let x1 = 18, x2 = 10, x3 = 7, x4 = 5, and x5 = 11. find sd2.
a. 15.1
b. 18.3
c. 20.2
d. 24.7

Answers

Answer 1

The sd2 is 19.76 ( not listed ).

To find sd2 (the standard deviation squared) for the data set x1 = 18, x2 = 10, x3 = 7, x4 = 5, and x5 = 11, follow these steps:
1. Calculate the mean: (18 + 10 + 7 + 5 + 11) / 5 = 51 / 5 = 10.2
2. Calculate the squared deviations from the mean: (18 - 10.2)^2 = 60.84, (10 - 10.2)^2 = 0.04, (7 - 10.2)^2 = 10.24, (5 - 10.2)^2 = 27.04, (11 - 10.2)^2 = 0.64
3. Calculate the average of squared deviations: (60.84 + 0.04 + 10.24 + 27.04 + 0.64) / 5 = 98.8 / 5 = 19.76

The sd2 (standard deviation squared) for the given data set is 19.76, which is not listed among the given options (a. 15.1, b. 18.3, c. 20.2, d. 24.7).

Learn more about : standard deviation squared - https://brainly.com/question/31499696

#SPJ11


Related Questions

PLEASE HELP ME
Ice cream is packaged in cylindrical gallon tubs. A tub of ice cream has a total surface area of 387.79 square inches.

If the diameter of the tub is 10 inches, what is its height? Use π = 3.14.

7.35 inches
7.65 inches
14.7 inches
17.35 inches

Answers

Answer: 7.35 inches

Step-by-step explanation:

The formula for the surface area of a cylinder is 2πrh + 2πr^2, where r is the radius and h is the height of the cylinder.

Given that the diameter of the tub is 10 inches, the radius (r) is half of that, which is 5 inches.

So, the equation for the surface area of the cylinder can be written as:

2π(5)(h) + 2π(5)^2 = 387.79

Simplifying the equation gives:

10πh + 50π = 387.79

Dividing both sides by 10π gives:

h + 5 = 12.34

Subtracting 5 from both sides gives:

h = 7.34

Therefore, the height of the tub is 7.35 inches (rounded to two decimal places).

consider the following data 6,7,17,51,3,17,23, and 69 the range and the median are

Answers

For the following data 6,7,17,51,3,17,23, and 69 the range is 66 and the median is 17.

We need to find the range and median of the given dataset: 3, 6, 7, 17, 17, 23, 51, 69.

Range: The range is the difference between the largest and smallest values in the dataset. To find it, first identify the largest and smallest numbers:

Largest number: 69
Smallest number: 3

Next, subtract the smallest number from the largest number:

Range = 69 - 3 = 66

Median: The median is the middle value in an ordered dataset. Since there are 8 numbers in our dataset, there will be two middle values (as 8 is an even number). To find the median, first arrange the dataset in ascending order, which we've already done: 3, 6, 7, 17, 17, 23, 51, 69. Now, identify the two middle values:

Middle values: 17 and 17

To find the median, calculate the average of these two middle values:

Median = (17 + 17) / 2 = 34 / 2 = 17

So, for the given dataset, the range is 66 and the median is 17. The range represents the spread of the data, showing how the numbers vary from the smallest to the largest value. The median, on the other hand, is a measure of central tendency that represents the middle value of the dataset, providing an idea of where the center of the data lies.

To know more about range and median refer here:

https://brainly.com/question/21324459

#SPJ11

When a meter has more than 4 beats per repetition, it is called____

a: complex meter
b : syncopation
c: simple subdivision
d; polymeter

Answers

Answer:Complex

Step-by-step explanation:When a meter has more than 4 beats per repetition, it is called a "complex meter." Examples of complex meters include 5/4, 7/8, and 11/8, among others. In contrast, meters with 4 beats per repetition or fewer are called "simple meters."

find the first partial derivatives of the function. f(x, y, z) = 6x sin(y − z) w=3zexyz

Answers

The partial derivative of w=3zexyz with respect to z is obtained by differentiating exyz with respect to z, treating x and y as constants. This gives ∂w/∂z = 3exyz.

To find the partial derivatives of the given function f(x,y,z), we need to differentiate the function with respect to each variable, treating the other variables as constants.

We have the function:

f(x, y, z) = 6x sin(y − z) w=3zexyz

Let's find the first partial derivative of f with respect to x, y, and z.

Partial derivative of f with respect to x:

f_x = ∂f/∂x

f_x = 6 sin(y - z)

Partial derivative of f with respect to y:

f_y = ∂f/∂y

f_y = 6x cos(y - z)

Partial derivative of f with respect to z:

f_z = ∂f/∂z

f_z = -6x cos(y - z) + 3exyz

The partial derivative of w=3zexyz with respect to z is obtained by differentiating exyz with respect to z, treating x and y as constants. This gives ∂w/∂z = 3exyz.

Learn more about partial derivative

https://brainly.com/question/31397807

#SPJ4

suppose that e and f are events in a sample space and p(e) = 1∕3, p(f) = 1∕2, and p(e ∣ f) = 2∕5. find p(f ∣ e).

Answers

p(f | e) = p(e | f) * p(f) / p(e) = (1/5) / (1/3) = 3/5

Therefore, p(f | e) = 3/5.

We can use Bayes' theorem to find p(f | e):

p(f | e) = p(e | f) * p(f) / p(e)

We know that p(e) = 1/3 and p(f) = 1/2. To find p(e | f), we can use the conditional probability formula:

p(e | f) = p(e ∩ f) / p(f)

We are given that p(e | f) = 2/5, so we can rearrange the formula to get:

p(e ∩ f) = p(e | f) * p(f) = (2/5) * (1/2) = 1/5

Now we have all the information we need to apply Bayes' theorem:

p(f | e) = p(e | f) * p(f) / p(e) = (1/5) / (1/3) = 3/5

Therefore, p(f | e) = 3/5.

To learn more about information visit:

https://brainly.com/question/13629038

#SPJ11

I need help please and thank you

Answers

The perimeter and the area of the triangle are given as follows:

Area of [tex]A = 64\sqrt{3}[/tex] cm².Perimeter of P = 48 cm.

How to obtain the perimeter and the area?

First we obtain the area, as we have the two parameters, as follows:

Base of 16 cm.Height of [tex]8\sqrt{3}[/tex] cm.

The area is half the multiplication of the base and the height, hence it is given as follows:

[tex]A = 0.5 \times 16 \times 8\sqrt{3}[/tex]

[tex]A = 64\sqrt{3}[/tex] cm².

For the perimeter, we must obtain the lateral segments, considering the bisection and the Pythagorean Theorem, as follows:

[tex]l^2 = 8^2 + (8\sqrt{3})^2[/tex]

l² = 64 + 192

l² = 256

l = 16.

Hence the perimeter is given as follows:

P = 3 x 16

P = 48 cm.

More can be learned about perimeter and area of a triangle at https://brainly.com/question/24571594

#SPJ1

Im so lost please help! Circle Y has points W, T,V, and U on the circle. Secant lines WM and UM intersect at point M outside the circle. The mUW = 145°, mTV = 31°, and m

Answers

A formula that can be used to find the value of x MU² - UM * MV - MV * TV = x² * (MU - UM). The value of x is x ≈ ±3.55.

What is angle measures?

Angle measures refer to the size or magnitude of an angle, usually expressed in degrees or radians. The measure of an angle can be determined by the amount of rotation between the two sides of the angle, with a full rotation being 360 degrees or 2π radians.

According to question:

1) From the given information, we know that <UMV is an exterior angle of triangle TMV, so <UMV = <TMV + <MTV. Substituting the given angle measures, we get:

m<UMV = x² + 31

Also, by the intersecting secants theorem, we have:

MU * MW = MV * MT

Substituting the given segment lengths, we get:

(MU + UW) * (MU - UW) = MV * TV

Simplifying this equation, we get:

MU² - UW² = MV * TV - UW * MU

Substituting the given angle measure and simplifying further, we get:

MU² - UW² = MV * TV - UW * MU

MU² - MW² - UW² = -UW * MU

(MU - MW) * (MU + MW) - UW² = -UW * MU

(MU + MW) = (UW² - MU * UW) / (MU - UW)

Substituting the given angle measure, we get:

tan(145) = UW / UM

Simplifying this equation, we get:

UW = UM * tan(145)

Substituting this expression for UW, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

Simplifying further, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

2) Substituting the given angle measures and segment lengths into the formula from part 1, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

MU² - 2 * MU * MV * sin(31) - MV * sin(x²) = x² * (MU - UM)

Substituting the expression for UW from part 1, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

MU² - MU * UM - UM * tan(145) = -MU * (MU - UM)

MU * (MU - UM + UM * tan(145)) = MU² - UM * tan(145)

MU = (UM * tan(145)) / (1 - tan(145))

Substituting this expression for MU, we get:

(UM * tan(145))² / (1 - tan(145)) + UM * MV * sin(31) - MV * sin(x²) = x² * ((UM * tan(145)) / (1 - tan(145)) - UM)

Simplifying this equation and solving for x, we get:

x ≈ ±3.55

To know more about angle measures visit:

https://brainly.com/question/30958464

#SPJ1

A formula that can be used to find the value of x MU² - UM * MV - MV * TV = x² * (MU - UM). The value of x is x ≈ ±3.55.

What is angle measures?

Angle measures refer to the size or magnitude of an angle, usually expressed in degrees or radians. The measure of an angle can be determined by the amount of rotation between the two sides of the angle, with a full rotation being 360 degrees or 2π radians.

According to question:

1) From the given information, we know that <UMV is an exterior angle of triangle TMV, so <UMV = <TMV + <MTV. Substituting the given angle measures, we get:

m<UMV = x² + 31

Also, by the intersecting secants theorem, we have:

MU * MW = MV * MT

Substituting the given segment lengths, we get:

(MU + UW) * (MU - UW) = MV * TV

Simplifying this equation, we get:

MU² - UW² = MV * TV - UW * MU

Substituting the given angle measure and simplifying further, we get:

MU² - UW² = MV * TV - UW * MU

MU² - MW² - UW² = -UW * MU

(MU - MW) * (MU + MW) - UW² = -UW * MU

(MU + MW) = (UW² - MU * UW) / (MU - UW)

Substituting the given angle measure, we get:

tan(145) = UW / UM

Simplifying this equation, we get:

UW = UM * tan(145)

Substituting this expression for UW, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

Simplifying further, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

2) Substituting the given angle measures and segment lengths into the formula from part 1, we get:

MU² - UM * MV - MV * TV = x² * (MU - UM)

MU² - 2 * MU * MV * sin(31) - MV * sin(x²) = x² * (MU - UM)

Substituting the expression for UW from part 1, we get:

MU + UM * tan(145) = (UM² - MU * UM) / (MU - UM)

MU² - MU * UM - UM * tan(145) = -MU * (MU - UM)

MU * (MU - UM + UM * tan(145)) = MU² - UM * tan(145)

MU = (UM * tan(145)) / (1 - tan(145))

Substituting this expression for MU, we get:

(UM * tan(145))² / (1 - tan(145)) + UM * MV * sin(31) - MV * sin(x²) = x² * ((UM * tan(145)) / (1 - tan(145)) - UM)

Simplifying this equation and solving for x, we get:

x ≈ ±3.55

To know more about angle measures visit:

https://brainly.com/question/30958464

#SPJ1

(a) Define f: z → z by the rule F(n) = 2 - 3n, for each integer n.(i) Prove that F is one-to-one. Proof: 1. Suppose n, and nq are any integers, such that F(n) = F(n2). 2. Substituting from the definition of F gives that 2 - 3n = 3. Solving this equation for nand simplifying the result gives that n = N2 4. Therefore, Fis one-to-one.

Answers

we have shown that if f(n) = f(n2), then n = n2, which means that f is one-to-one.

The question asks us to define a function f from the set of integers to itself, where f(n) = 2 - 3n for each integer n. We then need to prove that this function is one-to-one.

To prove that f is one-to-one, we need to show that for any two integers n and n2, if f(n) = f(n2), then n = n2. Here's how we can do that:

Proof:

1. Suppose n and n2 are any integers such that f(n) = f(n2).

2. Substituting from the definition of f gives us:

2 - 3n = 2 - 3n2

3. Simplifying this equation, we get:

-3n = -3n2

4. Dividing both sides by -3, we get:

n = n2

5. Therefore, we have shown that if f(n) = f(n2), then n = n2, which means that f is one-to-one.

Visit here to learn more about one-to-one:

brainly.com/question/29670841

#SPJ11

Nora, a psychologist, developed a personality test that groups people into one of four personality profiles—
A
Astart text, A, end text,
B
Bstart text, B, end text,
C
Cstart text, C, end text, and
D
Dstart text, D, end text. Her study suggests a certain expected distribution of people among the four profiles. Nora then gives the test to a sample of
300
300300 people. Here are the results:
Profile
A
Astart text, A, end text
B
Bstart text, B, end text
C
Cstart text, C, end text
D
Dstart text, D, end text
Expected
10
%
10%10, percent
40
%
40%40, percent
40
%
40%40, percent
10
%
10%10, percent
# of people
28
2828
125
125125
117
117117
30
3030
Nora wants to perform a
χ
2
χ
2
\chi, squared goodness-of-fit test to determine if these results suggest that the actual distribution of people doesn't match the expected distribution.
What is the expected count of people with profile
B
Bstart text, B, end text in Nora's sample?
You may round your answer to the nearest hundredth.

Answers

Rounding this to the nearest hundredth gives an expected count of 120 people with profile B.

What is an expected count?

Expected count is a term used in statistical analysis, particularly in the context of contingency tables and hypothesis testing. It refers to the number of observations that would be expected in a particular category of a contingency table if there was no association between the variables being examined.

Expected counts are calculated by multiplying the marginal totals of a contingency table to obtain the total number of observations that would be expected under the null hypothesis. Expected counts are then compared to the observed counts in the contingency table to assess whether there is a significant association between the variables being examined.

To find the expected count of people with profile B, we need to multiply the total sample size (300) by the expected percentage of people with profile B (40% or 0.4):

Expected count of B = 0.4 x 300 = 120

Rounding this to the nearest hundredth gives an expected count of 120 people with profile B.

To know more about expected count, visit:

https://brainly.com/question/29052046

#SPJ1

Find the area of a rectangle with sides of lengths 1 1/2 inches and 1 3/4 inches---AS A FRACTION

Answers

Answer:

2 5/8

Step-by-step explanation:

1.5*1.75=2.625=2 5/8

e a subject, I-...
i-Ready
Choose a subject, i-...
Understand Random Sampling - Instruction - Level G
Apollo wants to know how long students travel to get to his school in the morning. To find out,
he surveys the first 10 students who arrive at school.
What reason can you use to explain why Apollo's sample may NOT
be representative?
The first 10 students to arrive are not part of the population that is
being studied.
The first 10 students to arrive might be the students who live closest
to school.
The first 10 students to arrive might still be sleepy.
The first 10 students to arrive might change from day to day.

Answers

The first 10 students to arrive might be the students who live closest to the school.

Apollo’s sampling is not truly random, as he only interviews students who meet the condition of arriving to school fairly quickly. In order to have a truly random sample of students, he should choose 10 students regardless of arrival time.

determine whether the series is convergent or divergent. if it is convergent, find its sum. (if the quantity diverges, enter diverges.) [infinity]Σn = 1 1/9+e^-n

Answers

The given series is convergent, and its sum is approximately 0.1524.

How to determine whether the series is convergent or divergent?

To determine whether the series ∑n=1∞ 1/(9+[tex]e^{(-n)}[/tex]) is convergent or divergent, we can use the comparison test with the series 1/n.

Since for all n, [tex]e^{(-n)}[/tex] > 0, we have [tex]9 + e^{(-n)}[/tex] > 9, and so [tex]1/(9+e^{(-n)})[/tex] < 1/9.

Now, we can compare the given series with the series ∑n=1∞ 1/9, which is a convergent p-series with p=1.

By the comparison test, since the terms of the given series are smaller than those of the convergent series 1/9, the given series must also converge.

To find the sum of the series, we can use the formula for the sum of an infinite geometric series:

S = a/(1-r)

where a is the first term and r is the common ratio. In this case, the first term is 1/10 (since [tex]e^{(-1)}[/tex] is very small compared to 9.

We can approximate [tex]9+e^{(-n)}[/tex] as 9 for large n), and the common ratio is [tex]e^{(-1)} < 1[/tex]. Therefore, the sum of the series is:

S = (1/10)/(1 - [tex]e^{(-1)}[/tex]) = (1/10)/(1 - 0.3679) ≈ 0.1524

Therefore, the given series is convergent, and its sum is approximately 0.1524.

Learn more about convergent and divergent series

brainly.com/question/15415793

#SPJ11

11 cm
4.3 cm
8 cm
3 cm
6 cm

Answers

Answer :1223 m^3
Explanation:N/A

4.45 find the covariance of the random variables x and y of exercise 3.49 on page 106.

Answers

The covariance of the random variables X and Y is 1/120.

Exercise 3.49 on page 106 states:

"Suppose that the joint probability density function of X and Y is given by f(x,y) = 3x, 0 ≤ y ≤ x ≤ 1, 0 elsewhere. Find E[X], E[Y], and cov(X,Y)."

To find the covariance of X and Y, we first need to find the expected values of X and Y:

E[X] = ∫∫ x f(x,y) dy dx = ∫0¹ ∫y¹ 3[tex]x^2[/tex] dy dx = ∫0¹ [tex]x^3[/tex] dx = 1/4

E[Y] = ∫∫ y f(x,y) dy dx = ∫0¹ ∫y¹ 3xy dy dx = ∫0¹ [tex]x^2[/tex]/2 dx = 1/6

Next, we need to use the formula for covariance:

cov(X,Y) = E[XY] - E[X]E[Y]

To find E[XY], we integrate the joint probability density function multiplied by XY:

E[XY] = ∫∫ xy f(x,y) dy dx = ∫0¹ ∫y¹ 3x^2y dy dx = ∫0¹ [tex]x^4[/tex]/2 dx = 1/10

Putting it all together, we have:

cov(X,Y) = E[XY] - E[X]E[Y] = 1/10 - (1/4)(1/6) = 1/120

Therefore, the covariance of the random variables X and Y is 1/120.

To learn more about variables visit:

https://brainly.com/question/17344045

#SPJ11

Where does the normal line to the paraboloid z = x^2 y^2 at the point (4, 4, 32) intersect the paraboloid a second time?

Answers

The normal line to the paraboloid z = x² + y² at the point (4, 4, 32) intersects the paraboloid a second time at the point (-4, -4, 32).

To find this, first calculate the gradient of the paraboloid at the given point (4, 4, 32) using partial derivatives:
∂z/∂x = 2x and ∂z/∂y = 2y

At the point (4, 4, 32), the gradient is (8, 8). Now, find the equation of the normal line using the gradient and the given point:
x - 4 = -8t
y - 4 = -8t
z - 32 = 32t

Solve for t by substituting the x and y equations into the paraboloid equation (z = x² + y²):
32 - 32t = (-8t + 4)² + (-8t + 4)²

Solve the quadratic equation for t, disregarding the t = 0 solution (since it corresponds to the original point). The other solution gives the second intersection point (-4, -4, 32).

To know more about partial derivatives click on below link:

https://brainly.com/question/31397807#

#SPJ11

if someone helps me I will be joyful, thanks!

Answers

Answer:

3.2 miles

Step-by-step explanation:

[tex]\frac{5684.106yds}{1}[/tex] · [tex]\frac{3ft}{1yd}[/tex] · [tex]\frac{1mile}{5280ft}[/tex] You can cross cancel words just like numbers.  Cross cancel the words: yards and feet.  That will leave you with just miles

[tex]\frac{5684.106}{1 }[/tex] ·[tex]\frac{3}{1}[/tex] · [tex]\frac{1mile}{5280}[/tex]

[tex]\frac{17052.318}{5280}[/tex]

3.22960568182

This rounded to the nearest tenth would be: 3.2

Helping in the name of Jesus.

determine whether the integral is convergent or divergent. [infinity] 21 e − x dx 1 convergent divergent If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

Answers

Since the limit is a finite value, the integral is convergent. Furthermore, the value of the convergent integral is 21e^(-1), which is approximately 7.713.


whether the integral is convergent or divergent.

First, let's rewrite the integral using proper notation:

∫(1 to ∞) 21e^(-x) dx

Now, to determine if the integral is convergent or divergent, we'll perform the following steps:

1. Apply the limit as the upper bound approaches infinity:

lim(b→∞) ∫(1 to b) 21e^(-x) dx

2. Evaluate the improper integral using the antiderivative:

F(x) = -21e^(-x)

Now, we need to find the limit as b approaches infinity:

lim(b→∞) (F(b) - F(1))

3. Calculate the limit:

lim(b→∞) (-21e^(-b) - (-21e^(-1)))

As b approaches infinity, e^(-b) approaches 0. Therefore, the limit is:

-(-21e^(-1)) = 21e^(-1)

Since the limit is a finite value, the integral is convergent. Furthermore, the value of the convergent integral is 21e^(-1), which is approximately 7.713.

Visit here to learn more about Divergent:

brainly.com/question/30726405

#SPJ11

find the differential of f(x,y)= sqrt(x^3 + y^2) at the point (1,2)

Answers

The differential of f(x,y)= √(x³ + y²) at the point (1,2) is (3/2)dx + (2/√5)dy.

To find the differential of f(x,y)= √(x³ + y²) at the point (1,2), we first need to find the partial derivatives of f with respect to x and y:

∂f/∂x = (3x² / (2 √(x³ + y²))
∂f/∂y = (y / √(x³ + y²))

Then, we can evaluate these partial derivatives at the point (1,2):

∂f/∂x (1,2) = (3(1)²) / (2 √(1³ + 2²)) = 3/2
∂f/∂y (1,2) = (2) / √(1³ + 2²) = 2/√5

Finally, we can use the formula for the differential of f:

df = (∂f/∂x)dx + (∂f/∂y)dy

Substituting the values we found, we get:

df = (3/2)dx + (2/√5)dy

Learn more about differential:

https://brainly.com/question/28099315

#SPJ11

Make a box plot of the data. Average daily temperatures in Tucson, Arizona, in December:
58, 60, 59, 50, 67, 53, 57, 62, 58, 57, 56, 63, 57, 53, 58, 58, 59, 49, 64, 58
Find and label the 5 critical values

Answers

Five  5 critical values for the daily temperatures in Tucson, Arizona, in December: are- 49, 56.5, 58, 59.5 and 67.

Explain about the Box and whisker plot:

The graphical tool used to illustrate the data is the box and whisker plot. For the data to be plotted, some summary statistics are required. The first quartile, median, third quartile, and maximum are those values. It is applied to determine if an outlier exists in the data.

Given data for the Average daily temperatures in Tucson, Arizona.

58, 60, 59, 50, 67, 53, 57, 62, 58, 57, 56, 63, 57, 53, 58, 58, 59, 49, 64, 58

Arrange is the ascending order;

49, 50, 53, 53, 56, 57, 57, 57, 58, 58, 58, 58, 58, 59, 59, 60, 62, 63, 64, 67,

n = 20

n/2 = 10 th term - 58

(n + 1)/2 = 11th term - 58

The median Q2 - (n/2 + (n+1)/2) /2

(58+58) / 2 = 58

Now, consider the middle numbers before the median for lower quartile :Q1 - (5th + 6th)/2

(56 + 57) / 2 = 56.5

Consider middle numbers after the median for upper quartile:

Q3 - (15th +16th)/2

(59 + 60) / 2 = 59.5

Five  5 critical values are-

49, 56.5, 58, 59.5 and 67.

Thus, the  Box and whisker plot for the all four estimated quratiles are formed.

Know more about the Box and whisker plot:

https://brainly.com/question/28098703

#SPJ1

Each christmas cracker in a pack of 12 contains a small plastic gadget. A paper hat and a slip of paper with a joke on it. These are packed at random from the following scheme:
Gadgets Hats
3 whistles 4 red
3 mini spinning tops 4 green
2 silly moustaches 2 yellow
4 pairs of mini earrings 2 blue
Q.) If half the people at the party are male, what is the chance of at least one of them getting an earring

Answers

The probability of at least one male getting an earring is approximately 1 - 0.0173 ≈ 0.9827 or 98.27%.

How to solve

To find the probability of at least one male getting an earring, we'll use the complementary probability.

There are 12 crackers with 4 containing earrings, so the probability of a cracker not having earrings is 2/3.

With 6 males at the party, the probability of all males not getting earrings is (2/3)^6 ≈ 0.0173.

Therefore, the probability of at least one male getting an earring is approximately 1 - 0.0173 ≈ 0.9827 or 98.27%.


Read more about probability here:

https://brainly.com/question/25870256

#SPJ1

A particular solution of the differential equation y" + 3y' + 4y = 8x + 2 is Select the correct answer. a. y_p = 2x + 1 b. y_p = 8x + 2 c. y_p = 2x - 1 d. y_p = x^2 + 3x e. y_p = 2x - 3

Answers

A particular solution of the given differential equation y'' + 3y' + 4y = 8x + 2 is: y_p = 2x - 1 (option c).

The particular solution of the given differential equation can be found by using the method of undetermined coefficients. We assume that the particular solution has the same form as the right-hand side of the equation, i.e., y_p = Ax + B, where A and B are constants. We then substitute this into the differential equation and solve for A and B.

y" + 3y' + 4y = 8x + 2

y_p = Ax + B
y'_p = A
y"_p = 0

Substituting these into the equation, we get:

0 + 3A + 4Ax + 4B = 8x + 2

Comparing the coefficients of x and the constant term, we get:

4A = 8  =>  A = 2
4B = 2  =>  B = 1/2

Therefore, the particular solution is y_p = 2x + 1, which is option a.

Learn more about Differential Equation:

brainly.com/question/14620493

#SPJ11

calculate the area of the trapezium shown below​

Answers

Answer:

45

Step-by-step explanation:

Trapeziod Area - 1/2(a + b)×h

1/2(6 + 12)×5

1/2(18)×5

(9) × 5

Area= 45 cm sq.

What is the coefficient of x9 in the expansion of (x+1)^14 + x^3(x+2)^15 ?

Answers

The coefficient of x^9 in the expansion of (x+1)^14 + x^3(x+2)^15 is 320322.

To find the coefficient of x^9, we need to look at the terms in the expansion that have x^9.

For (x+1)^14, the term that includes x^9 is:

C(14,9) * x^9 * 1^5

where C(14,9) is the binomial coefficient or combination of 14 things taken 9 at a time. We can calculate this coefficient using the formula:

C(14,9) = 14! / (9! * 5!) = 2002

So the term that includes x^9 in (x+1)^14 is:

2002 * x^9 * 1^5 = 2002x^9

For x^3(x+2)^15, the term that includes x^9 is:

C(15,6) * x^3 * 2^6

where C(15,6) is the binomial coefficient or combination of 15 things taken 6 at a time. We can calculate this coefficient using the formula:

C(15,6) = 15! / (6! * 9!) = 5005

So the term that includes x^3(x+2)^15 is:

5005 * x^3 * 2^6 * x^6 = 5005 * 64x^9

Adding the coefficients of x^9 from both terms, we get:

2002 + 5005 * 64 = 320322

Therefore, the coefficient of x^9 in the expansion of (x+1)^14 + x^3(x+2)^15 is 320322.

To learn more about expansion visit : https://brainly.com/question/13602562

#SPJ11

Consider the following differential equation to be solved by the method of undetermined coefficients. y" + 2y = -18x22x Find the complementary function for the differential equation. Ye(x) = Find the particular solution for the differential equation. yp(x) Find the general solution for the differential equation. Y(x) =

Answers

We are given the differential equation [tex]y" + 2y = -18x^2e^2x[/tex]n:. To find the complementary function, we first solve the homogeneous equation:[tex]y" + 2y = 0[/tex]. The answer is the particular solution is:[tex]y_p(x) = -3/2*x^2e^2x[/tex].

The characteristic equation is:[tex]r^2 + 2 = 0[/tex]

Which has the roots:[tex]r = ±√(-2)[/tex]

Since the roots are complex, we can write them as:[tex]r1 = i√2[/tex]

and [tex]r2 = -i\sqrt{2}[/tex]

Thus, the complementary function is: y_c(x) = [tex]c1cos(\sqrt{2x} )[/tex] + [tex]c2sin(\sqrt{2}x )[/tex]

To find the particular solution, we assume a solution of the form:[tex]y_p(x) = Ax^2e^2x[/tex]

Taking the first and second derivatives of y_p(x), we get:

[tex]y'_p(x) = 2Axe^2x + 2Ax^2e^2x[/tex]

[tex]y''_p(x) = 4Axe^2x + 4Ax^2e^2x + 4Ae^2x[/tex]

Substituting y_p(x), y'_p(x), and y''_p(x) back into the original differential equation, we get:

[tex](4Axe^2x + 4Ax^2e^2x + 4Ae^2x) + 2(Ax^2e^2x) = -18x^2e^2x[/tex]

Simplifying and collecting like terms, we get:[tex](6A + 4Ax)xe^2x + (4A + 2A)x^2e^2x = -18x^2e^2x[/tex]

Equating coefficients of like terms, we get:[tex]6A + 4Ax = 0, 4A + 2A = -18[/tex]

Solving for A, we get:

A =[tex]\frac{-3}{2}[/tex]

Therefore, the particular solution is:[tex]y_p(x) = -3/2*x^2e^2x[/tex]

The general solution is the sum of the complementary function and the particular solution:

[tex]y(x) = y_c(x) + y_p(x)[/tex]

[tex]y(x) = c1cos(√2x) + c2sin(√2x) - 3/2*x^2e^2x[/tex]

Where c1 and c2 are constants determined by initial conditions.

To learn more about differential equation, visit here

https://brainly.com/question/31583235

#SPJ4

In the following enthymemes, determine whether the missing statement is a premise or a conclusion. Then supply the missing statement, attempting whenever possible to convert the enthymeme, into a valid argument. The missing statement need not be expressed as a standard-form categorical proposition.Carrie Underwood is a talented singer. After all, she’s won several Grammy awards.

Answers

The missing statement in the given argument is a premise.

Premise: Carrie Underwood has won several Grammy awards.

Conclusion: Carrie Underwood is a talented singer.

Revised argument:

Premise: Winning several Grammy awards is an indication of talent.

Premise: Carrie Underwood has won several Grammy awards.

Conclusion: Therefore, Carrie Underwood is a talented singer.

How to determine that the missing statement is premises or a conclusion?

The given statement is an example of an enthymeme, which is an argument with an implied premise or conclusion. In this case, the implied premise is that winning several Grammy awards is an indication of talent.

The argument is based on the assumption that the audience agrees with this premise, and therefore, the conclusion that Carrie Underwood is a talented singer follows logically.

However, it is important to note that the relationship between winning Grammy awards and talent is not necessarily causative, as other factors such as marketing, popularity, and the preferences of the voting committee can also influence the outcome.

Learn more about enthymeme

brainly.com/question/14583716

#SPJ11

Verify that the vector Xp is a particular solution of the given system. X=(2 1 3 4) X-(1 7)e^t; Xp=(1 1)^et+(1 -1)^te^t For Xp= (1 1) e^t + (1 -1)te^t , one has since the above expressions _____ Xp=(1 1)^e^t+(1 -1)t^et is a particular solution of the given system.

Answers

The vector Xp=(1 1)e^t+(1 -1)te^t is a particular solution of the given system.

To verify that Xp=(1 1)e^t+(1 -1)te^t is a particular solution of the given system, we need to substitute it into the given system and check if it satisfies the equations.

The given system is:

X'=(2 1 3 4)X-(1 7)e^t

Substituting Xp=(1 1)e^t+(1 -1)te^t into the above system, we get:

Xp'=(2 1 3 4)Xp-(1 7)e^t

Differentiating Xp with respect to t, we get:

Xp'=(1 1)e^t+(1 -1)e^t+(1 -1)te^t

Substituting the above expression into the system, we get:

(1 1)e^t+(1 -1)e^t+(1 -1)te^t=(2 1 3 4)((1 1)e^t+(1 -1)te^t)-(1 7)e^t

Simplifying, we get:

(1 1)e^t+(1 -1)e^t+(1 -1)te^t=(2e^t+2te^t+3e^t-3te^t)-(1 7)e^t

Combining like terms, we get:

(1 1)e^t+(1 -1)e^t+(1 -1)te^t=(2e^t+2te^t+3e^t-3te^t)-(1 7)e^t

(1 1)e^t+(1 -1)e^t+(1 -1)te^t=(2e^t+2te^t+3e^t-3te^t-1e^t-7e^t)

(1 1)e^t+(1 -1)e^t+(1 -1)te^t=(4e^t-3te^t)

Comparing the left-hand side and the right-hand side, we can see that they are equal, which means Xp=(1 1)e^t+(1 -1)te^t satisfies the given system of equations. Therefore, Xp=(1 1)e^t+(1 -1)te^t is a particular solution of the given system.

For more questions like Equation click the link below:

https://brainly.com/question/14598404

#SPJ11

help me don't worry about the work

Answers

The surface area of the sphere of radius of 7cm is 616 square centimeters.

How to find the approximate surface area?

We know that the surface area of a sphere of radius r is given by the formula:

S = 4*(22/7)*r²

Here we want to find the surface area of a sphere whose radius is r = 7 cm.

Replacing it in the formula above, we will get:

S = 4*(22/7)*7²

S = 4*22*7

S = 616

And the units are square centimeters, so the correct option is C.

Learn more about surface area at.

https://brainly.com/question/16519513

#SPJ1

a pizza parlor offers five sizes of pizza and 14 different toppings. a customer may choose any number of toppings (or no topping at all). how many different pizzas does this parlor offer?

Answers

Therefore, there are 81,920 different pizzas that this parlor offers.

Since there are five different sizes of pizza, a customer can choose any one of the five sizes. For each size, the customer can choose to have any combination of the 14 toppings, or no toppings at all. This means that for each size of pizza, there are $2^{14}$ different possible topping combinations, including the option of having no toppings. So the total number of different pizzas that the parlor offers is:

=5*2¹⁴

=5*16,384

=81,920

To know more about combination,

https://brainly.com/question/20211959

#SPJ11

Just give the answer

Answers

Answer:

- 3, - 2, 0, 5

Step-by-step explanation:

1.4 (d - 2) - 0.2d ≤ 3.2 ← distribute parenthesis and simplify left side

1.4d - 2.8 - 0.2d ≤ 3.2

1.2d - 2.8 ≤ 3.2 ( add 2.8 to both sides )

1.2d ≤ 6 ( divide both sides by 1.2 )

d ≤ 5

the only value less than or equal to 5 are

- 3, - 2, 0 ,5

A random sample of size n = 100 is taken from a population of sizeN = 3,000 with a population proportion of p = 0.34.a.Is it necessary to apply the finite population correction factor? Explain. Calculate the expected value and the standard deviation of the sample proportion.b.What is the probability that the sample proportion is greater than 0.37?

Answers

a. The finite population correction factor is not necessary. The expected value of the sample proportion is 0.34 and the standard deviation of the sample proportion is 0.0508.

b. The probability that the sample proportion is greater than 0.37 is approximately 0.2776.

a. To determine if the finite population correction factor is necessary, we need to check if the sample size is large enough in relation to the population size. If the sample size is less than 5% of the population size, then the correction factor is not necessary. In this case, n = 100 is less than 5% of N = 3,000, so we don't need to apply the finite population correction factor.

The expected value of the sample proportion is equal to the population proportion, so E(p) = p = 0.34.

The formula for the standard deviation of the sample proportion is

σ(p) = sqrt[p(1-p)/n]

Substituting in the values, we get:

σ(p) = sqrt[(0.34)(1-0.34)/100] = 0.0508

Therefore, the expected value of the sample proportion is 0.34 and the standard deviation of the sample proportion is 0.0508.

b. We want to find the probability that the sample proportion is greater than 0.37. We can use the z-score formula and standard normal distribution to find this probability.

The z-score formula is:

z = (P - p) / σ(P)

Substituting in the values, we getp

z = (0.37 - 0.34) / 0.0508 = 0.591

Using a standard normal distribution table or calculator, we can find that the probability of z being greater than 0.591 is approximately 0.2776.

Learn more about probability here

brainly.com/question/11234923

#SPJ4

Other Questions
Determine the name for tico 3. remember that titanium forms several ions.a. titanium (ii) carboniteb. titanium carbonitec. titanium carbided. titanium i carbonatee. titanium ii carbonate how the movement of amoeba across the field of vision. use a series diagram ilustrasi? 11.30 Final Project -- Algorithmic Beauty of Plants This lab will follow examples from the wonderful book "The Algorithmic Beauty of Plants (ABOP)". This book is available free at the link, and is well worth perusing. We will be generating plants using the grammars and approach summarized in Figure 1.24, "Examples of plant-like structures generated by bracketed OL systems", from that book. For this problem, you will implement a class called PLANT. The class has two methods: (1) An initializer. The function will take an initial state (string), a generator (dictionary), the number of generation iterations to run (n) and an angle delta (deltaTheta) for changing direction while drawing. When the class is initialized, you must run the generator with the specified parameter, and make the resulting string available as a member variable PLANT.str. To run the generator, every character in the input string is either (a) replaced by the corresponding value from the generator dictionary if it is in the generator dictionary, or (b) copied directly to the output string if it is not in the generator dictionary. This is repeated n times. For example: np = PLANT ('b', {'b':'a', 'a': 'ab'},5,25) np.str =='abaababa' --> True and np=PLANT ('X', {'X' : 'F[+X] F[-X] +X', 'F' : 'FF'},2,20) np.str=='FF[+F[+X]F[-X] +X] FF[-F [+X]F[-X] +X] +F[+X]F[-X] +X' --> True 12. If one regular serving of pasta is cup, but if you eat your whole plate of fettuccinealfredo at Olive Garden that is 2 cups. How many servings of pasta did Johnconsumed in this one meal?13. The medical clinic has 2,000 regular Band-Aids, 53 four-wing Band-Aids, 250 smallrectangular Band-Aids, and 197 small round fingertip Band-Aids. How manyBand-Aids in all does the clinic have in stock?14. There are 3 doctors working at the vision clinic. One doctor evaluated 23 patients,one doctor evaluated 25 patients, and the newest doctor evaluated 17 patients. Howmany patients in all were evaluated at this vision clinic?15. The chiropractor had a very busy patient schedule. Using the patient care log below,how many total minutes did this chiropractor spend on direct patient care? Howmany total hours did the chiropractor spend on direct patient care? A guitar string is stretched tight along the x-axis from x = 0 to x = pi. Each point on the string has an x-value representing its distance from the origin. As the string vibrates, each point on the string moves back and forth on either side of the x-axis. Let y = f(x, t] = cos t sin x be the displacement at time t millisecond of each point on the string located x millimeters from the left end. Graph the traces f{x, 0) and f{x, pi/2). Label your axes. Explain what each trace tells you in terms of the vibrating string. Your explanation should include all relevant units. Graph the traces f(0, t) and f (pi/2, t). Label your axes. Explain what each trace tells you in terms of the vibrating string. Your explanation should include all relevant units. Graph a contour plot of the above function on a computer^1 and draw at least 3 level curves on your paper. Explain what the axes represent and what the contours represent. What kind of intermolecular forces act between a chloramine (NH2CI) molecule and a sodium cation? Note: If there is more than one type of intermolecular force that acts, be sure to list them all, with a comma between the name of each force. 5 ? a public health nurse is working with a client who does not have health insurance. where will the nurse most likely direct the client to in order to receive care? Random variables X and Y in Example 5.3 and random variables Q and G in Quiz 5.2 have joint PMFs: Are X and Y independent? Are Q and G independent? Random variables X_1 and X_2 are independent and identically distributed with probability density function fx(x) = {x/2 0 0 lessthanorequalto x lessthanorequalto 2, otherwise. What is the joint PDF fx_1, x_2 (x_1, x_2)? create an array of size 10 with the numbers 1-10 in it. output the memory locations of each spot in the array 4x is a solution of the differential equation y' + 4y = 4ex. Show that y A 4e -4x -4x - 4e 5 y' () y' 4y= LHS = +4. RHS, so y is a solution of the differential equation. 5 Following Statesmens are TRUE or FALSE?Allowing at most four philosophers to sit simultaneously prevents deadlock.A critical section object in the user mode needs kernel intervention to ensure mutual exclusion.When the mutex lock is implemented based on a binary semaphore, it should be initialized to be 0.The value of a counting semaphore can range only between 0 and 1.Dispatcher objects in Windows are used for synchronization outside the kernel.A mutex lock is released immediately after entering a critical section.Mutex locks and counting semaphores are essentially the same thing.Semaphore implementation overcomes the busy waiting problem.Petersons solution works on modern computer architectures.The preemptive kernel may be more responsive than non-preemptive kernel.Every object in Java has associated with it a single lock.JAVA provides support for both named and unnamed condition variables.Spinlocks are not appropriate for single-processor systems.CAS-based synchronization is always faster than traditional synchronization.A semaphore has an integer value.The preemptive kernel is more suitable for real-time programming than non-preemptive kernel. A cell that starts with a 2n chromosome number of 12 goes through Mitosis. How many chromosomes are found in each of the two resulting cells after Mitosis is complete?a.)24b.)6c.)4d.)12 The formula for pulse duration is number of cycles in a pulse multiplied by: a. Frequency b. Period c. Wavelength d. Amplitude 17. Write a function which checks whether an arithmetic expression is valid. The expression is made up of three strings. The first and third should be convertible to a valid integer. The second should be an operator ("+", "-", "*", or "/"). There should be no exception when the expression is evaluated. Complete the following file: Zones 2 and 4 you find large amounts of two different microorganisms.4. Zone 2 water is populated by cells with the following characteristics: green cells connected instrands; cell wall is made of peptidoglycan; ester-bonded phospholipids; DNA is not wrappedaround histones. (1 point) Do these characteristics fit any group of microorganisms? Could they be responsible for the green hue of the water? Explain. . You damage the neuronal cell bodies in the midbrain, which function is lost? You lose theability to:- Capture light- Perform phototransduction - Constrict the pupil in bright environments 3 I learnt to drive last year. I had my first driving lesson. in January. I passed my driving test six months later. It tome me 4 Marks drive to London yesterday. He left home at 80 clock and got to London atia it took he -5 linda began looking for a job a long time ago. She got a job last week. It took she 6( write a true sentence about yourself! a solenoid 99cm long has 450 turns and a radius of 3.14 cm. if it carries a current of 3.05 a, find th emagnetic field along the axis at its center Help me find surface area of a net, look at the image. 20 POINTS!!! Amanda made a scale drawing of a theater. The scale she used was 1 inch: 7 feet. The stage is 28 feet wide in real life. How wide is the stage in the drawing?A: 2 inchesB: 4 inchesC: 4 feetD: 2 feetTy for answering!