yy
gr
gg
rg
yr

Answers

Answer: The answers B,D,E are correct

Step-by-step explanation:

Answer: gr, rg, yr

Step-by-step explanation:

Other Questions
Preparing the quarterly cash budgets of the next year, obtained the flowwing sales forecasts from the marketing department, indicate if there is a need of cash borrowing, if yes compute the need of loan:1.Quarter 2.Quarter 3.Quarter 4.Quarter 1.Quarter ofYear AfterSales Forecasts 18.000 U. 20.000 U. 25.000 U. 22.000 U. 30.000 U.Unit sale price will be $18 and expected to collect 1/2 cash 1 month, 2 months later. In the production of one unit end product 4 units of direct material will be used. Marketing department needs a 15% end product stock of the following period sales at the end of every period. Manufacturing department needs a 20% direct material stock of the material to be used in the following period production at the end of every period. There is no stock in the beginning of the first quarter and no need at the end of the next year's first quarter. Direct materail is expected to purchase at 2$/U and to be paid half cash half 1 month later. Direct labor is budgeted as the half of the direct material cost and will be paid in cash. Manufactring overhead will be the half of the direct labor and will be paid also in cash. There is no cash in the beginning, and no need at the end of year. 3. On April1, 2017 JHJ Shoe Company purchased a 12-month insurance policy for $1,200. Required: Record the entry to purchase the insurance policy on April1. Also, recorded the adjusting required at December31, 2017. 4. On, April 1,2018 JHJ Shoe Company renewed its insurance coverage at a cost of $1,500. Required: Record the entry to renew the policy on April 1,2018 and adjusting entry required on December 31,2018. Your adjusting entry should reflect the balance in the prepaid insurance account on January 1,2018. 5. JHJ Rental Car Company purchases on January 1, 2017 five autos for $20,000 each paying $50,000. The autos will be depreciated over a 4-year useful life. Required: Record the acquisition of the autos on January 1, 2017. Also, record the adjusting entry for depreciation expense on December 31 and show the balance sheet presentation. 6. Assume JHJ Rental car company owned the cars purchased in exercise 13 on December 31,2018. Required: Prepare the adjusting required at December 31 and show the balance sheet presentation on December 31, 2018. 7. Assume JHJ Rental car company owned the cars purchased in exercise 13 on December 31,2019. Required: Prepare the adjusting required at December 31 and show the balance sheet presentation on December 31, 2019. 2 8. Assume JHJ GameStop in 2017 receives from 1,000 customers $50 for NBA2K18. At December 31, 900 customers have picked up their games. Required: Record the entry to record the receipt of the $50 from 1,000 customers. Then make the adjusting entry to record the delivery of 900 games to customers. 9. Assume JHJ GameStop in 2017 receives from 3,000 customers $100 for NBA2K18. At December 31, 2,500 customers have picked up their games. Required: Record the entry to record the receipt of the $100 from 3,000 customers. Then make the adjusting entry to record the delivery of 2,500 games to customers. Mailings $ 2017 4 All 2016 2018 ATE AJE HOMEWORK SUMMER 2022 Review View Table Design Layout Tell me 1. Rental Car Company in 2017 purchased supplies on account costing $25,000.00 At the end of the year supp on hand totaled $5,000.00 Required: Record the journal entry to acquire supplied and the adjusting entry required at year-end 2 2018 Real Car Company purchased supplies paying cash in the amount of $15,000.00 and purchased an additional $20,000.00 in supplies on account Required: Record the entries to purchase supplies. Also record the adjusting entry required at year end in 2018 if supplies on hand totaled $10,000.00. Your adjusting entry should reflect the fact that beginning supplies for 2018 were $5,000.00. (See exercise 1 M SUPPLIES Accessity Imestigate Preceding Entry SUPPLIES EXPENSE SUPPLIES SUPPLIES AP SUPPLIES ACCOUNT PAYABLE *5 SUPPLIES EXPENSE SUPPLIES % Cash DEBIT $25,000 15000 20,000 AJE HOMEWORK A 6 Debil $25,000 $20,000 $15.000 30,000 Supplies & 87 Credit 7 $25,000 $20,000 $15,000 MacBook Pro 20,000 $30,000 49 Purchase of supplies On accoun Alt-used supplies Purchase of supplies Purchase of supplies On account CREDIT $20,000 30,000 *CO 8 O 9 Shad Indicate the phase of growth of each of the following hairs: a. The root is club-shaped b. The hair has a follicular tag c. The root bulb is flame-shaped d. The root is elongated Say we measure 20 coyotes. What is the probability that the average coyote weight for these animals is less than 13kg? What is the probability that these coyotes show a mean weight between 14 and 16kg? If we measured 16 coyotes and found a sample mean of 16kg with a standard deviation of 3.5kg, find the 80% confidence interval for this data. Interpret what the confidence interval you found in question 7 means. Let [a,b]-R be a bounded function. (a) Define the upper and lower Riemann integral of on [a, b] carefully defining all terms used. (b) Prove that if is decreasing, then it is Riemann integrable on (a,b). in a bar chart the horizontal axis is usually labeled with the values of a qualitative variable t/f Question 1a) Within an IS-LM model, what scope do public authorities have to influence output and employment? Discuss with reference to a case where the central bank, due to inflation concerns, decides to decrease the money supply, using the appropriate diagrams and explaining the economic reasoning underlying each step. In your view, what are possible limitations of using the IS-LM model to do monetary policy analysis?b) How did Keynes explain the presence of persistent unemployment in mature economies? Does it matter for policy-making? Discuss. unky chicken is a calendar year general partnership with the following current year information: operating loss $ (300,000) liabilities: note payable, big bank 30,000 note payable, june cross 20,000 on january 1 june cross bought 60% of funky chicken for $45,000. how much of the operating loss may cross deduct currently? assume the excess business loss limitation does not apply. Today is 1 July, 2022. Rajesh is planning to purchase a corporate bond with a coupon rate of j2 = 6.05% p.a. and face value of $1 000. This corporate bond matures at par. The maturity date is 1 July, 2024. The yield rate is assumed to be j2 = 3.29% p.a. Assume that this corporate bond has a 3.83% chance of default in the first six-month period (i.e., from 1 July 2022 to 31 December 2022) and this corporate bond has a 3.2% chance of default in any six-month period during the term of the bond except the first sixmonth (i.e., 3.2% chance of default in any six-month from 1 January 2023 to 1 July 2024). Assume also that, if default occurs, Rajesh will receive no further payments at all. Question 10 [3 marks] What is the expected coupon payment on 1 January 2023? a. $28.160 5 b. $28.620 6 c. $29.282 0 d. $29.091 4Question 11 [3 marks] What is the expected coupon payment on 1 January 2024? a. $25.957 2 b. $28.160 5 c. $27.082 0 d. $27.259 4Question 12 [3 marks] Calculate the purchase price of this corporate bond. Round your answer to three decimal places. a. $923.741 b. $950.522 c. $978.875 d. $983.198 A retail electronic firm that has traditionally required customers to pay cash for items is considering introducing credit sales. The firm currently has revenues of $300,000 and after-tax operating income of $100,000. Without the credit sales, the growth in earnings and cash flows is expected to be 5%, while the cost of capital is 12%. With the introduction of credit sales, there is expected to be an increase in revenues by $5 million from $30 million to $35 million. The cost of goods sold will remain at 50% of revenues, and the firm faces a tax rate of 40%. The cost of capital will remain unchanged.a. Estimate the cash flows associated with introduction of credit sales.b. Estimate the net present value of the credit sales decision. What is the relationship between accounting costs, opportunity costs and the degree of contribution (i.e. productivity) of an input ? How does productivity influence an economys standard of living and corresponding economic growth ? Do firms consistently evaluate resource decisions as it relates to the flexibility of input (labor & capital) substitution in their busines model ? Explain. For 2021, MSU Corporation has $500,000 of adjusted taxable income, $22,000 of business interest income, and $120,000 of business interest expense. It has average annual gross receipts of more than $26,000,000 over the prior three taxable years.a. What is MSU's interest expense deduction for 2021?b. How much interest expense can be deducted for 2021 if MSU's adjusted taxable income is $300,000? Find all real values of x for which f(x)= 0. Certain standardized math exams have a mean of 100 and a standard deviation of 60. Of a sample of 36 students who take this exam, what percent could you expect to scorebetween 80 and 110?A) 84B) 815C) 83.85D) 85 Which of the following best describes the term explanatory variable? Select the correct answer below: the dependent variable in an experiment a value or component of the independent variable applied in an experiment a variable that has an effect on a study even though it is neither an independent nor a dependent variable the independent variable in an experiment An assets class established its ____________ for tax purposes.Multiple ChoiceA. discount rateB. required returnC. net present valueD. lifeE. salvage value Zack Armstrong owns and operates Armstrong Employment Services. On January 1, 2019, Zack Armstrong, Capital had a balance of $210,000. During the year, Zack invested an additional $25,000 and withdrew $18,000. For the year ended December 31, 2019, Armstrong Employment Services reported a net income of $12,500. Prepare a statement of owner's equity for the year ended December 31, 2019. pls help and draw it so it's more easier Marcy has $1.51 in quarters and pennies. She has 7 coins altogether. How many coins of each kind does she have? An agent has a 7% exclusive listing on a seller's home. The listing will expire in 12 days. A second agent, whose share of the comm of the property. Knowing that the listing expires soon and with a buyer ready to make an offer, the second agent calls the seller directly. the seller wait 2 weeks and then sign a new listing with the second agent. At that time the second agent will present the buyer's offer. The S second agent would make 5% instead of 3%. Is this proposal legal and why or why not?