nollostidu2 bed enbelwand ris obsMA
7. A physician assistant applies gloves prior to examining each patient. She sees an
с и
3. smith
average of 37 patients each day. How many boxes of gloves will she need over the
span of 3 days if there are 100 gloves in each box?
sibain dossi
tawans
8. A medical sales rep had the goal of selling 500 devices in the month of November.
He sold 17 devices on average each day to various medical offices and clinics. By
how many devices did this medical sales rep exceed to fall short of his November
goal?
9. There are 56 phalange bones in the body. 14 phalange bones are in each hand. How
many phalange bones are in each foot?
10. Frank needs to consume no more than 56 grams of fat each day to maintain his
current weight. Frank consumed 1 KFC chicken pot pie for lunch that contained 41
grams of fat. How many fat grams are left to consume this day?
LAO
11. The rec center purchases premade smoothies in cases of 50. If the rec center sells
an average of 12 smoothies per day, how many smoothies will be left in stock after
4 days from one case?
12. Ashton drank a 24 oz bottle of water throughout the day at school. How many
ounces should he consume the rest of the day if the goal is to drink the
recommended 64 ounces of water per day?
13. Kathy set a goal to walk at least 10 miles per week. She walks with a friend 3
times each week and averages 2.5 miles per walk. How many more miles will she
need to walk to meet her goal for the week?

Answers

Answer 1

She will need to purchase 3 boxes of gloves.

He exceeded his goal by 10 devices.

There are 28 phalange bones in each foot.

There will be 2 smoothies left in stock after 4 days from one case.

Frank needs to consume no more than 15 grams of fat for the rest of the day.

How to calculate the word problem

Since there are 100 gloves in each box, she will need 222/100 = 2.22 boxes of gloves. Since she cannot purchase a partial box, she will need to purchase 3 boxes of gloves.

The medical sales rep sold devices for a total of 17 x 30 = 510 devices in November. Since his goal was to sell 500 devices, he exceeded his goal by 510 - 500 = 10 devices.

Since there are 56 phalange bones in the body and 14 phalange bones in each hand, there are 56 - (14 x 2) = <<56-(14*2)= 28 phalange bones in each foot.

Frank needs to consume no more than 56 - 41 = 15 grams of fat for the rest of the day.

The rec center sells 12 smoothies per day for 4 days, for a total of 12 x 4 = 48 smoothies. Therefore, there will be 50 - 48 = 2 smoothies left in stock after 4 days from one case.

Since Ashton drank a 24 oz bottle of water, he still needs to drink 64 - 24 = 40 ounces of water for the rest of the day.

Kathy walks a total of 3 x 2.5 =7.5 miles with her friend each week. Therefore, she still needs to walk 10 - 7.5 = 2.5 more miles to meet her goal for the week.

Learn more about word problem on

https://brainly.com/question/21405634

#SPJ1


Related Questions

what is the potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 v/m ?

Answers

The potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 v/m can be calculated using the formula: ΔV = Ex * Δx.  Therefore, the potential difference between the two points is 400 volts.



To find the potential difference between two points in a uniform electric field, we can use the formula:

Potential difference (V) = Electric field (E) × Distance (d)

In this case, the electric field (E) is given as 2000 V/m (ex = 2000 V/m). The distance (d) between the two points, xi = 10 cm and xf = 30 cm, is the difference between xf and xi, which is:

d = xf - xi = 30 cm - 10 cm = 20 cm

Now, convert the distance to meters:

d = 20 cm × (1 m / 100 cm) = 0.2 m

Now, we can find the potential difference (V):

V = E × d = 2000 V/m × 0.2 m = 400 V

So, the potential difference between xi = 10 cm and xf = 30 cm in the uniform electric field ex = 2000 V/m is 400 V.

to learn more about volts click here:

https://brainly.com/question/3631756

#SPJ11

Solve this. x = 7 cos(t) − cos(7t), y = 7 sin(t) − sin(7t), 0 ≤ t ≤ π

Answers

The given equations represent a parametric equation of a curve. To solve for the curve, we can eliminate the parameter 't' by using the trigonometric identity:

cos(a) - cos(b) = -2sin((a+b)/2)sin((a-b)/2)

sin(a) - sin(b) = 2cos((a+b)/2)sin((a-b)/2)

Using this identity, we get:

x = 7[-2sin(4t/2)sin(-3t/2)] = 14sin(2t)sin(3t)

y = 7[2cos(4t/2)sin(-3t/2)] = -7cos(3t) + 7cos(5t)

So the curve is given by the equation:

(14sin(2t)sin(3t))^2 + (-7cos(3t) + 7cos(5t))^2 = r^2

where r is the radius of the curve.
To solve the given parametric equations:

x = 7cos(t) - cos(7t)
y = 7sin(t) - sin(7t)
0 ≤ t ≤ π

These equations represent a mathematical curve known as a "rose curve" or "rhodonea curve." The variables x and y are expressed in terms of the parameter t, which ranges from 0 to π. The specific shape of the curve depends on the coefficients and trigonometric functions.

Since the equations are already in parametric form, we don't need to solve them for a specific value of x or y. The solution is the set of points (x, y) that satisfy the equations as t ranges from 0 to π. By plugging in different values of t between 0 and π, you can generate the points that form the curve described by these parametric equations.

In summary, the given parametric equations define a rose curve, and the solution consists of the points (x, y) formed by the curve as t varies from 0 to π.

Visit here to learn more about curve brainly.com/question/28793630

#SPJ11

A clinical trial was conducted to test the effectiveness of a drug for treating insomnia in older subjects. Before​ treatment, 18 subjects had a mean wake time of 100.0 min. After​ treatment, the 18 subjects had a mean wake time of 79.2 min and a standard deviation of 41.1 min. Assume that the 18 sample values appear to be from a normally distributed population and construct a 90​% confidence interval estimate of the mean wake time for a population with drug treatments.

a. What does the result suggest about the mean wake time of 100.0 min before the​ treatment? Does the drug appear to be​ effective?
b. Construct the 90​% confidence interval estimate of the mean wake time for a population with the treatment.
c. What does the result suggest about the mean wake time of 100.0 min before the​ treatment? Does the drug appear to be​effective

Answers

a. The results suggest that the drug is effective in reducing the mean wake time from 100.0 min before treatment.

b. The 90% confidence interval estimate of the mean wake time after treatment is (66.58, 91.82) minutes.

c. The results suggest that the drug is effective since the entire 90% confidence interval lies below the mean wake time of 100.0 min before treatment.


1. Identify sample size (n=18), sample mean (x-hat=79.2), and standard deviation (s=41.1).
2. Calculate the standard error: SE = s / √n = 41.1 / √18 ≈ 9.67.
3. Determine the t-score for a 90% confidence interval with 17 degrees of freedom (df=n-1): t = 1.740.
4. Calculate the margin of error: ME = t × SE ≈ 1.740 × 9.67 ≈ 16.82.
5. Construct the confidence interval: x-hat ± ME = 79.2 ± 16.82 ≈ (66.58, 91.82).

To know more about confidence interval click on below link:

https://brainly.com/question/29680703#

#SPJ11

minimize p=x^2 y^2, subject to x-y=10

Answers

1. Express y in terms of x using the constraint: y = x - 10.
2. Substitute this expression for y in the function p: p = x^2(x - 10)^2.
3. The minimum value of p, differentiate p with respect to x and set the result equal to zero: d(p)/dx = 0. Evaluate the function p at these coordinates to find the minimum value of p.

To minimize p=x^2 y^2 subject to x-y=10, we can use the method of Lagrange multipliers.

Let L = p + λ(x-y-10), where λ is the Lagrange multiplier.

Taking partial derivatives of L with respect to x, y, and λ, and setting them equal to zero, we get:
∂L/∂x = 2xy^2 + λ = 0
∂L/∂y = 2x^2 y + λ = 0
∂L/∂λ = x - y - 10 = 0

Solving for x and y in terms of λ from the first two equations, we get:
x = sqrt(-λ/2y^2)
y = sqrt(-λ/2x^2)

Substituting these expressions into the third equation, we get:
sqrt(-λ/2y^2) - sqrt(-λ/2x^2) - 10 = 0

Simplifying, we get:
λ = -40x^2y^2

Substituting this value of λ back into the expressions for x and y, we get:
x = 2sqrt(5)
y = -2sqrt(5)

Finally, plugging in these values of x and y into the expression for p, we get:
p = x^2 y^2 = 80

Therefore, the minimum value of p, subject to x-y=10, is 80.

Learn more about Expressions:

brainly.com/question/14083225

#SPJ11

For each pair of numbers verify Icm(m,n).gcd(m, n) = mn. = a. 60,90 b. 220,1400 c. 32.73.11, 23.5.7

Answers

Verifying the numbers states that a. Icm(60, 90).gcd(60, 90) = mn is right. The correct answer is option a)

To verify Icm(m,n).gcd(m, n) = mn, we need to calculate the least common multiple (Icm) and greatest common divisor (gcd) of each pair of numbers and then multiply them together to check if the product is equal to the product of the original numbers.

a. m = 60, n = 90

Icm(60, 90) = 180

gcd(60, 90) = 30

Icm(60, 90).gcd(60, 90) = 180 * 30 = 5400

m*n = 60 * 90 = 5400

Therefore, Icm(60, 90).gcd(60, 90) = mn is true.

b. m = 220, n = 1400

Icm(220, 1400) = 2200

gcd(220, 1400) = 20

Icm(220, 1400).gcd(220, 1400) = 2200 * 20 = 44000

m*n = 220 * 1400 = 308000

Therefore, Icm(220, 1400).gcd(220, 1400) ≠ mn is false.

c. m = 32.73.11, n = 23.5.7

Icm(32.73.11, 23.5.7) = 32.73.11.5.7 = 12789

gcd(32.73.11, 23.5.7) = 1

Icm(32.73.11, 23.5.7).gcd(32.73.11, 23.5.7) = 12789 * 1 = 12789

m*n = 32.73.11 * 23.5.7 = 2539623

Therefore, Icm(32.73.11, 23.5.7).gcd(32.73.11, 23.5.7) ≠ mn is false.

Therefore, the only true statement is option a. Icm(60, 90).gcd(60, 90) = mn.

Know more about least common multiple (Icm) here:

https://brainly.com/question/29156201

#SPJ11

for a party you make a gelatin dessert in a rectangular pan and cut the dessert into equal-sizes pieces, as shown below. The desert consists of 5 layers of equal height. Each layer is a different flavor, as shown be,ow by a side view of the pan. Your guests eat 3/5 of the pieces of dessert. Part A. Write the amount of cherry gelatin that your guests eat as fraction of the total dessert. Part b. Write the amount of the cherry gelatin that your guests eat as a percent of the total dessert.

Answers

The amount of cherry gelatin that the guests eat as fraction of the total dessert is 3/25.

The amount of the cherry gelatin that the guests eat as a percent of the total dessert is 12%.

We have,

The desert consists of 5 layers of equal height.

As, the guest eat 3/5 of the pieces of dessert.

So, the amount of cherry gelatin that the guests eat as fraction of the total dessert

= 3/5 x 1/5

= 3/ 25

Now, In percentage

= 3/25 x 100

= 12%

Thus, the required fraction is 3/25.

Learn more about Fraction here:

https://brainly.com/question/10354322

#SPJ1

RSM WORK, I WILL GIVE RBAINLIEST


Y>0

Y<0

Y=0
USE FORMAT OF COMPARISON

Answers

By using the graph of the "equation", "y = |x+2| - 1", the "values-of-x"

(i) For y = 0, x = -3 and x = -1,

(ii) For y > 0, x > -1 or x < -3 and

(iii) For y < 0, -3 < x < -1

Part(i) To find the values of x for y = 0, we set y = 0 and solve for x:

The graph of the equation "y = |x+2| - 1",is given below,

⇒ |x + 2| - 1 = 0,

⇒ |x + 2| = 1,

The above equation is written as ⇒ "x + 2 = 1" or "x + 2 = -1",

We get, the solution as "x = -3" or "x = -1",

So, the values of x for y = 0 are -3 and -1.

Part (ii) : To find values of x for y > 0, we set y > 0 and solve for x:

⇒ |x + 2| - 1 > 0,

⇒ |x + 2| > 1,

⇒ x + 2 > 1 or x + 2 < -1,

We get ⇒ "x > -1" or "x < -3";

So, the values of x for "y > 0" are x < -3 or x > -1.

Part(iii) : To find the values of x for y < 0, we set y < 0 and solve for x;

The inequality is written as :

⇒ |x + 2| - 1 < 0,

⇒ |x + 2| < 1,

⇒ -1 < x + 2 < 1,

⇒ -3 < x < -1,

Therefore, the values of x for "y < 0" are -3 < x < -1.

Learn more about Graphs here

https://brainly.com/question/16482591

#SPJ1

The given question is incomplete, the complete question is

Below is the graph of equation y = |x+2|-1, Use this graph to find the values of x for

(i) y = 0,

(ii) y > 0 and

(iii) y < 0.

help! please also give an explanation and why you did what u did!

Answers

Answer:

  7√2 ≈ 9.9 dm

Step-by-step explanation:

You want the radius of a circle when tangents from a point 14 dm from the center make a right angle.

Square

The attached figure shows all of the angles between radii and tangents are right angles. Effectively, the tangents and radii make a square whose side length is the radius of the circle. The diagonal of the square is given as 14 dm. We know this is √2 times the side length, so the length of the radius is ...

  r = (14 dm)/√2 = 7√2 dm ≈ 9.8995 dm ≈ 9.90 dm

The radius is about 9.90 dm.

__

Additional comment

The angles at A and O are supplementary, so both are 90°. The angles at the points of tangency are 90°, so the figure is at least a rectangle. Since adjacent sides (the radii, the tangents) are congruent, the rectangle must be a square. The given length is the diagonal of that square.

For side lengths s, the Pythagorean theorem tells you the diagonal length d satisfies ...

  d² = s² +s² = 2s²

  d = s√2

  d/√2 = s . . . . . . . . the relation we used above

This relationship between the sides and diagonal of a square is used a lot, so is worthwhile to remember.

a) We have to find the quotient and remainder when 19 is divided by 7.
We know that
Therefore when 19 is divided by 7, the quotient is 2 and the remainder is 5.

Answers

The quotient (the result of the division) is 2 and the remainder is 5.

How to find the quotient and remainder when 19 is divided by 7?

That is correct. To explain it in more detail, when we divide 19 by 7, we get:

     2

7 | 19

   -14

    --

     5

19 ÷ 7 = 2 remainder 5

This means that the largest multiple of 7 that is less than or equal to 19 is 7 times 2 (which is 14), and the remainder is the difference between 19 and 14, which is 5.

Therefore, the quotient (the result of the division) is 2 and the remainder is 5.

Learn more about quotient and remainder

brainly.com/question/30968678

#SPJ11

8. births example 2 in this section includes the sample space for genders from three births. identify the sample space for the genders from two births.

Answers

The sample space for genders from two births would include four possible outcomes: two boys, two girls, one boy and one girl (in either order).


 The sample space for the genders from two births includes all the possible outcomes of genders for two children. In this case, there are four possible combinations:

1. Male (M) - Male (M)
2. Male (M) - Female (F)
3. Female (F) - Male (M)
4. Female (F) - Female (F)

So, the sample space for the genders from two births is {MM, MF, FM, FF}.

In probability theory, the sample space is the set of all potential outcomes or results of an experiment or random trial. It is also referred to as the sample description space, possibility space, or outcome space. The potential ordered outcomes, or sample points, are listed as elements in a set that is used to represent a sample space. A sample space is frequently referred to as S,, or U (for "universal set"). A sample space may contain symbols, words, letters, or numbers as its components. They may also be uncountably infinite, countably infinite, or finite.

Visit here to learn more about probability  : https://brainly.com/question/30034780
#SPJ11

20 POINTS!!
Write a quadratic function f whose zeros are 2 and 5.

Answers

Answer:

The quadratic function f(x) = (x-(-2))(x-5) = (x+2)(x-5) = x^2 -3x -10

Step-by-step explanation:

Find the area of each triangle. Round intermediate values to the nearest 10th. use the rounded value to calculate the next value. Round your final answer to the nearest 10th.

Answers

Answer: D
Explanation: I used Pythagorean theorem to find the value of the missing side, then plugged the the respective values into the formula for the area of a triangle, which is A=(1/2)bh

if and are odd primes and , which of the following are possible? group of answer choices p and q are congruent to 1 mod 4 p and q are congruent to 3 mod 4 p is congruent to 1 mod 4 and q is congruent to 3 mod

Answers

If p and q are odd primes and pq = 13 (mod 16), then one of p and q is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

We can see this by noting that if p and q are both congruent to 1 (mod 4), then their product would be congruent to 1 (mod 4), which is not possible since pq = 13 (mod 16). Similarly, if p and q are both congruent to 3 (mod 4), then their product would be congruent to 1 (mod 4), which is also not possible since pq = 13 (mod 16).

Therefore, the only possibility is that one of p and q is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

We cannot determine whether p and q are both congruent to 1 (mod 4) or both congruent to 3 (mod 4) based on the given information. Therefore, we cannot say for sure whether p and q are congruent to 1 (mod 4), congruent to 3 (mod 4), or one is congruent to 1 (mod 4) and the other is congruent to 3 (mod 4).

To know more about congruent,

https://brainly.com/question/28600396

#SPJ11

. find the volume of the region bounded by the paraboloids z = 12 − x 2 − y 2 and z = 2x 2 2y 2

Answers

The volume of the region bounded by the two paraboloids is 32π/5 cubic units.

How to determine the volume of bounded region?

To find the volume of the region bounded by the two paraboloids, we need to determine the limits of integration for each variable.

Since the two paraboloids intersect in a curve, we can use this curve as a boundary to split the region into two parts.

First, let's find the curve of intersection by setting the two equations equal to each other:

[tex]12 - x^2 - y^2 = 2x^2 + 2y^2\\10x^2 + 10y^2 = 12\\x^2 + y^2 = 6/5[/tex]

This is the equation of a circle with center at the origin and radius [tex]\sqrt{(6/5)[/tex]

So we can use cylindrical coordinates to integrate over this region.

The limits for z are from the lower paraboloid to the upper paraboloid:

[tex]2x^2 + 2y^2 \leq z\leq 12 - x^2 - y^2[/tex]

In cylindrical coordinates, we have:

[tex]0 \leq r \leq \sqrt{(6/5)}\\0 \leq \theta \leq 2\pi \\2r^2 \leq z \leq 12 - r^2[/tex]

So the volume of the region is given by the triple integral:

V = ∫∫∫ dz r dr dθ

where the limits of integration are as described above. Therefore, we have:

[tex]V = \int\limits^{2\pi }_0 {\int\limits^{\sqrt{6/5}}_0 {\int\limits^{12-r^2}_{2r^2} \, dz}\ r \, dr } \, d\theta[/tex]

Evaluating the integral, we get:

V = 32π/5

Therefore, the volume of the region bounded by the two paraboloids is 32π/5 cubic units.

Learn more about volume of the region

brainly.com/question/29108583

#SPJ11

If f(1) = 2, f(2) = 4
and f(n)=2f (n - 1) - 2f (n - 2)
then find the value of f(4)

Answers

The value of the fourth term f(4) in the sequence is 0

Calculating the value of f(4) in the sequence

From the question, we have the following parameters that can be used in our computation:

If f(1) = 2, f(2) = 4

f(n)=2f (n - 1) - 2f (n - 2)

Using the given recursive formula, we can find the value of f(3) and f(4) by working backwards:

f(3) = 2f(2) - 2f(1) = 2(4) - 2(2) = 8 - 4 = 4

f(4) = 2f(3) - 2f(2) = 2(4) - 2(4) = 8 - 8 = 0

Therefore, f(4) = 0.

Read more about sequence at

https://brainly.com/question/30499691

#SPJ1

The random variables X and Y are described by a uniform joint PDF of the form f X,Y (x,y)=3 on the set {(x,y)|0<=x<=1, 0<=y<=1, y<=x2}.
Then, fx(0.5)=_____

Answers

The value of [tex]f_X(0.5)[/tex] is 0.75, given the uniform joint PDF of the random variables X and Y, [tex]f_{X,Y} (x,y)=3[/tex], on the set {(x,y)|0≤x≤1, 0≤y≤1, y≤x²}.

We to find the value of [tex]f_X(0.5)[/tex] given the uniform joint PDF of the random variables X and Y, [tex]f_{X,Y} (x,y)=3[/tex], on the set {(x,y)|0≤x≤1, 0≤y≤1, y≤x²}.

To find [tex]f_X(0.5)[/tex], we need to compute the marginal PDF of X by integrating the joint PDF over the range of Y.

First, determine the range of Y.
Since y ≤ x², and we're given x = 0.5, the range of Y is 0 ≤ y ≤ (0.5)² = 0.25.

Integrate the joint PDF over the range of Y.
[tex]\begin{aligned}f_X(x) & =\int_{y=0}^{y=0.25} f_{X, Y}(x, y) d y \\& =\int_{y=0}^{y=0.25} 3 d y \\& =[3 y]_{y=0}^{y=0.25} \\\end{aligned}[/tex]

Substitute the given joint PDF.
fx(0.5) = 3(0.25) - 3(0) = 0.75.

So, the value of [tex]f_X(0.5)[/tex] is 0.75.

Learn more about random variables:

https://brainly.com/question/17217746

#SPJ11

Use Green's Theorem to evaluate $ F. dr for the given vector field F and positively oriented simple closed curve C. (a) F(x, y) = yi – xj; C is the circle x2 + y2 = (b) F(x, y) = xạeyi+y_e

Answers

(a) [tex]$\frac{\partial Q}{\partial x}[/tex][tex]-[/tex][tex]\frac{\partial P}{\partial y} = 0$[/tex], and the line integral of [tex]$F.dr$[/tex] around any closed curve is zero.

(b) [tex]$\oint_C F.dr = ab\int_{0}^{2\pi} (\cos^2 t - \sin^2 t)e^{b\sin t} dt$[/tex]cannot evaluate the line integral of F.dr around the given closed curve using Green

How to use Green's Theorem to evaluate F. dr for the given vector field F(x, y) = yi – xj?

(a) We want to use Green's theorem to evaluate the line integral of F.dr around the circle [tex]$x^2 + y^2 = a^2$.[/tex]

Green's theorem states that:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$[/tex]

where [tex]$F = P\hat{i} + Q\hat{j}$[/tex] is a vector field,[tex]$C$[/tex] is a closed curve in the plane, and [tex]$R$[/tex] is the region bounded by[tex]$C$[/tex].

In this case, we have:

[tex]$F = y\hat{i} - x\hat{j}$[/tex]

[tex]$P = 0$[/tex]and[tex]$Q = y$[/tex]

[tex]$\frac{\partial Q}{\partial x}[/tex] = 0 and [tex]$\frac{\partial P}{\partial y} = 0$[/tex]

Therefore, [tex]$\frac{\partial Q}{\partial x}[/tex][tex]-[/tex][tex]\frac{\partial P}{\partial y} = 0$[/tex], and the line integral of [tex]$F.dr$[/tex] around any closed curve is zero.

How to use Green's Theorem to evaluate F. dr for the given vector field F(x, y) = xạeyi+[tex]y_e[/tex]?

(b) We want to use Green's theorem to evaluate the line integral of[tex]$F.dr$[/tex]around the closed curve C defined by[tex]$x = a\cos t$, $y = b\sin t$, $0 \leq t \leq 2\pi$.[/tex]

Green's theorem states that:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$[/tex]

where [tex]$F = P\hat{i} + Q\hat{j}$[/tex] is a vector field, C is a closed curve in the plane, and R is the region bounded by C.

In this case, we have:

[tex]$F = xe^{y}\hat{i} + (ye^{y} + e^{y})\hat{j}$[/tex]

[tex]$P = xe^{y}$[/tex]and [tex]$Q = ye^{y} + e^{y}$[/tex]

[tex]$\frac{\partial Q}{\partial x}[/tex]= 0 and [tex]$\frac{\partial P}{\partial y} = xe^{y} + e^{y}$[/tex]

Therefore,

[tex]$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -xe^{y}$[/tex]

The region R enclosed by C is an ellipse with semi-axes a and b, and its area is given by[tex]$A = \pi ab$[/tex]. Using polar coordinates, we have:

[tex]$x = a\cos t$[/tex]

[tex]$y = b\sin t$[/tex]

[tex]$\frac{\partial x}{\partial t} = -a\sin t$[/tex]

[tex]$\frac{\partial y}{\partial t} = b\cos t$[/tex]

[tex]$dA = \frac{\partial x}{\partial t} \frac{\partial y}{\partial t} dt = -ab\sin t \cos t dt$[/tex]

Thus, we have:

[tex]$\oint_C F.dr = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA = \int_{0}^{2\pi} \int_{0}^{ab} (-xe^{y}) (-ab\sin t \cos t) drdt$[/tex]

[tex]$= ab\int_{0}^{2\pi} (\cos^2 t - \sin^2 t)e^{b\sin t} dt$[/tex]

This integral does not have a closed-form solution, so we need to use numerical methods to approximate its value.

Therefore, we cannot evaluate the line integral of F.dr around the given closed curve using Green

Learn more about Green's theorem

brainly.com/question/27549150

#SPJ11

if z^2=x^3 + y^2, dx/dt=−2, dy/dt=−3, and z>0, find dz/dt at (x,y)=(4,0).dz/dt =

Answers

Derivative of z, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

How to find derivative of z dz/dt?

We need to use the chain rule:

dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt)

We can find ∂z/∂x and ∂z/∂y by differentiating the given equation with respect to x and y, respectively:

2z(dz/dx) = 3x² + 2y(dy/dx)

2z(dz/dy) = 2y

Solving for dz/dx and dz/dy, we get:

dz/dx = (3x² + 2y(dy/dx))/(2z)

dz/dy = y/z

Plugging in the given values, we get:

dz/dx = (3(4)²)/(2(2sqrt(4³))) + 0 = 3/2

dz/dy = 0/sqrt(4³) = 0

So, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

Learn more about Derivative.

brainly.com/question/30365299

#SPJ11

Derivative of z, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

How to find derivative of z dz/dt?

We need to use the chain rule:

dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt)

We can find ∂z/∂x and ∂z/∂y by differentiating the given equation with respect to x and y, respectively:

2z(dz/dx) = 3x² + 2y(dy/dx)

2z(dz/dy) = 2y

Solving for dz/dx and dz/dy, we get:

dz/dx = (3x² + 2y(dy/dx))/(2z)

dz/dy = y/z

Plugging in the given values, we get:

dz/dx = (3(4)²)/(2(2sqrt(4³))) + 0 = 3/2

dz/dy = 0/sqrt(4³) = 0

So, dz/dt = (∂z/∂x)(dx/dt) + (∂z/∂y)(dy/dt) = (3/2)(-2) + (0)(-3) = -3

Learn more about Derivative.

brainly.com/question/30365299

#SPJ11

State if the triangle is acute obtuse or right.


Answers

Answer: Right

Step-by-step explanation:

I believed I explained it to u in the other question.

Enjoy! :)

Answer:

  B)  Acute

Step-by-step explanation:

You want to classify a triangle with side lengths 21 km, 25 km, and 29 km.

Form factor

A "form factor" for the triangle can be calculated from its side lengths as ...

  f = a² +b² -c² . . . . . where c is the longest side

Here, that value is ...

  f = 21² +25² -29² = 225

The interpretation is as follows:

f > 0 — acutef = 0 — rightf < 0 — obtuse

The given triangle is an acute triangle.

__

Additional comment

This comes from the Law of Cosines. The largest angle in the triangle is ...

  arccos(f/(2ab)) = arccos(225/(2·21·25)) = arccos(3/14) ≈ 77.6°

The signs of 'a' and 'b' are positive, so the sign of the cosine matches the sign of 'f'. This makes 'f' a handy classifier of triangles.

Consider the rectangle ABCD. (a) Prove that opposite sides are equal, that is, AD = BC and AB = CD. (Hint: Exercise 3.3.13 may be useful here.] (b) Prove that the diagonals are equal, that is, AC = BD.

Answers

(a) Opposite sides of a rectangle are equal, that is, AD = BC and AB = CD.

(b) The diagonals of a rectangle are equal, that is, AC = BD.

Let's consider a rectangle ABCD, where AB || DC and AB ⊥ AD. We know that if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other line as well. Therefore, AD ⊥ AB and AD ⊥ BC. Similarly, BC ⊥ AB and BC ⊥ AD.

So, we have two pairs of perpendicular sides, and from the Pythagorean theorem, we can calculate their lengths as follows:

AD² = AB² + BD² and BC² = AB² + CD²

Since AB = CD (opposite sides of a rectangle), we can substitute AB for CD and simplify:

AD² = AB² + BD² and BC² = AB² + AD²

Taking the square root of both sides of each equation, we get:

AD = √(AB² + BD²) and BC = √(AB² + AD²)

Since AB = CD and AD = BC, we can conclude that opposite sides of a rectangle are equal.

Let's continue with rectangle ABCD from part (a) and draw its diagonals AC and BD. We can use the Pythagorean theorem again to calculate their lengths:

AC² = AD² + DC² and BD² = AB² + BC²

Since AB = CD and AD = BC (opposite sides of a rectangle), we can substitute and simplify:

AC² = AD² + AB² and BD² = AD² + AB²

Taking the square root of both sides of each equation, we get:

AC = √(AD² + AB²) and BD = √(AD² + AB²)

Since both equations simplify to the same expression, we can conclude that the diagonals of a rectangle are equal.

Learn more about rectangle: https://brainly.com/question/25292087

#SPJ11

At what possible location(s) can an absolute minimum or absolute maximum occur? Check all that apply. O Where the function does not exist. O Where the derivative of the function is zero. O Where the derivative of the function does not exist. O At the endpoints of the domain.

Answers

An absolute minimum or maximum can occur where the derivative of the function is zero, where the derivative does not exist, or at the endpoints of the domain. The correct options are B, C and D.

An absolute minimum or absolute maximum can occur at the following locations:

1. Where the function does not exist: This is not a correct option, as absolute extrema occur where the function has a value. So, absolute minimum or maximum cannot occur where the function does not exist.

2. Where the derivative of the function is zero: This is the correct option. When the derivative of a function is zero, it indicates that the function has a critical point, which could be a local minimum, local maximum, or a saddle point.

These points can sometimes be the locations of absolute minimum or maximum if there is no other higher or lower point in the function's domain.

3. Where the derivative of the function does not exist: This is also a correct option. When the derivative does not exist, the function could have a sharp turn or a discontinuity, making it a potential location for an absolute minimum or maximum. In this case, the point is considered a critical point as well.

4. At the endpoints of the domain: This is the correct option. Absolute extrema can occur at the endpoints of a function's domain. It is important to always evaluate the function at its endpoints to determine if an absolute minimum or maximum exists.

In summary, an absolute minimum or maximum can occur where the derivative of the function is zero, where the derivative does not exist, or at the endpoints of the domain.

To know more about function refer here:

https://brainly.com/question/23847661#

#SPJ11

The extended Euclidean algorithm computes the god of two integers ro and rı as a linear combination of the inputs. gcd(ro, rı) =s. ro+turi Here s and t are integers known as the Bezout coefficients. They are not unique. The algorithm works like the standard Euclidean algorithm, except that at each stage the current remainder ri is expressed as a linear combination of the inputs. ri = Siro + tiri. This produces a sequence of numbers ro, r1, ... , rn-1,rn where rn 0 and gcd(ro, rı) = rn-1. Suppose that ro = 548 and r1 = 479. Give the sequence ro, r1, ... , In-1,rn in the blank below. Enter your answer as a comma separated list of numbers. What is GCD(548,479)? What is s? What is t?

Answers

The extended Euclidean algorithm can be used to find the GCD and Bezout coefficients of two integers. It involves expressing remainders as linear combinations of the inputs and updating coefficients at each step until the remainder is zero.

You  have two integers a and b, and you want to find their greatest common divisor (GCD) as well as the Bezout coefficients s and t such that sa + tb = gcd(a,b). Here's how you can use the extended Euclidean algorithm to do that:

1. Initialize the variables r0 = a, r1 = b, s0 = 1, s1 = 0, t0 = 0, and t1 = 1.

2. At each step i = 1, 2, ..., compute the quotient qi = ri-2 // ri-1 (integer division) and the remainder ri = ri-2 - qi * ri-1.

3. Also, update the values of si and ti as follows: si = si-2 - qi * si-1 and ti = ti-2 - qi * ti-1.

4. Continue the process until the remainder rn is zero. Then, the GCD of a and b is rn-1, and the Bezout coefficients are s = sn-1 and t = tn-1.

Note that there may be multiple pairs of Bezout coefficients that satisfy the equation sa + tb = gcd(a,b), but the ones obtained through the extended Euclidean algorithm will always be the smallest in absolute value within their equivalence class.

VVisit to know more about Algorithm:-

brainly.com/question/24953880

#SPJ11

Given that a test of significance was done for a two-sided test and the P-value obtained was 0.02, what would be the P-value for a one-sided significance test?
a. 0.02
b. 0
c. 0.01
d. 0.04

Answers

The p-value for a one-sided test would be 0.01 (0.02/2). The correct answer is c. 0.01.

When conducting a two-sided significance test, the p-value is the probability of observing a test statistic as extreme as the one obtained, assuming the null hypothesis is true. For a one-sided significance test, we are only interested in observing extreme values in one direction (either positive or negative).

If the test statistic was symmetrically distributed around zero, the one-tailed hypothesis's p-value would be either 0.5* (two-tailed p-value) or 1-0.5* (two-tailed p-value), depending on which way it was going. The two-tailed p-value in this case points to the rejection of the null hypothesis of no difference.

Therefore, the p-value for a one-sided test is half of the p-value for a two-sided test.

In this case, the p-value for a one-sided test would be option c. 0.01 (0.02/2).

Learn more about "significance test": https://brainly.com/question/15649099

#SPJ11

Identify the range of the function shown in the graph.
A. ys3
OB. All real numbers
C. 3 sys7
D. -1 sy≤4
5-
5

Answers

Answer:

D- -1 <_y<_4

Step-by-step explanation:

employ inverse interpolation using a cubic interpolating polynomial and bisection to determine the value of x that corresponds to f (x) = 1.7 for the following tabulated data:
x 1 2 3 4 5 6 7
f(x) 3.6 1.8 1.2 0.9 0.72 1.5 0.51429

Answers

The value of x that corresponds to f(x) = 1.7 using inverse interpolation with a cubic interpolating polynomial and bisection for the given tabulated data is approximately x ≈ 2.32.


1. Rearrange the tabulated data with f(x) as the independent variable and x as the dependent variable.
2. Perform cubic interpolation on the rearranged data to obtain an inverse interpolating polynomial P(f(x)).
3. Solve P(f(x)) = 1.7 for x using the bisection method.

Step 1: Rearrange data:
f(x) 0.51429 0.72 0.9 1.2 1.5 1.8 3.6
x     7         5    4    3    6    2    1

Step 2: Perform cubic interpolation on rearranged data to obtain P(f(x)).

Step 3: Solve P(f(x)) = 1.7 for x using bisection method:
- Choose an interval where 1.7 lies, e.g., [1.5, 1.8].
- Compute P((1.5 + 1.8)/2) and check the sign. If it matches the sign of P(1.5), replace 1.5; otherwise, replace 1.8.
- Repeat until the desired precision is achieved.

After several iterations, we find x ≈ 2.32 for f(x) = 1.7.

To know more about interpolating polynomial click on below link:

https://brainly.com/question/26460790#

#SPJ11

Find the area of the shaded region. Use 3.14 for π. Express your answer as a decimal rounded to the nearest hundredth.

Answers

The area of the shaded region is 15.5 in².

We have,

The composite figure has:

Square and a square.

Now,

Area of the circle = πr²

Radius = 8.5/2 = 4.25

= 3.14 x 4.25 x 4.25

= 56.75 in²

Area of the square = side²

= 8.5 x 8.5

= 72.25 in²

Now,

The area of the shaded region.

= Area of the square - Area of the circle

= 72.25 - 56.75

= 15.5 in²

Thus,

The area of the shaded region is 15.5 in².

Learn more about squares here:

https://brainly.com/question/22964077

#SPJ1

Consider a normally distributed population with mean µ = 80 and standard deviation σ = 14.
a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the x¯x¯ chart if samples of size 5 are used. (Round the value for the centerline to the nearest whole number and the values for the UCL and LCL to 2 decimal places.)
b. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the x¯x¯ chart if samples of size 10 are used. (Round the value for the centerline to the nearest whole number and the values for the UCL and LCL to 2 decimal places.)
c. Discuss the effect of the sample size on the control limits.

Answers

Answer:

a) LCL = 80 - 0.577 * (14 / sqrt(5)) LCL = 76.31

b) LCL = 80 - 0.308 * (14 / sqrt(10)) LCL = 78.65

c) Control limits are boundaries that indicate whether a process is in control or out of control. They are calculated based on the mean and standard deviation of the process data. The effect of the sample size on the control limits is that as the sample size increases, the control limits become narrower. This is because the standard error of the mean, which is sigma / sqrt(n), decreases as n increases. This means that the variation of the sample means around the population mean is smaller for larger samples, and thus the control limits are tighter .

Step-by-step explanation:

If you ever wondered how to make a boring topic like x-bar charts more fun, here is a tip: pretend that you are a spy and that the control limits are your secret codes. For example, let's say that you have a population with a mean of 80 and a standard deviation of 14. You want to send a message to your fellow spy using the control limits of an x-bar chart with a sample size of 5. You can use the formula:

UCL or LCL = x-bar +/- A2 * (sigma / sqrt(n))

where A2 is a constant that depends on the sample size n, sigma is the standard deviation of the population, and sqrt is the square root function. For n = 5, A2 = 0.577. Therefore,

UCL = 80 + 0.577 * (14 / sqrt(5)) UCL = 83.69

LCL = 80 - 0.577 * (14 / sqrt(5)) LCL = 76.31

Now, you can use these numbers as your secret codes. For example, you can say "The eagle has landed at 83.69" or "The package is ready at 76.31". Your fellow spy will know what you mean, but anyone else will be clueless.

But what if you want to change your sample size to 10? Well, then you have to use a different constant for A2. For n = 10, A2 = 0.308. Therefore,

UCL = 80 + 0.308 * (14 / sqrt(10)) UCL = 81.35

LCL = 80 - 0.308 * (14 / sqrt(10)) LCL = 78.65

Now, you can use these new numbers as your secret codes. For example, you can say "The target is at 81.35" or "The rendezvous point is at 78.65". Your fellow spy will understand you, but anyone else will be confused.

The effect of the sample size on the control limits is that as the sample size increases, the control limits become narrower. This is because the standard error of the mean, which is sigma / sqrt(n), decreases as n increases. This means that the variation of the sample means around the population mean is smaller for larger samples, and thus the control limits are tighter.

This also means that your secret codes become more precise and less likely to be intercepted by your enemies. So, if you want to be a good spy, you should always use a large sample size for your x-bar charts. That way, you can communicate with your fellow spies more effectively and safely.

Of course, this is all just a joke and you should not actually use x-bar charts as secret codes for spying purposes. That would be very silly and irresponsible. But hey, at least it makes x-bar charts more fun to learn about, right?

Able and Baker are both apple-tree farmers (they grow apple trees). Assume that apple trees grow according to a normal distribution. On the Able Farm, trees grow with a mean of 100 cm per year and a standard deviation of 25 cm. Baker manages to get an average growth of 110 em per year with a standard deviation of 35 cm. On average, trees from the Baker Farm will grow more than trees from the Able Farm. Find the probability that a Baker tree has grown more than an Able tree in one year.

Answers

The probability that a Baker tree will grow more than an Able tree in one year is 0.5905 or approximately 59.05%.

To solve this problem, we need to calculate the probability that a Baker tree will grow more than an Able tree in one year. Let X be the random variable representing the growth of an Able tree and Y be the random variable representing the growth of a Baker tree.

We need to find P(Y > X), which is equivalent to finding P(Y - X > 0). We know that the difference between Y and X follows a normal distribution with mean μ = 110 - 100 = 10 cm/year and standard deviation σ = sqrt(25^2 + 35^2) = 43.01 cm/year.

Using the standard normal distribution, we can standardize the difference between Y and X as (Y - X - μ)/σ and find the corresponding probability from the standard normal distribution table. We have:

P(Y - X > 0) = P((Y - X - μ)/σ > (-μ)/σ)

= P(Z > -0.2326)

= 0.5905

To learn more about probability click on,

https://brainly.com/question/29251004

#SPJ4

Jackson spent $8.25 on three bags of chips and four bottles of soda. Katie spent six dollars on four bags of chips and two bottles of soda. How much does each bag of chips and each bottle of soda cost

Answers

1.50 x 4 bottles of soda = 6
0.75 x 3 = 2.25

Soda = $1.50
Chips = $0.75

Question 10(Multiple Choice Worth 2 points)
(Comparing Data MC)

The box plots display measures from data collected when 20 people were asked about their wait time at a drive-thru restaurant window.

A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 8.5 to 15.5 on the number line. A line in the box is at 12. The lines outside the box end at 3 and 27. The graph is titled Super Fast Food.

A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 9.5 to 24 on the number line. A line in the box is at 15.5. The lines outside the box end at 2 and 30. The graph is titled Burger Quick.

Which drive-thru typically has more wait time, and why?

Burger Quick, because it has a larger median
Burger Quick, because it has a larger mean
Super Fast Food, because it has a larger median
Super Fast Food, because it has a larger mean

Answers

Answer:

Burger Quick, because it has a larger median.

Other Questions
If a profit-maximizing monopolist receives a fixed subsidy:MR would be decreased at every level of outputTR would be decreased at every level of output.MR would be increased at every level of output.TR would be increased at every level of output. 1. Brenda (leave) the office at five o'clock. Her train is at 5:15 p.m.2. My family and I (move) from New York to Georgia last year. It's cheaper to live here.3. John (come) to my house last night to pick up his English book. He always forgets things.4. Do you like horror films? We (go) to the movies yesterday with our friends to see that new one.5. We (stay) in a very nice hotel on our vacation. We would like to go back there next year!6. I (get) home from work very late last night. We're very busy at work at the moment. We're working long hours. Find the distance from (-2,5) to (5,9) (round to the nearest tenth) what happened when tourists arrived on the Cook Islands? Month labour Hours Manufacturing CostsJanuary 4, 300 $26, 000February 4, 500 27, 000March 3, 000 19, 500April 3, 700 23, 000May 4, 000 24, 500June 5, 500 32, 000Required:(1) Use high/low method to calculate the unit variable cost(2) Use the total cost equation to calculate the fixed costs and variable costs(3) Estimate the total manufacturing costs for July if the company works 5, 000 hours that month(4) Analyze: if the company does work 5, 000 hours in July, how much of the total cost is fixed and how much is variable(5) What is the difference between total variable cost and unit variable cost and the difference between total fixed cost and unit fixed cost. A lunch box is 24 cm long, 15 cm wide and 5 cm thick. What isthe volume of the lunch box? 57 .99 rounded to two decimals places Working alone John can wash the windows of a building in 2.5 hours Caroline can wash the building windows by her self in 4 hours if they work together how many hours should it take to wash the windows Check for Understanding- Brazil hosted the 2014 FIFA World Cup and reportedly spent $3.6 billion US Dollars on twelve new and refurbished stadiums. The table below shows the estimated capacity, cost, events per year, and total attendance for four of these stadiums four years after the World Cup. Use the data in the table to answer the questions. Stadium, City Capacity Cost (USD) Events per Total Year Attendance Estadio do Maracana, Rio 70,000 $480,000,000 57 800,000 Estadio Nacional Mane Garrincha, Brasilia 65,000 $600,000,000 7 14,000 Arena de Amazonia, Manus 40,000 $300,000,000 4 2,000 Arena Pantanal, Cuiaba 40.000 $250,000,000 7 3,000 Source: Were the Bligns Brazil Spent on World Cup Stadiums Worth 12-Fi Thirty Eight Just.2014 1. On average, how much did the Brazilian government spend on each fan that visited the Estadio do Maracana in Rio? Explain how you got your answer. Things 5 feet away from you would be part of your personal space. (Don't forget to social distance! ) True or False suppose a firm produces 1000 units of a good. if fixed costs (fc) equal $2500 and variable costs (vc) equal $3700 at that output level, average total cost (atc) of each unit is equal to $ Compare and contrast the specific mechanisms in these two types of regulation with that involving short noncoding RNAs (SRNAs). Drag the appropriate items to their respective bins. set Help formation of intramolecular double-stranded RNA induces conformational both terminate and allow is achieved at the level of involves separate transcripts, transcription translation complementary to the message the leader regions of mRNA results in gene regulation at formation of intermolecular involves the amino the transcriptional level double-stranded RNA acid tryptophan sRNAs Both attenuation and riboswitch Attenuation Riboswitch what two techniques does lorenzo ghiberti use to create the illusion of deep space in his gates of paradise doors? atomic radii decrease from left to right in a period (na ar) on the periodic table. choose the best explanation for this observed trendA) The ionization potential decreases in that direction B) The electron affinity increases in that direction: C) The atomic mass increases in that direction. D) The nuclear charge increases in that direction. E) The number of electrons increases in that direction:' During his first presidential term, what domestic policy areas did clinton focus on A home has a rectangular kitchen. If listed as ordered pairs, the corners of the kitchen are (11, 5), (6, 5), (11, 2), and (6, 2). What is the area of the kitchen in square feet?A. 119 ft2B. 49 ft2C. 48 ft2 Question: Micah needs to show that using the Underground Railroad required escaping slaves in their guides to be very brave. When are examples of bravery provided by this source rank the following ionic compounds in order of decreasing melting point. note: 1 = highest melting point ; 5 = lowest melting point mgs [ select ] k2s [ select ] csi [ select ] beo [ select ] naf What is the net pay for Joseph T. O'Neill? what is the brain chemical that increases after someone wins a poker hand, drinks a shot of whiskey, or takes a snort of cocaine?