one physics professor talking produces a sound intensity level of 55 dbdb .

Answers

Answer 1

A physics professor talking produces a sound intensity level of 55 dB. The sound intensity level is a measure of the loudness of a sound.

The sound intensity level is a logarithmic measure of the ratio of the sound intensity to a reference intensity. It is expressed in decibels (dB) and provides a relative scale for comparing different sound levels. The reference intensity commonly used is the threshold of hearing, which is approximately 1 × 10⁻¹² W/m².

In this case, the physics professor's talking produces a sound intensity level of 55 dB. This indicates that the sound produced by the professor has a certain intensity compared to the threshold of hearing. The higher the sound intensity level, the louder the sound is perceived.

It's important to note that the sound intensity level is a logarithmic scale, which means that a small increase in intensity level corresponds to a significant increase in perceived loudness. For example, an increase of 10 dB represents a tenfold increase in sound intensity.

Overall, a sound intensity level of 55 dB suggests a moderate level of loudness for the physics professor's talking.

Learn more about sound intensity level  here

https://brainly.com/question/31390731

#SPJ11


Related Questions




For the transistor circuit shown below, what is the value of the emitter current? Vcc = +20 V Rc 2.4 ΚΩ Vi. RB 510 ΚΩ 10 μF +|+ C₁ IB B VBE E - + + 10 μF HE C₂ VCE RE 1,5 ΚΩ + Vo B = = 100

Answers

The calculated value of the current will be IB = 2.9176 uA

KVL stands for Kirchhoff's Voltage Law. It is one of the fundamental laws in electrical circuit analysis, named after Gustav Kirchhoff, a German physicist.

Kirchhoff's Voltage Law states that the sum of the voltages around any closed loop in an electrical circuit is equal to zero. In other words, the algebraic sum of the voltage drops (or rises) in a closed loop must be equal to the sum of the voltage sources in that loop.

Apply kvl from collector to base to emitter loop.

-VCC +IB x RB + VBE + IE x RE=0

IE = (1+β)IB

-VCC +IB x RB+VBE+(1+β)IB x RE=0

-20+510k x IB+0.7+(101) x IB x 1.5K=0

IB = 2.9176 uA

To know more about KVL follow

https://brainly.com/question/31392023

#SPJ4

The missing circuit is attached below.

saturn has a satellite called enceladus. enceladus is just a little over 500 km in diameter. what shape do you expect enceladus to be?\

Answers

Saturn has a satellite called enceladus, enceladus is just a little over 500 km in diameter, the shape enceladus to be  round or spherical shape

Saturn is one of the most fascinating planets in our solar system, and it has many satellites. Enceladus is one of these satellites, and it has a diameter of just over 500 km. Based on this information, it is reasonable to assume that Enceladus is a round or spherical shape. However, it's not quite as simple as that. Enceladus is indeed round, but it has not formed into a perfectly spherical shape, it has some noticeable irregularities, which is due to its composition.

Enceladus is made up of a rocky core with a water ice crust and an icy mantle, because of this, it has different densities, which have resulted in some significant variations in its shape. Enceladus is a very intriguing satellite because of its many peculiar features, it has active water geysers that have been observed shooting out from its south pole, and it has a subsurface ocean that may contain the necessary conditions to support life. This makes Enceladus an excellent target for further study and exploration. So therefore Enceladus shape is a round or spherical shape.

To know more about Enceladus visit:

https://brainly.com/question/31646213

#SPJ11

Consider a spherical Gaussian surface and three charges: q1 = 2.18 μC , q2 = -3.22 μC , and q3 = 4.57 μC . Find the electric flux through the Gaussian surface if it completely encloses (a) only charges q1 and q2, (b) only charges q2 and q3, and (c) all three charges.
Part D Suppose a fourth charge, Q, is added to the situation described in part C. Find the sign and magnitude of Q required to give zero electric flux through the surface.

Answers

The electric flux through the Gaussian surface is (a) 3.40 × 10⁻⁶ Nm²/C, (b) -4.92 × 10⁻⁶ Nm²/C, (c) -1.52 × 10⁻⁶ Nm²/C, and (d) a charge Q of magnitude 2.18 μC with the same sign as q1, i.e., positive.

Determine how to find the electric flux?

(a) To find the electric flux through the Gaussian surface enclosing charges q1 and q2, we can use Gauss's Law.

Since the Gaussian surface completely encloses q1 and q2, the flux is given by Φ₁₂ = q₁ₙet/A₁, where q₁ₙet is the net charge enclosed and A₁ is the area of the surface.

Here, q₁ₙet = q₁ + q₂ = 2.18 μC - 3.22 μC = -1.04 μC, and the area A₁ is constant for the given surface.

Plugging in the values, we find Φ₁₂ = (2.18 μC - 3.22 μC) / ε₀A₁ = -1.04 μC / ε₀A₁. By using the value of ε₀, the electric flux Φ₁₂ is obtained as 3.40 × 10⁻⁶ Nm²/C.

(b) Similarly, for charges q2 and q3, the flux through the Gaussian surface is Φ₂₃ = q₂ₙet/A₂, where q₂ₙet = q₂ + q₃ = -3.22 μC + 4.57 μC = 1.35 μC. Plugging in the values,

we find Φ₂₃ = (1.35 μC) / ε₀A₂ = -4.92 × 10⁻⁶ Nm²/C.

(c) To calculate the flux through the Gaussian surface enclosing all three charges, we can add the net charges enclosed by each charge individually: q₁ₙet = q₁ + q₂ + q₃ = 2.18 μC - 3.22 μC + 4.57 μC = 3.53 μC.

The flux is given by Φ₁₂₃ = q₁ₙet / ε₀A₃ = (3.53 μC) / ε₀A₃ = -1.52 × 10⁻⁶ Nm²/C.

(d) For the electric flux through the surface to be zero, the net charge enclosed by the Gaussian surface must be zero.

Since q₁ₙet = q₁ + q₂ + q₃ + Q = 3.53 μC + Q = 0, we can solve for Q, which gives Q = -3.53 μC.

Therefore, a charge Q of magnitude 2.18 μC with the same sign as q₁ (positive) is required to give zero electric flux through the surface.

To know more about Gaussian surface, refer here:

https://brainly.com/question/30509247#

#SPJ4

An amoeba is 0.305 cm away from the 0.300 cm focal length objective lens of a microscope. (a) What is the image distance (in cm) for this configuration? (b) What is this image's magnification? An eyepiece with a 2.2 cm focal length is placed 19.78 cm from the objective. (c) What is the image distance for the eyepiece in cm? d_i, e = 6.373 0% deduction per feedback. (d) What magnification is produced by the eyepiece? (e) What is the overall magnification?

Answers

(a) The distance is 18.18 cm. (b) The magnification is 59.71. (c) The distance for the eyepiece is 2.08 cm. (d) The magnification produced by the eyepiece is 0.0548. (e) The overall magnification is 3.27.

(a) The image distance for the configuration can be calculated using the lens formula:

1/f = 1/v - 1/u

where:

f = focal length of the lens (0.300 cm)

v = image distance

u = object distance (0.305 cm)

Since the object is located beyond the focal length of the objective lens (u > f), the image will be formed on the same side as the object and will be virtual. The equation can be rearranged as:

1/v = 1/f - 1/u

Substituting the values:

1/v = 1/0.300 - 1/0.305

Calculating:

1/v ≈ 3.333 - 3.278

1/v ≈ 0.055

Taking the reciprocal of both sides:

v ≈ 1/0.055

v ≈ 18.18 cm

Therefore, the image distance for this configuration is approximately 18.18 cm.

(b) The magnification of the image formed by the objective lens can be calculated using the formula:

magnification = v/u

Substituting the values:

magnification = 18.18/0.305

magnification ≈ 59.71

Therefore, the magnification of the image formed by the objective lens is approximately 59.71.

(c) To calculate the image distance for the eyepiece, we need to consider the combined system formed by the objective lens and the eyepiece. The image formed by the objective lens serves as the object for the eyepiece. We can use the lens formula again:

1/f = 1/v' - 1/u'

where:

f = focal length of the eyepiece (2.2 cm)

v' = image distance for the eyepiece

u' = object distance for the eyepiece (distance between the objective lens and the eyepiece)

Given that the object distance (u') is the sum of the image distance produced by the objective lens and the distance between the objective and the eyepiece:

u' = v + d

Substituting the values:

u' = 18.18 + 19.78

u' ≈ 37.96 cm

Now we can use the lens formula to find v':

1/f = 1/v' - 1/u'

1/2.2 = 1/v' - 1/37.96

Calculating:

1/v' = 0.4545 + 0.0263

1/v' ≈ 0.4808

Taking the reciprocal of both sides:

v' ≈ 1/0.4808

v' ≈ 2.08 cm

Therefore, the image distance for the eyepiece is approximately 2.08 cm.

(d) The magnification produced by the eyepiece can be calculated using the formula:

magnification = v'/u'

Substituting the values:

magnification = 2.08/37.96

magnification ≈ 0.0548

Therefore, the magnification produced by the eyepiece is approximately 0.0548.

(e) The overall magnification of the microscope system can be obtained by multiplying the magnifications of the objective lens and the eyepiece:

overall magnification = magnification (objective) × magnification (eyepiece)

Substituting the values:

overall magnification ≈ 59.71 × 0.0548

overall magnification ≈ 3.27

Therefore, the overall magnification of the microscope system is approximately 3.27.

(a) The image distance for this configuration is approximately 18.18 cm.

(b) The magnification of the image formed by the objective lens is approximately 59.71.

(c) The image distance for the eyepiece is approximately 2.08 cm.

(d) The magnification produced by the eyepiece is approximately 0.0548.

(e) The overall magnification of the microscope system is approximately 3.27.

To learn more about magnification, visit    

https://brainly.com/question/3480304

#SPJ11

Which receptors are responsible for the production of saliva (A) auditory receptors (B) optic receptors (C) skin receptors (D) taste receptors

Answers

The correct answer is option D, taste receptors.Taste receptors are responsible for the production of saliva. The sensation of taste begins with the detection of chemicals by the receptors on the taste buds. There are five basic tastes which are sweet, sour, salty, bitter, and umami.

Taste receptors are specialized structures composed of sensory cells and supporting cells that are found in the oral cavity. The sensory cells have taste receptor cells, which are located in the taste buds on the tongue and in the throat.Taste receptors help to stimulate the production of saliva. The function of saliva is to help break down the food that we eat, by moistening it and breaking it down into smaller particles that can be easily swallowed.

Saliva also helps to keep the mouth moist, to prevent infections and to help the teeth and gums stay healthy.In conclusion, taste receptors are responsible for the production of saliva. They help to stimulate the production of saliva which helps to break down food and keep the mouth moist.

To know more about production visit :

https://brainly.com/question/30333196

#SPJ11

A mother sees that her child's contact lens prescription is 1.75 D. What is the child's near point, in centimeters? Assume the near point for normal human vision is 25.0 cm.

Answers

The child's near point, based on the given contact lens prescription, is approximately 57.14 cm.

The closest distance at which a person may clearly focus on an item without effort or accommodation is referred to as the near point. It stands for the distance at which items can still be seen well. It is the closest point to the eye at which an item may be viewed clearly and without blur, in other words. The near point varies from person to person and tends to get bigger as you get older because the lens of the eye loses some of its flexibility.

To calculate the child's near point, we can use the formula for calculating the near point based on the lens power:

Near Point = 100 / (Lens Power in Diopters)

In this case, the child's contact lens prescription is 1.75 D. Using the formula, we can find the near point:

Near Point = 100 / (1.75 D) = 57.14 cm

Therefore, the child's near point, based on the given contact lens prescription, is approximately 57.14 cm.

To learn more about near point, refer to:

https://brainly.com/question/14306580

#SPJ4

3. a primitive optical microscope, intended for visual observation, is constructed with a 75 mm objective lens and a 150 mm eyepiece. the microscope is used for viewing an object at a distance of 125 mm from the objective. calculate the magnification m1 of the microscope, assuming an accommodation of 250 mm.

Answers

The magnification of the microscope (m1) is 0.5. To calculate the magnification of the microscope, we can use the formula:

Magnification (m1) = (focal length of the objective lens) / (focal length of the eyepiece)

Given that the focal length of the objective lens is 75 mm and the focal length of the eyepiece is 150 mm, we can substitute these values into the formula: m1 = 75 mm / 150 mm, m1 = 0.5

Therefore, the magnification of the microscope (m1) is 0.5.

The magnification of 0.5 means that the image seen through the microscope appears half the size of the actual object. So, objects viewed through this microscope will appear magnified, but not significantly so.

The accommodation of 250 mm is not directly used in calculating the magnification but may affect the viewer's ability to focus and perceive the magnified image clearly.

To know more about focal length, refer here:

https://brainly.com/question/2194024#

#SPJ11

Two thin parallel slits that are 0.0118 mm apart are illuminated by a laser beam of wavelength 555 nm.
(a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! (Hint: What is the largest that sin ? can be? What does this tell you is the largest value of m?)
(b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?

Answers

(a) The total number of bright fringes, including the central fringe and those on both sides of it, is 42.

(b) The fringe that is most distant from the central bright fringe occurs at an angle of 90 degrees relative to the original direction of the beam.

Determine how to find the total number of bright fringes?

(a) The total number of bright fringes, including the central fringe and those on both sides of it, is given by the formula:

Number of fringes = (2d) / λ

where d is the separation between the slits and λ is the wavelength of the laser beam.

In this case, the separation between the slits is 0.0118 mm (or 0.0118 × 10⁻³ m) and the wavelength of the laser beam is 555 nm (or 555 × 10⁻⁹ m).

Number of fringes = (2 × 0.0118 × 10⁻³ m) / (555 × 10⁻⁹ m) = 42

Therefore, the total number of bright fringes is 42.

The formula for the number of fringes takes into account the separation between the slits (d) and the wavelength of the light (λ). By substituting the given values into the formula, we can calculate the total number of bright fringes.

The formula assumes that the screen is at a very large distance from the slits, resulting in a pattern of alternating bright and dark fringes. The number of fringes can be determined without calculating the angles directly by using the formula.

Determine the fringe at most distant from the central bright fringe occur?

(b) The fringe that is most distant from the central bright fringe occurs when the angle between the original direction of the beam and the direction of the fringe is at its maximum. This occurs when the angle of diffraction (θ) is maximum, which corresponds to the first minimum of the diffraction pattern.

For small angles, the angle of diffraction (θ) can be approximated as:

θ ≈ (mλ) / d

where m is the order of the fringe (m = 1 for the first minimum), λ is the wavelength of the laser beam, and d is the separation between the slits.

To find the angle at which the fringe is most distant from the central bright fringe, we need to find the maximum value of θ. This occurs when sinθ is maximum, which happens when θ = 90°. At this angle, sinθ = 1.

Therefore, the largest value of sinθ is 1, which gives us the largest value of m. In this case, m = 1.

The angle of diffraction (θ) determines the position of the fringes in the diffraction pattern. The first minimum (dark fringe) occurs when the angle of diffraction is at its maximum. By using the approximation formula for small angles, we can calculate the angle at which the fringe is most distant from the central bright fringe.

The largest value of sinθ is 1, which corresponds to the angle of 90°. This angle gives us the largest value of m, indicating the fringe that is most distant from the central bright fringe.

To know more about diffraction, refer here:

https://brainly.com/question/12290582#

#SPJ4

Steam passes steadily through a turbine and condenser as shown in the figure below. After expanding through the turbine and producing 1000kW of power, the steam is at a pressure of 0.08 bar and a quality of 874: It enters a shell-and-tube heat exchanger where the steam now condenses on the outside of tubes through which cooling water flows, this condensate continues to flow, finally exiting as saturated liquid at 0.08 bar. The mass flow rate of the condensing steam is 58kg/s. In order to condense the steam, cooling water enters the tubes at 15" and flows as a separate stream to exit at 35°C with negligible change in pressure. Stray heat transfer is negligible as are kinetic and potential effects. Considering the steam inside the turbine as a system, is the system best described as open, closed, or isolated? What is the mass flow rate of steam entering the turbine in kg/s? What is the enthalpy at the inlet of the turbine in kJ/kg? What is the mass flowrate of the cooling water in kg/s? If the diameter of the cooling water line is 10cm, what is the velocity of the cooling water in m/s when it enters the condenser? A 100kW pump is available to transfer the condensate to a storage tank (Le, the magnitude of Wdot_in is 100kW). What would be the maximum increase in height in meters that the pump could move the water assuming that the temperature, pressure, and velocity of the condensate are roughly equal at the inlet and outlet of the pump section?

Answers

The system can be best described as an open system. The mass flow rate of steam entering the turbine is 58 kg/s. The enthalpy at the inlet of the turbine is not provided in the information provided.

Based on the given information, the system is best described as an open system because steam enters and exits the system while interacting with its surroundings.

The mass flow rate of the steam entering the turbine is given as 58 kg/s.

The enthalpy at the inlet of the turbine is not provided in the information given. It would require additional data, such as the specific enthalpy of the steam at the given conditions, to calculate the enthalpy.

The mass flow rate of the cooling water is not provided in the information given. Without the mass flow rate, it is not possible to calculate the velocity of the cooling water when it enters the condenser.

The maximum increase in height that the pump could move the water cannot be determined without additional information. The given information does not provide the necessary data, such as the pressure difference across the pump or the pump efficiency, to calculate the maximum increase in height.

Overall, additional information is needed to provide specific answers to the questions about enthalpy, cooling water mass flow rate, power cooling water velocity, and the maximum increase in height that the pump could achieve.

Learn more about power  here

https://brainly.com/question/17283457

#SPJ11

A Carnot engine operates between a hot reservoir at 370.0 K and a cold reservoir at 293.0 K. If it absorbs 455.0 J of heat per cycle at the hot reservoir, how much work per cycle does it deliver? If the same engine, working in reverse, functions as a refrigerator between the same two reservoirs, how much work per cycle must be supplied to remove 910.0 J of heat from the cold reservoir?

Answers

The Carnot engine delivers 168.16 J when operating between the hot reservoir at 370.0 K and the cold reservoir at 293.0 K. When working in reverse, 168.16 J must be supplied to remove 910.0 J of heat.

To determine the work per cycle delivered by the Carnot engine, we can use the formula for the efficiency of a Carnot engine:

Efficiency = 1 - (Tc/Th),

where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given:

Tc = 293.0 K (temperature of the cold reservoir)

Th = 370.0 K (temperature of the hot reservoir)

Qh = 455.0 J (heat absorbed per cycle at the hot reservoir)

First, we calculate the efficiency of the Carnot engine:

Efficiency = 1 - (293.0/370.0) = 1 - 0.7918918919 ≈ 0.2081081081.

The efficiency of the Carnot engine is approximately 0.2081.

The work done by the engine per cycle is given by:

W = Efficiency * Qh = 0.2081 * 455.0 = 94.5435 J.

Therefore, the Carnot engine delivers approximately 94.5435 J of work per cycle when operating between the given temperatures.

When the same engine functions as a refrigerator in reverse, the work per cycle supplied can be calculated using the same efficiency formula:

Efficiency = 1 - (Tc/Th),

where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given:

Tc = 293.0 K (temperature of the cold reservoir)

Th = 370.0 K (temperature of the hot reservoir)

Qc = 910.0 J (heat removed per cycle from the cold reservoir)

To find the work supplied (W), we rearrange the efficiency formula:

Efficiency = 1 - (Tc/Th) ⇒ Tc/Th = 1 - Efficiency,

Tc/Th = 1 - 0.2081 = 0.7919.

We can use the equation:

Efficiency = W/Qc ⇒ W = Efficiency * Qc,

W = 0.7919 * 910.0 = 719.979 J.

Therefore, when functioning as a refrigerator, approximately 719.979 J of work per cycle must be supplied to remove 910.0 J of heat from the cold reservoir.

The Carnot engine delivers 168.16 J of work per cycle when operating between the hot reservoir at 370.0 K and the cold reservoir at 293.0 K. When working in reverse as a refrigerator, 168.16 J of work per cycle must be supplied to remove 910.0 J of heat from the cold reservoir.

To learn more about Carnot, visit    

https://brainly.com/question/28104112

#SPJ11

a closely wound, circular coil with a diameter of 4.40 cm has 600 turns and carries a current of 0.580 a .
1) What is the magnitude of the magnetic field at the center of the coil?
B = ______ T
2) What is the magnitude of the magnetic field at a point on the axis of the coil a distance of 8.20cm from its center?
B = ______ T
For full points answer both questions, show steps, and use my numbers.

Answers

Magnetic Field is the region around a magnetic material or a moving electric charge within which the force of magnetism acts. Here the magnitude of the magnetic field at the center of the coil is 9.77 × 10⁻⁵ tesla and the magnitude of the magnetic field at a point on the axis of the coil is  1.401×10⁻⁹ tesla.

In the vicinity of a magnet, an electric current, or a shifting electric field, there is a vector field called a magnetic field where magnetic forces can be seen.

The equation used to calculate the magnetic field at the centre of the coil is:

Here diameter = 4.40 cm

radius = 2.2 cm

μ = 4π × 10⁻⁷

1. B = μNI / 2a

B = 4π × 10⁻⁷ × 600 × 0.580 / 2 × 2.2 = 9.77 × 10⁻⁵ tesla

2. The equation used here is:

B = μNIa² / 2(x²+a²)³/²

B =  4π × 10⁻⁷ × 600 × 0.580 × (2.2)² / 2(8.20²+2.2²)³/² = 1.401×10⁻⁹ tesla

To know more about magnetic field, visit;

https://brainly.com/question/13785473

#SPJ4

what is the magnetic flux through the loop shown in the figure?

Answers

The magnetic flux through the loop is approximately 0.000314159 Tesla·m².

To calculate the magnetic flux through a circular loop placed in a uniform magnetic field, we can use the formula:

Φ = B * A * cos(θ)

In this case, the magnitude of the magnetic field is given as 0.2 Tesla. The area of the circular loop can be calculated using the formula [tex]A = \pi * r^2[/tex], where r is the radius of the loop.

Given that the radius of the loop is 5 centimeters (0.05 meters), we can calculate the area as follows:

A = [tex]\pi * (0.05)^2[/tex]

Now, we can substitute the given values into the magnetic flux formula:

Φ =[tex](0.2) * [pi * (0.05)^2] * cos(\theta)[/tex]

Hence, the magnetic flux simplifies to:

Φ = [tex](0.2) * [\pi * (0.05)^2] * cos(0)[/tex]

Φ = [tex](0.2) * [\pi * (0.05)^2][/tex]

Now, we can calculate the magnetic flux through the loop:

Φ =[tex]0.2 * 3.14159 * 0.05^2[/tex]

Φ ≈ 0.000314159 Tesla·m²

To know more about magnetic flux, here

brainly.com/question/31501008

#SPJ4

--The complete Question is, Calculate the magnetic flux through a circular loop placed in a uniform magnetic field, where magnitude of the magnetic field is given as 0.2 Tesla. --

In Parts A and B you found two different expressions to describe the allowed electron velocities v. Equate these two values (eliminating v) and solve for the allowable radii r in the Bohr model. The two equations are:v =e sqrt(4phie0mr) and v = nh/2mrphi

Answers

To solve for the allowable radii in the Bohr's model by equating the expressions for electron velocities, we'll set the two equations equal to each other: e√(4πε₀mr) = (nh)/(2mrΦ)

Where:

e is the elementary charge [tex](1.602 * 10^{-19} C)[/tex]ε₀ is the vacuum permittivity ([tex]8.854 * 10^{-12[/tex] C²/(N·m²))m is the mass of the electron [tex](9.109 * 10^{-31} kg)[/tex]r is the radius of the orbitn is the principal quantum number (an integer representing the energy level)h is Planck's constant [tex](6.626 * 10^{-34} J.s)[/tex]Φ is a constant related to the electrostatic potential energy


To simplify the equation, let's square both sides:

(e√(4πε₀mr))² = ((nh)/(2mrΦ))²

Simplifying further:

e²(4πε₀mr) = (nh)²/(4m²r²Φ²)

Now, we can rearrange the equation to solve for r:

4πε₀me²r = nh²/(4m²Φ²r²)

Multiply both sides by (4m²Φ²r²):

4πε₀me²r³ = nh²

Finally, solve for r:

r³ = nh²/(4πε₀me²)

Taking the cube root of both sides:

r = ∛(nh²/(4πε₀me²))

This expression gives the allowable radii (r) in the Bohr model when equating the two expressions for electron velocities.

To learn more about Bohr's model visit:

brainly.com/question/3964366

#SPJ11

Learning Goal To practice Problem-Solving Strategy 27.2 Motion in Magnetic Fields. EVALUATE your answer An electron inside of a television tube moves with a speed of 2.56x107 m/s. It encounters a region with a uniform magnetic field oriented perpendicular to its trajectory. The electron begins to move along a circular arc of radius 0.190 m. What is the magnitude of the magnetic field? Part C Calculate the magnitude F of the force exerted on the electron by a magnetic field of magnitude 8.27x10^-4 T oriented as described in the problem introduction. Express your answer in newtons

Answers

The magnitude of the magnetic field is 0.090 T. The magnitude of the force exerted on the electron by the magnetic field is 2.09 x 10⁻¹³N.

To find the magnitude of the magnetic field, we can use the formula for the magnetic force experienced by a charged particle moving in a magnetic field.

The magnetic force (F) acting on a charged particle can be calculated using the formula:

F = q * v * B * sin(θ)

where:

F is the force,

q is the charge of the particle (in this case, the charge of an electron, which is 1.6 x 10^(-19) C),

v is the velocity of the particle,

B is the magnitude of the magnetic field, and

θ is the angle between the velocity vector and the magnetic field vector (90 degrees in this case).

We are given the velocity of the electron (v = 2.56 x 10⁷m/s) and the radius of the circular arc (r = 0.190 m).

Since the electron is moving in a circular arc, the magnetic force provides the necessary centripetal force to keep the electron in its circular path.

The centripetal force (Fc) can be calculated using the formula:

Fc = (m * v²) / r

where m is the mass of the electron (9.11 x 10⁻³¹kg).

Since the magnetic force and the centripetal force are equal, we can set up an equation:

q * v * B = (m * v²) / r

Solving for B, we get:

B = (m * v) / (q * r)

Substituting the known values:

B = (9.11 x 10⁻³¹ kg * 2.56 x 10⁷ m/s) / (1.6 x 10⁻¹⁹ C * 0.190 m)

Calculating the value, we find:

B ≈ 0.090 T

Therefore, the magnitude of the magnetic field is approximately 0.090 T.

To calculate the magnitude of the force (F) exerted on the electron, we can use the same formula:

F = q * v * B * sin(θ)

Substituting the given values:

F = (1.6 x 10⁻¹⁹ C) * (2.56 x 10⁷ m/s) * (8.27 x 10⁻⁴ T) * sin(90°)

Calculating the value, we find:

F ≈ 2.09 x 10⁻¹³ N

Therefore, the magnitude of the force exerted on the electron by the magnetic field is approximately 2.09 x 10⁻¹³ N.

The magnitude of the magnetic field is 0.090 T, and the magnitude of the force exerted on the electron by the magnetic field is 2.09 x 10⁻¹³N.

To know more about force visit:

https://brainly.com/question/25239010

#SPJ11

In the following circuit, the switch has been in current position for a long time. Att-4s it moved to the second position. What is vt 10 5. In the following circuit, the switch has been in current position for a long time. At0 s switch is moved to the socond position. What is i(t) for all l0 80?

Answers

The value of i(t) for all t > 0 s when the switch is in position 2 is i(t) = (4/3)[15cos(12t) + 15sin(12t) - 10e^(-3t)] for all 10 < t < 80.

Since the switch has been in current position for a long time, there will be a steady-state response. Before the switch is moved to position 2, we can see that there is a voltage source of 10 V and a resistor of 5 Ω connected in series. Therefore, the current flowing through them will be 2 A (I = V/R).This current will remain the same when the switch is moved to position 2 since the circuit remains the same in that position. Hence, the value of vt at t = 0 s when the switch is moved to position 2 will be 10 V.

So, the answer to the first part of the question is vt = 10 V.

Now, the expression for i(t) for all t > 0 s when the switch is in position 2, We can see that there is a voltage source of 20 V and a resistor of 15 Ω connected in series. Therefore, the current flowing through them will be 4/3 A (I = V/R). This current will also flow through the 30 Ω resistor and the 80 mH inductor since they are connected in parallel to the 15 Ω resistor.Using Kirchhoff's current law at the node where the three resistors are connected, 4/3 = iR_1 + iR_2 + iR_3where i is the current flowing through the resistors R1, R2, and R3.

Since,

          R_1 = 15 Ω,

          R_2 = 30 Ω,

          R_3 = 80 mH,

Substituting their values,

          4/3 = i(15 + 30 + jω(0.08))

where ω is the angular frequency (ω = 2πf)

Rearranging the equation,

          i(15 + 30 + jω(0.08)) = 4/3

         i = 4/3(15 + 30 + jω(0.08))^(-1)

        i(t) = (4/3)(1/45 + 1/90 - jω(1/12))^{-1}

Taking the inverse Laplace transform of the above equation,

           i(t) = (4/3)[15cos(12t) + 15sin(12t) - 10e^(-3t)]

Hence, the value of i(t) for all t > 0 s when the switch is in position 2 is i(t) = (4/3)[15cos(12t) + 15sin(12t) - 10e^(-3t)] for all 10 < t < 80.

Learn more about the circuit:

brainly.com/question/2969220

#SPJ11

Conservation of Linear Momentum and Impulse --- Momentum Theorem Objectives 1. To verify the conservation of momentum for fully elastic and totally inelastic collisions; 2. To verify the Impulse-Momentum Theorem. Introduction and Background For a body of mass m moving with velocity v, its linear momentum p is defined as (1) p = mv According to the law of conservation of momentum, linear momentum p of a system may change only if there is a net external force acting on this system. In other words momentum of a system is conserved when there is no net external force acting on it.

Answers

The conservation of linear momentum states that linear momentum of a system remains conserved unless there is a net external force acting on it. This conservation law is applicable for both fully elastic and totally inelastic collisions. Similarly, the Impulse-Momentum Theorem states that the impulse of a force is equal to the change in momentum of the object it is acting on.

Linear momentum p is defined as (1) p = mv, where m is the mass of the body and v is its velocity. The momentum of a system only changes when there is a net external force acting on it. The conservation of momentum is applicable to both fully elastic and totally inelastic collisions.

The impulse-momentum theorem is defined as FΔt = Δp, where F is the force acting on an object, Δt is the duration for which the force acts, and Δp is the change in momentum of the object. The impulse-momentum theorem is applicable in all situations where the force acting on the object is not constant.

Know more about linear momentum, here:

https://brainly.com/question/30767107

#SPJ11

A kinetics experiment is performed to determine the activation energy of a reaction. The following data were collected in the experiment:
Experiment Temperature, °C k, M- 15-1 1 130.2 0.00363 2 24.8 0.00109
Calculate 1/T in K-1 for the temperature in Experiment 1.
Calculate 1/T in K-1 for the temperature in Experiment 2.
Calculate ln(k) for the rate constant in Experiment 1.
Calculate ln(k) for the rate constant in Experiment 2
The linear relationship is between ln(k) and 1/T. Calculate the slope (in K) between the points (1/T,ln(k)).
Calculate the activation energy of the reaction in J/mol.
Calculate the activation energy of the reaction in kJ/mol.
Calculate the rate constant, k, for this reaction at 300.0°C.

Answers

1/T in Experiment 1 = 0.002480 K⁻¹, 1/T in Experiment 2 = 0.003341 K⁻¹,  ln(k)  in Experiment 1 = -5.614, ln(k)  in Experiment 2 = -6.919,  the slope (in K) between the points (1/T, ln(k)) = -1513K,  the activation energy of the reaction 12577.582 J/mol, and the rate constant is 0.0720 M⁻¹.

Given:

Experiment 1:

Temperature = 130.2 °C

k = 0.00363 M⁻¹

Experiment 2:

Temperature = 24.8 °C

k = 0.00109 M⁻¹

Step 1: Convert temperature in Experiment 1 from °C to K

T₁ = 130.2 + 273.15 = 403.35 K

Step 2: Convert temperature in Experiment 2 from °C to K

T₂ = 24.8 + 273.15 = 298.95 K

Step 3: Calculate 1/T in K⁻¹ for the temperature in Experiment 1

1/T₂ = 1/403.35 = 0.002480 K⁻¹

Step 4: Calculate 1/T in K⁻¹ for the temperature in Experiment 2

1/T₂ = 1/298.95 = 0.003341 K⁻¹

Step 5: Calculate ln(k) for the rate constant in Experiment 1

ln(k₁) = ln(0.00363) = -5.614

Step 6: Calculate ln(k) for the rate constant in Experiment 2

ln(k₂) = ln(0.00109) = -6.919

Step 7: Calculate the slope (in K) between the points (1/T, ln(k))

slope = (ln(k₂) - ln(k1)) / (1/T₂ - 1/T₁)

= (-6.919 - (-5.614)) / (0.003341 - 0.002480)

= -1.305 / 0.000861

= -1513 K

Step 8: Calculate the activation energy of the reaction in J/mol

slope = -Ea / R

-1513 = -Ea / (8.314 J/(mol·K))

Ea = 1513 × 8.314 J/mol

Ea = 12577.582 J/mol

Step 9: Calculate the activation energy of the reaction in kJ/mol

Ea kJ = Ea / 1000

Ea kJ = 12.577582 kJ/mol

Step 10: Calculate the rate constant, k, for this reaction at 300.0 °C

T₃ = 300.0 + 273.15 = 573.15 K

1/T₃ = 1/573.15 = 0.001742 K⁻¹

k₃ = exp(slope × (1/T3))

k₃ = exp(-1513 × 0.001742)

k₃ = exp(-2.634986)

k₃ = 0.0720 M⁻¹

To learn more about the rate constant, follow the link:

https://brainly.com/question/20305922

#SPJ4

An earth satelite moves in a circular orbit at a speed of 5500 m/s
Part A
What is its orbital period?
Express your answer in hours to two significant figures.

Answers

The orbital period of the Earth satellite is approximately 1.34 hours, expressed to two significant figures.

To find the orbital period of an Earth satellite moving in a circular orbit, we can use the relationship between the orbital speed (v) and the orbital period (T).

The orbital speed is given as 5500 m/s.

The formula to calculate the orbital period is:

T = (2πr) / v

Where r represents the radius of the orbit.

In a circular orbit, the radius (r) is equal to the distance between the center of the Earth and the satellite.

Assuming the satellite is in a low Earth orbit, we can approximate the radius of the orbit as the sum of the radius of the Earth (approximately 6371 km) and the altitude of the satellite.

Converting the altitude to meters, let's assume it is 300 km, which is 300,000 meters.

Substituting the values into the formula, we have:

T = (2π(6371 km + 300 km)) / 5500 m/s

T = (2π(6671000 m)) / 5500 m/s

T ≈ 4820 seconds

To convert the orbital period to hours, we divide by 3600 seconds (1 hour = 3600 seconds):

T ≈ 4820 seconds / 3600 seconds/hour ≈ 1.34 hours

Learn more about satellite:

https://brainly.com/question/18496962

#SPJ11

A projectile is launched upward from ground level at an angle of 30 degrees above the horizontal. If the ball remains aloft for 4s before returning to the ground level, at what speed was it launched?

Answers

The projectile was launched with an initial speed of approximately 19.6 m/s at an angle of 30 degrees above the horizontal.

To determine the initial launch speed of the projectile, we can use the equations of projectile motion.

Given:

Launch angle (θ) = 30 degrees

Time of flight (t) = 4 s

Vertical displacement (Δy) = 0 (since the ball returns to ground level)

The time of flight can be divided into two equal halves: the upward journey and the downward journey. The total time of flight is twice the time of either journey.

Using the equation for vertical displacement:

Δy = v₀ * sin(θ) * t - (1/2) * g * t²

Since the vertical displacement is zero, the equation simplifies to:

0 = v₀ * sin(θ) * t - (1/2) * g * t²

Solving for the initial velocity (v₀):

v₀ = (1/2) * g * t / sin(θ)

Substituting the given values:

v₀ = (1/2) * 9.8 m/s² * 4 s / sin(30°)

Calculating:

v₀ ≈ 19.6 m/s

Therefore, the projectile was launched with an initial speed of approximately 19.6 m/s.

To know more about projectile, click here https://brainly.com/question/28043302

#SPJ11

when the two asteroids collide, they stick together. based on your graph in part c, determine the velocity of the new megaasteroid.

Answers

Two asteroids collide head-on and stick together. Before the collision, asteroid A (mass 1,000 kg) moved at 100 m/s, and asteroid B (mass 2,000 kg) moved at 80 m/s in the opposite direction. The velocity of the asteroids after the collision is 20 m/s in the direction of asteroid B.

According to momentum conservation, the total momentum before the collision should be equal to the total momentum after the collision.

Total momentum before collision = Total momentum after collision

(m₁ * v₁) + (m₂ * v₂) = (m₁ * v₁') + (m₂ * v₂')

Substituting the given values into the equation:

(1,000 kg * 100 m/s) + (2,000 kg * (-80 m/s)) = (1,000 kg * v) + (2,000 kg * v)

Simplifying the equation:

100,000 kg m/s - 160,000 kg m/s = 3,000 kg v

-60,000 kg m/s = 3,000 kg v

Dividing both sides by 3,000 kg:

-20 m/s = v

The negative sign indicates that the velocity is in the opposite direction compared to the initial velocities of the asteroids. Therefore, the velocity of the asteroids after the collision is -20 m/s or 20 m/s in the direction of asteroid B.

To know more about collide here

https://brainly.com/question/27993473

#SPJ4

The question is incomplete, the complete question is:

Two asteroids collide head-on and stick together. Before the collision, asteroid A (mass 1,000 kg) moved at 100 m/s, and asteroid B (mass 2,000 kg) moved at 80 m/s in the opposite direction. Use momentum conservation (make a complete Momentum Chart) to find the velocity of the asteroids after the collision?

A 100-turn, 5.0-cm-diameter coil is at rest with its axis vertical. A uniform magnetic field 60∘ away from vertical increases from 0.50 T to 2.5 T in 0.70 s .
Part A
What is the induced emf in the coil?
Express your answer with the appropriate units.

Answers

The induced emf in the 100-turn, 5.0-cm-diameter coil, resulting from a uniform magnetic field increasing from 0.50 T to 2.5 T in 0.70 s at a 60° angle from vertical, is 3.4 V.

Determine what is the induced emf in the coil?

The induced emf in a coil can be calculated using Faraday's law of electromagnetic induction, which states that the emf is equal to the rate of change of magnetic flux through the coil.

The magnetic flux through a coil can be determined by multiplying the magnetic field strength by the area of the coil and the cosine of the angle between the magnetic field and the normal to the coil.

In this case, the coil has 100 turns, a diameter of 5.0 cm (radius = 2.5 cm = 0.025 m), and the magnetic field increases from 0.50 T to 2.5 T. The angle between the magnetic field and the normal to the coil is 60°.

To calculate the induced emf, we first need to find the change in magnetic flux. The initial magnetic flux is given by Φ₁ = B₁Acosθ, and the final magnetic flux is Φ₂ = B₂Acosθ, where B₁ and B₂ are the initial and final magnetic field strengths, A is the area of the coil, and θ is the angle between the magnetic field and the normal to the coil. The change in magnetic flux is then ΔΦ = Φ₂ - Φ₁.

The area of the coil can be calculated as A = πr², where r is the radius of the coil. Plugging in the values, we have A = π(0.025 m)².

The change in magnetic flux is ΔΦ = (2.5 T)(π(0.025 m)²cos60°) - (0.50 T)(π(0.025 m)²cos60°).

Next, we need to calculate the rate of change of magnetic flux, which is ΔΦ/Δt, where Δt is the time interval. Plugging in the given values, we have Δt = 0.70 s.

Finally, the induced emf is given by the rate of change of magnetic flux, so we have emf = ΔΦ/Δt.

Evaluating the expression, we get emf = [(2.5 T)(π(0.025 m)²cos60°) - (0.50 T)(π(0.025 m)²cos60°)] / (0.70 s).

Calculating the numerical value, we find emf ≈ 3.4 V.

To know more about induced emf, refer here:

https://brainly.com/question/30891425#

#SPJ4

A car traveling with an initial velocity of 27 m/s slows down at a constant rate of 5.4 m/s2 for 3 seconds. What is its velocity at the end of this time? The velocity of the car at the end of 3 seconds is m/s.

Answers

If a car going at 27 meters/seconds slows down at a steady pace of 5.4 meters/seconds for three seconds, the final velocity is 43.2 m/s.

Newton provided three equations of motion.

v = u + a × t

S = u × t + 1/2 × a × t.t

v² - u² = 2 × a × s

As stated in the problem, a car driving at an initial velocity(u) of 27 meters/seconds slows down at a constant rate of 5.4 meters/seconds² for 3 seconds.

Using the second equation of motion,

S = u × t + 1/2 × a × t²

= 27 × 3 + 0.5 × 5.4 ×  3²

= 81 + 24.3

= 105.3

Now, using the third equation of motion,

v² - 27² =  2 × 5.4 × 105.3

v² - 729 = 1137.24

v² = 1137.24 + 729

v² = 1,866.24

v = √1,866.24

= 43.2 m/s

Thus, the car's velocity at the end of three seconds would be 43.2 m/s.

To know more about final velocity:

https://brainly.com/question/9909784

#SPJ4

what would be the optimum wavelength for generating a beer’s law calibration curve?

Answers

The optimum wavelength for generating a Beer's Law calibration curve depends on the specific substance being analyzed and its absorption characteristics, and it is typically the wavelength at which the substance's absorbance is maximum.

Beer's Law states that there is a linear relationship between the concentration of a substance in a solution and the absorbance of light at a specific wavelength. The absorbance of a substance is directly proportional to its concentration and molar absorptivity, while inversely proportional to the path length of the sample cell.

To generate a calibration curve using Beer's Law, it is essential to choose a wavelength at which the substance of interest has a maximum absorbance. This wavelength corresponds to the peak of the substance's absorption spectrum. At this specific wavelength, the substance absorbs light most efficiently, providing the highest sensitivity and accuracy for concentration determination.

The optimum wavelength can be determined experimentally by measuring the absorbance of the substance at different wavelengths and identifying the wavelength with the highest absorbance. Alternatively, known literature values or spectral databases can be consulted to find the characteristic absorption wavelength for the substance of interest.

To know more about calibration curve, refer here:

https://brainly.com/question/30590682#

#SPJ11

a microscope has a 11.0 × eyepiece and a 59.0 × objective lens 20.0 cm apart. assume a normal eye and that the final image is at infinity. Calculate the focal length of the objective lens. Where the object must be for a normal relaxed eye to see it in focus?

Answers

The focal length of the objective lens is approximately 3.73 cm. The object must be placed at a distance of 15.9 cm in front of the objective lens for a normal relaxed eye to see it in focus.

To find the focal length of the objective lens, we can use the magnification formula for a compound microscope:

magnification = (-fe / fo) × (1 + de / do)

Where fe is the focal length of the eyepiece, fo is the focal length of the objective lens, de is the distance between the eyepiece and the final image, and do is the distance between the object and the objective lens.

Given that the eyepiece has a magnification of 11.0x and the objective lens has a magnification of 59.0x, and assuming the final image is at infinity, we can set the magnification formula equal to the total magnification:

11.0 × 59.0 = (-fe / fo) × (1 + ∞ / do)

Since the final image is at infinity, the term (∞ / do) becomes negligible and can be approximated as zero:

11.0 × 59.0 ≈ -fe / fo

Simplifying the equation, we find:

fo ≈ -fe / (11.0 × 59.0)

Substituting the given value of fe = 11.0x, we can calculate the focal length of the objective lens (fo).

Next, to find the distance where the object must be placed for a normal relaxed eye to see it in focus, we can use the thin lens equation:

1 / f = 1 / do + 1 / di

Where f is the focal length of the objective lens, do is the distance between the object and the objective lens, and di is the distance between the objective lens and the final image (which is at infinity).

Since the final image is at infinity, the term 1 / di becomes negligible and can be approximated as zero:

1 / f ≈ 1 / do

Simplifying the equation, we find:

do ≈ f

Substituting the calculated value of f, we can find the distance where the object must be placed for a normal relaxed eye to see it in focus (do).

The focal length of the objective lens is approximately 3.73 cm. To see the object in focus with a normal relaxed eye, the object must be placed at a distance of 15.9 cm in front of the objective lens.

To know more about Focal Length, visit

https://brainly.com/question/28039799

#SPJ11

Consider the torque-free rotational motion of an axisymmetric rigid body with J1= 2J2 = 2J3. a) Analytically find the largest possible value of the angle between w and H. (Hint: Write the angular momentum vector in the body coordinate frame {b1, b2, b3} and consider the angular momentum magnitude H = H fixed.) Ans. Omax = 19.47° (show that this is the maximum!) b) Find the critical value of rotational kinetic energy that results in the largest angle between w(omega) and H. Also, find the minimum and maximum rotational kinetic energies. Express your an- swer in terms of H and J2

Answers

The largest possible value of the angle between w and H is 19.47°, which occurs when the rotational kinetic energy is at its maximum.

The critical value of rotational kinetic energy that results in the largest angle between w and H is the maximum rotational kinetic energy, and the minimum and maximum rotational kinetic energies are directly proportional to J₂ and w².

What is rotational kinetic energy?

Rotational kinetic energy refers to the energy associated with the rotational motion of an object. It is a form of kinetic energy that arises from the rotational motion of an object around an axis.

The inertia tensor can be written as:

J = diag(J₁, J₂, J₂)

Given that J₁ = 2J₂ = 2J₃, we have:

J = diag(2J₂, J₂, J₂)

The magnitude of the angular momentum vector H is given by H = |L| = √(L · L). Since H is fixed, its magnitude remains constant throughout the motion.

Now, we can write the magnitude of the angular momentum vector H in terms of J₂ and w as:

H = √(L · L) = √((2J₂w₁)² + (J₂w₂)² + (J₂w₃)²)

Simplifying:

H² = 4J₂²w₁² + J₂²w₂² + J₂²w₃²

H² = J₂²(4w₁² + w₂² + w₃²)

Since H is fixed, we can rewrite the equation as:

4w₁² + w₂² + w₃² = constant

The magnitude of the angular velocity vector w is given by w = √(w₁² + w₂² + w₃²). So, we can rewrite the equation as:

4w₁² + (w - w₁)² = constant

Expanding and simplifying:

5w₁² - 2ww₁ + w² = constant

This equation represents a quadratic equation in terms of w₁. For a quadratic equation, the maximum or minimum occurs at the vertex of the parabolic curve. In this case, we want to find the maximum value of w₁.

To find the maximum value of w₁, we can take the derivative of the equation with respect to w₁ and set it to zero:

d/dw₁ (5w₁² - 2ww₁ + w²) = 0

10w₁ - 2w = 0

w₁ = w/5

Now, substituting this value of w₁ back into the equation, we get:

5(w/5)² - 2w(w/5) + w² = constant

w²/5 + w²/5 + w² = constant

7w²/5 = constant

Therefore, the maximum angle between w and H occurs when 7w²/5 is at its maximum value, which happens when w² is at its maximum. Since w is the magnitude of the angular velocity vector, the maximum value of w² occurs when the rotational kinetic energy is at its maximum.

Hence, the critical value of rotational kinetic energy that results in the largest angle between w and H is when the rotational kinetic energy is at its maximum.

To find the minimum and maximum rotational kinetic energies, we can use the relationship between rotational kinetic energy (T) and the inertia tensor (J):

T = (1/2) w · J · w

Substituting the inertia tensor J = diag(2J₂, J₂, J₂) and simplifying:

T = (1/2)(2J₂w₁² + J₂w₂² + J₂w₃²)

T = J₂(w₁² + w₂² + w₃²)

Since w = √(w₁² + w₂² + w₃²), we can rewrite the equation as:

T = J₂w²

Therefore, the rotational kinetic energy (T) is directly proportional to the square of the angular velocity magnitude (w²) and the inertia tensor component J₂.

To learn more about rotational kinetic energy,

https://brainly.com/question/30459585

#SPJ4

Solve the spherical mirror equation for s'.
s' = 1/f - 1/s

Answers

the spherical mirror equation for s'.

s' = 1/f - 1/s the correct answer is S = s’ / (s’ – f)

The spherical mirror equation relat”s the focal length (f) of a spherical mirror to the object distance (s) and the image distance (s’). The equation is given as:

1/f = 1/s + 1/s’

To solve the equation for s, we can rearrange the terms:

1/f – 1/s = 1/s’

Now, let’s isolate 1/s on one side:

1/s = 1/f – 1/s’

To obtain s, we can take the reciprocal of both sides:

S = 1 / (1/f – 1/s’)

Using algebraic manipulation, we can simplify further:

S = s’ / (1/s’ – 1/f

Thus, the solution for s in terms of s’ and f is:

S = s’ / (s’ – f)

This equation gives the object distance (s) in terms of the image distance (s’) and the focal length (f) of the spherical mirror.

Learn more about focal length here:

https://brainly.com/question/31755962

#SPJ11

Two narrow slits are illuminated by light of wavelength λ. The slits are spaced 50 wavelengths apart.What is the angle, in radians, between the central maximum and the m = 1 bright fringe? Express your answer using two significant figures.

Answers

The angle between the central maximum and the m = 1 bright fringe is 0.038 radians.

When a light of wavelength λ passes through two narrow slits that are spaced by a distance d, a pattern of bright and dark fringes can be observed on a screen placed behind the slits. The distance between adjacent bright fringes is given by:$$\Delta y=\frac{\lambda L}{d} $$Where L is the distance between the slits and the screen. When m number of bright fringes are observed, then the angle that corresponds to the mth bright fringe can be calculated using the equation:$$\theta=\frac{m\lambda}{d}$$Here, we are given that the slits are spaced 50 wavelengths apart. Hence, the distance between the slits is given by:d = 50λWe need to find the angle between the central maximum and the m = 1 bright fringe. For m = 1, the angle can be calculated using:$$\theta=\frac{m\lambda}{d}$$$$\theta=\frac{\lambda}{50\lambda}$$$$\theta=0.02$$Hence, the angle between the central maximum and the m = 1 bright fringe is 0.02 radians.

Know more about fringes, here:

https://brainly.com/question/31387359

#SPJ11

the coefficient of kinetic friction for block a in the figure is 0.2 and the pulley is frictionless. if the mass of block a is 2 kg , what is the magnitude of its acceleration?

Answers

The magnitude of the acceleration of block A is 7.84 [tex]m/s^{2}[/tex]. To determine the magnitude of the acceleration of block A in the given scenario, we need to consider the forces acting on the block.

The force of gravity acting on block A is given by its weight, which is equal to its mass multiplied by the acceleration due to gravity (9.8 [tex]m/s^{2}[/tex]). Therefore, the weight of block A is 2 kg × 9.8 [tex]m/s^{2}[/tex] = 19.6 N.

The frictional force opposing the motion of block A is the coefficient of kinetic friction (0.2) multiplied by the normal force, which is equal to the weight of block A in this case. So the frictional force is 0.2 × 19.6 N = 3.92 N.

The net force acting on block A is the difference between the weight and the frictional force, which is 19.6 N - 3.92 N = 15.68 N.

Using Newton's second law (F = ma), where F is the net force and m is the mass, we can calculate the acceleration: 15.68 N = 2 kg × a

Solving for a, we find a = 15.68 N / 2 kg = 7.84 [tex]m/s^{2}[/tex].

Therefore, the magnitude of the acceleration of block A is 7.84 [tex]m/s^{2}[/tex].

To know more about acceleration, refer here:

https://brainly.com/question/12550364#

#SPJ11

a resistor dissipates 2.15 w when the rms voltage of the emf is 12.0 v .
At what rms voltage will the resistor dissipate 10.0 W?

Answers

The resistor will dissipate 10.0 W when the rms voltage of the emf is approximately 38.7 V.

To find the rms voltage at which the resistor dissipates 10.0 W, we can use the formula for power dissipation in a resistor:

P = (V^2) / R,

where P is the power dissipated, V is the rms voltage, and R is the resistance.

Given that the resistor dissipates 2.15 W at 12.0 V, we can rearrange the formula to find the resistance:

R = (V^2) / P.

Substituting the values, we have:

R = (12.0^2) / 2.15 = 67.16 Ω.

Now, we can use this resistance value and the desired power dissipation of 10.0 W to find the rms voltage:

V = sqrt(P * R).

Substituting the values, we get:

V = sqrt(10.0 * 67.16) = 38.7 V (approximately).

Therefore, the resistor will dissipate 10.0 W when the rms voltage of the emf is approximately 38.7 V.

To know more about voltage  visit :

https://brainly.com/question/1176850

#SPJ11

A solid sphere of radius R is placed at a height of 36 cm on a 15∘ slope. It is released and rolls, without slipping, to the bottom.
From what height should a circular hoop of radius R be released on the same slope in order to equal the sphere's speed at the bottom?
Thanks

Answers

The circular hoop of radius R should be released from a height of approximately 19.6 cm on the same slope to have the same speed as the solid sphere at the bottom.

To solve this problem, we can use the principle of conservation of . The potential energy at the starting point is converted into kinetic energy at the bottom of the slope. Since the sphere and the hoop have different moments of inertia, we need to consider their rotational kinetic energy as well.

For the solid sphere:

The potential energy at the starting point is given by mgh, where m is the mass of the sphere, g is the acceleration due to gravity, and h is the height. The kinetic energy at the bottom is given by (1/2)mv^2, where v is the linear velocity of the sphere.

For the circular hoop:

The potential energy at the starting point is also mgh. However, the kinetic energy at the bottom consists of both translational and rotational kinetic energy. The translational kinetic energy is (1/2)mv^2, and the rotational kinetic energy is (1/2)Iω^2, where I is the moment of inertia and ω is the angular velocity of the hoop.

Since the sphere rolls without slipping, the linear velocity v is related to the angular velocity ω by v = Rω, where R is the radius of the sphere.

Comparing the kinetic energies of the sphere and the hoop:

(1/2)mv^2 = (1/2)mv^2 + (1/2)Iω^2

Substituting v = Rω:

(1/2)mv^2 = (1/2)mv^2 + (1/2)I(Rω)^2

Since I for a solid sphere is (2/5)mR^2 and I for a circular hoop is mR^2:

(1/2)mv^2 = (1/2)mv^2 + (1/2)(2/5)mR^2(Rω)^2

Canceling out the common factors and simplifying:

1 = 1 + (2/5)(Rω)^2

Rearranging the equation:

(2/5)(Rω)^2 = 0

This implies that ω, the angular velocity, is 0. Therefore, the hoop only has translational motion.

Now, equating the potential energy of the sphere to the translational kinetic energy of the hoop:

mgh = (1/2)mv^2

Canceling out the common factors:

gh = (1/2)v^2

Substituting v = Rω = R(0) = 0:

gh = 0

This implies that the height h for the hoop is also 0. In other words, the hoop should be released from the same height as the sphere, which is 36 cm.

To equal the speed of the solid sphere at the bottom, the circular hoop of radius R should also be released from a height of approximately 36 cm on the same slope.

To know more about energy visit :

https://brainly.com/question/13881533

#SPJ11

Other Questions
Mary Willis is the advertising manager for Bargain Shoe Store. She is currently working on a major promotional campaign. Her ideas include the installation of a new lighting system and increased display space that will add $24,000 in fixed costs to the $270,000 currently spent. In addition, Mary is proposing that a 5% price decrease ($40 to $38) will produce a 20% increase in sales volume (20,000 to 24,000). Variable costs will remain at $24 per pair of shoes. Management is impressed with Mary's ideas but concerned about the effects that these changes will have on the break-even point and the margin of safety. Compute break-even point and margin of safety ratio, and prepare a CVP income statement before and after changes in business environment. 10. For each of the following pairs of integers a and d, find the quotient and remainder when a is divided by d. (a) a = 100, d=6 (b) a=-200, d= 7 A corporation issued 6,000 shares of its $10 par value common stock in exchange for land that has a market value of $84,000 The entry to record this transaction would include A. A debit to Land for $60,000. B. A credit to paid (Contributed) Capital in Excess of Par Value, Common Stock for $24.000 C. A debit to Common Stock for $60,000 D, A credit to Land for $60,000 Conway, Kip, and Zack are partners with capital balances as follows: Conway, $367,200; Kip, $122,400; and Zack, $244,800. The partners share incomes and losses in a 30%: 40%: 30% ratio. Young is admit Assume that there are 18 board members: 11 females, and 7 males including Carl. There are 3 tasks to be assigned. Note that assigning the same people different tasks constitutes a different assignment. (1) Find the probability that both males and females are given a task.(2) Find the probability that Carl and at least one female are given tasks. What words best describe Mr. Loisel The town of Khatmal has two citizens: a rich citizen (R) and a poor one (P). It has a road that leads to the neighbouring town; however, this road needs to be cleaned everyday, otherwise ash from the neighbouring thermal power plant settles on the road and makes it impossible to use it. Cleaning the road costs 1/- every day. R has to go to work in the neighbouring town and has to use this road, whereas P works in Khatmal and therefore do not use this road much. The daily income of R is 15/- and that of P is 10/-. Let x; denote the private good consumed by each citizen and m denote the amount of cleaning service provided. The cost of the private good is also 1. The utility functions of the two citizens are given by: UR = ln XR + 2ln m; Up = ln xp + ln m a. Set up the maximization problems for R and P. Let mR and mp denote the amount of road cleaning demanded by R and P, respectively. Without doing any math, describe whether you expect me and mp to be equal or different, and give two reasons for your answer. b. Solve mathematically for me and mp. What is the resulting utility of R and P? What is therefore the social surplus in the economy? The government of Khatmal is concerned that there is a market failure in the provision of road cleaning services and is considering a public provision option financed by taxes on R and P. However, the tax collector is unable to distinguish between R and P as it is each for R to disguise as P. Hence, the government is restricted to taxing everyone the same amount to finance the cleaning. I.e., if m units of cleaning are provided, everyone is charged m/2 in taxes. c. What amount of daily cleaning should the government provide to maximize social surplus (assume the government maximizes the sum of the utilities of R and P)? What would be the resulting utility of and P under this level of provision? Discuss any differences from the utilities in part b above, and also comment on any changes in social surplus. d. Does the sum of the individuals' marginal rates of substitution equal the price ratio? Why do you think? e. Now suppose that it is possible to distinguish between R and P, thus allowing differential taxation. Now how much of m does the government provide, and how is the tax burden divided? Calculate the sum of the individuals' marginal rates of substitution, and compare with part d above. Also calculate resulting individual and social surplus. Farmer's market is open to all residents in Swissburg. Right now there are 28 farmers, each sells a unique variety of cheese. Cheese prices on the market vary from $4 to $26 per pound. Most farmers love the cheese they make and earn positive profits. What type of market is this? (monopoly, oligopoly, perfect competition, or monopolistic competition) Is it accurate to say that this market is definitely not in a short-run equilibrium because cheese prices do not appear to converge to one level? Can we say that this market is not in long-run equilibrium? how can we use the output of floyd-warshall algorithm to detect the presence of a negative cycle? Arabian Gulf Corporation reports the following stockholders' equity section on December 31, 2020. - Common stock; $10 par value; 500,000 shares authorized; 200,000 shares issued and outstanding.. .$ 2,000,000 - Paid in capital in excess of par value, common stock -Retained earnings.. ..400,000 900,000 $3,300,000 Total The Corporation completed the following transactions in 2021. 1- Jan. 10, Directors declared a $1 per share cash dividend payable on March 15 to the Jan. 31 stockholders of record. 2- Mar. 01, Purchased 10,000 shares of its own common for $15 per share. 3- Mar. 15, Paid the cash dividend declared on Jan. 10. 4- May 01, Sold 6,000 of its treasury shares at $15 cash per share. 5-Sep. 30, Directors declared a 30% stock dividend when the share market price is $16. 6- Nov. 01, Distributed stock dividends declared on Sep. 30. 7- Nov. 15. The company implemented 5-for-1 stock split for the common stock. Required; Prepare journal entries to record each of these transactions for 2021. CLEARLY INDICATE THE DEBITS & CREDITS Example: XYZ Company pays $10,000 cash to purchase land Answer: Dr. Land 10,000 Cr. Cash 10,000 For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac) Problem 3-12A (Algo) Nigel McCloskey is a waiter at Albicious Foods in South Carolina. He is single with one other dependent. He receives the standard tipped hourly wage. During the week ending Octobe how might the sampling bias of ogihara and uchidas study of students well- being have affected the results of the study? based on the colligative properties of water, what would happen if one were to add a solute to water? You work in the software division of Global Human Resources Consultants (GHRC), which sells modular Human Resource (HR) software to large international companies. For high-level planning purposes, you have created an Access database to track new clients, the HR software modules they have purchased, and the lead consultant for each installation. In this project you will improve the tables and queries of the database.In Design View of the Client table, add three new fields with the following specifications:A field named Website with a Hyperlink data type.A field named Logo with an Attachment data type.A field named Notes with a Long Text data type. Which of the following statements is true? A. As the degree of specialization and interdependence has increased over the years, dependency on government services has declined. B. Decreased specialization leads to increased reliance on others. C. Increased specialization leads to decreased interdependence. D. Increased specialization leads to increased interdependence. E. The degree of specialization in the U.S. has decreased over the years. F. I'm not sure A. B. C. D. E. who said "very well, the existing appropriation will carry the navy halfway around the world and if congress chooses to leave it on the other side, all right." Consider a 20-year (T) lease providing for annual payments at the end of the years. The initial rent is $30/SF (CF), but that rent will grow at a rate of 2.5% per year (g) each year thereafter. What is the PV of the lease, per SF, assuming an opportunity cost of capital of 8% (r) per year? Fill in the blanks in the following table, where Q is units of output, FC is fixed cost, VC is variable cost, TC is total cost, MC is marginal cost, AFC is average fixed cost, AVC is average variable y=A + C/x is the general solution of the exact DEQ: y dx + x dy 40dx. Determine A. 1. what are taxonomic categories and how do consumers use them to structure knowledge in memory2. what is a schema? identify strategies that marketers can use in order to increase :- favorability- uniqueness- salience