Ken and Hamid run around a track.
It take Ken 80 seconds to complete a lap.
It take Hamid 60 seconds to complete a lap.
Ken and Hamid start running at the same time from the start line.
How many laps will they each have run when they next meet on the start line?

Answers

Answer 1

In a case whereby Ken and Hamid run around a track where it take Ken 80 seconds to complete a lap It take Hamid 60 seconds to complete a lap. the number of  laps they will each have run when they next meet on the start line is that Ken will have run 3 laps and Hamid will have run 4.

How can the number of  lapscalcluated?

The LCM of 80 nd 60 seconnds can be written as 240,  however when 240 seconds go then they will both be at the start line.

So the lap that  Ken will covered in 240s = 240/80 = 3laps

So the lap that  Hamid will covered in 240s = 240/60 = 4laps

Therefore, we can come into conclusion that Ken will have to run   3laps  where Hamid will have run  4Laps.

Learn more about number of  laps at:

https://brainly.com/question/5471522

#SPJ1


Related Questions

calculate the volume percent of 357 ml of ethylene glycol in enough water to give 1.18×103 ml of solution.

Answers

the volume percent of ethylene glycol in the solution is 30.25%.

Why is it?

To calculate the volume percent of ethylene glycol in the solution, we need to know the volume of ethylene glycol and the total volume of the solution.

Given:

Volume of ethylene glycol = 357 ml

Total volume of solution = 1.18 × 10²3 ml

The volume percent of ethylene glycol is calculated as:

Volume percent = (volume of ethylene glycol / total volume of solution) x 100%

Volume percent = (357 ml / 1.18 × 10²3 ml) x 100%

Volume percent = 30.25%

Therefore, the volume percent of ethylene glycol in the solution is 30.25%.

To know more about Percentage related question visit:

https://brainly.com/question/29306119

#SPJ1

HURRY UP Please answer this question

Answers

Answer:

[tex] {6}^{2} + {b}^{2} = {10}^{2} [/tex]

[tex]36 + {b}^{2} = 100[/tex]

[tex] {b}^{2} = 64[/tex]

[tex]b = 8[/tex]

Julie is using the set {7,8,9,10,11} to solve the inequality shown. 2h-3>15 Select all of the solutions to the inequality.

Answers

Answer:

10,11

Step-by-step explanation:

Solving inequality:

Givne set: {7, 8 , 9 , 10 , 11}

To solve the inequality, isolate 'h'.

        2h - 3 > 15

Add 3 to both sides,

     2h - 3 + 3 > 15 + 3

               2h  > 18

Divide both sides by 2,

                [tex]\sf \dfrac{2h}{2} > \dfrac{18}{2}[/tex]

                 h > 9

h = {10 , 11}

The enrollment at high school R has been increasing by 20 students per year. Currently high school R has 200 students attending. High School T currently has 400 students, but it's enrollment is decreasing in size by an average of 30 students per year. If the two schools continue their current enrollment trends over the next few years, how many years will it take the schools to have the same enrollment?

Answers

The number of years it will  take the schools to have the same enrollment is 4 years.

We are given that;

The enrollment at high school R has been increasing by 20 students per year.

Currently high school R has 200 students attending.

High school T currently has 400 students, but it’s enrollment is decreasing in size by an average of 30 students per year.

Let x be the number of years from now, and y be the enrollment of the schools. Then we have:

y=200+20x

for high school R, and

y=400−30x

for high school T. To find when the schools have the same enrollment, we set the two equations equal to each other and solve for x:

200+20x=400−30x

Adding 30x to both sides, we get:

50x=200

Dividing both sides by 50, we get:

x=4

At that time, they will both have y = 200 + 20(4) = 280 students.

Therefore, by the linear equation the answer will be 4 years.

Learn more about linear equations;

https://brainly.com/question/10413253

#SPJ1

exercise 0.2.7. let .y″ 2y′−8y=0. now try a solution of the form y=erx for some (unknown) constant .r. is this a solution for some ?r? if so, find all such .

Answers

The functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Find if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$ can be substituted in place of $y$ and its derivatives?

To see if the function $y = e^{rx}$ is a solution to the differential equation $y'' + 2y' - 8y = 0$, we substitute it in place of $y$ and its derivatives:

y=[tex]e^{rx}[/tex]

y' = [tex]re^{rx}[/tex]

y" = [tex]r^{2} e^{rx}[/tex]

Substituting these expressions into the differential equation, we get:

[tex]r^{2} e^{rx} + 2re^{rx} - 8e^{rx} = 0[/tex]

Dividing both sides by $ [tex]$e^{rx}$[/tex] $, we get:

[tex]r^{2} + 2r - 8 = 0[/tex]

This is a quadratic equation in $r$. Solving for $r$, we get:

r = -4,2

Therefore, the functions $y =[tex]e^{-4x}[/tex]$ and $y = [tex]e^{2x}[/tex] $ are solutions to the differential equation $y'' + 2y' - 8y = 0$.

Learn more about differential equations

brainly.com/question/14620493

#SPJ11

In Problems 9–26, find a particular solution to the differential equation. 9. y" + 3y = -9 10. y" + 2y' - y = 10 11. y"(x) + y(x) = 2 12. 2x' + x = 312

Answers

For Problem 9, the characteristic equation is r² + 3 = 0, which has roots r = +/- i*sqrt(3).

Since this is a nonhomogeneous equation with a constant on the right-hand side, we guess a particular solution of the form y_p = A, where A is a constant. Plugging this into the differential equation, we get A = -3, so our particular solution is y_p = -3.

For Problem 10, the characteristic equation is r² + 2r - 1 = 0, which has roots r = (-2 +/- sqrt(8))/2 = -1 +/- sqrt(2).

Again, this is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = B, where B is a constant. Plugging this into the differential equation, we get B = 10/3, so our particular solution is y_p = 10/3.

For Problem 11, the characteristic equation is r^2 + 1 = 0, which has roots r = +/- i.

This is a nonhomogeneous equation with a constant on the right-hand side, so we guess a particular solution of the form y_p = C, where C is a constant. Plugging this into the differential equation, we get C = 2, so our particular solution is y_p = 2.

For Problem 12, this is a first-order differential equation, so we can use the method of integrating factors.

The integrating factor is e^int(1/2, dx) = e^(x^2/4), so we multiply both sides of the equation by e^(x^2/4) to get (e^(x^2/4) x)' = 312 e^(x^2/4). Integrating both sides with respect to x, we get e^(x^2/4) x = 312/2 int(e^(x^2/4), dx) = 156 e^(x^2/4) + C, where C is a constant of integration. Solving for x, we get x = 156 e^(-x^2/4) + Ce^(-x^2/4). This is our particular solution.

To know more about differential equation click on below link :

https://brainly.com/question/31385688

#SPJ11

how many partitions of 2 parts can be amde of {1,2,...100}

Answers

There are [tex](1/2) * (2^{100} - 2)[/tex] partitions of {1, 2, ..., 100} into two parts.

How to find the number of partitions of {1, 2, ..., 100} into two parts?

We can use the following formula:

Number of partitions = (n choose k)/2, where n is the total number of elements, and k is the number of elements in one of the two parts.

In this case, we want to divide the set {1, 2, ..., 100} into two parts, each with k elements.

Since we are not distinguishing between the two parts, we divide the total number of partitions by 2.

The number of ways to choose k elements from a set of n elements is given by the binomial coefficient (n choose k).

So the number of partitions of {1, 2, ..., 100} into two parts is:

(100 choose k)/2

where k is any integer between 1 and 99 (inclusive).

To find the total number of partitions, we need to sum this expression for all values of k between 1 and 99:

Number of partitions = (100 choose 1)/2 + (100 choose 2)/2 + ... + (100 choose 99)/2

This is equivalent to:

Number of partitions = (1/2) * ([tex]2^{100}[/tex] - 2)

Therefore, there are (1/2) * ([tex]2^{100][/tex] - 2) partitions of {1, 2, ..., 100} into two parts.

Learn more about partitions of a set into two parts

brainly.com/question/18651359

#SPJ11

Bus stops A, B, C, and D are on a straight road. The distance from A to D is exactly 1 km. The distance from B to C is 2 km. The distance from B to D is 3 km, the distance from A to B is 4 km, and the distance from C to D is 5 km. What is the distance between stops A and C?

Answers

Okay, let's think this through step-by-step:

* A to D is 1 km

* B to C is 2 km

* B to D is 3 km

* A to B is 4 km

* C to D is 5 km

So we have:

A -> B = 4 km

B -> C = 2 km

C -> D = 5 km

We want to find A -> C.

A -> B is 4 km

B -> C is 2 km

So A -> C = 4 + 2 = 6 km

Therefore, the distance between stops A and C is 6 km.

URGENT PLS HELP!! Will give brainiest :)

Answers

you should put the question, there is not question to be answered?

For the hypothesis test H0: µ = 11 against H1: µ < 11 and variance known, calculate the P-value for the following test statistic:
z0 = - 2.33

Answers

The P-value for the given test statistic, z0 = -2.33, in a one-tailed hypothesis test with H0: µ = 11 and H1: µ < 11 is approximately 0.01.


1. Identify the null hypothesis (H0) and alternative hypothesis (H1). In this case, H0: µ = 11 and H1: µ < 11.


2. Determine the test statistic. Here, z0 = -2.33.


3. Since H1: µ < 11, we are performing a one-tailed test (left-tailed).


4. Look up the corresponding P-value for z0 = -2.33 using a standard normal (Z) table or an online calculator.


5. In a standard normal table, find the row and column corresponding to -2.3 and 0.03, respectively. The intersection gives the value 0.0099, which is approximately 0.01.


6. The P-value is about 0.01, which represents the probability of observing a test statistic as extreme or more extreme than z0 = -2.33 under the null hypothesis.

To know more about one-tailed hypothesis test click on below link:

https://brainly.com/question/29494642#

#SPJ11

In the sequence of numbers: 2/3, 4/7, x, 11/21, 16/31. the missing number x is:- 5/10 6/10 7/13 8/10

Answers

The missing number is 7/13.

We have the Sequence,

2/3, 4/7, x, 11/21, 16/31

As, the sequence in Numerator are +2, +3, +4, +5,

and, the sequence of denominator are 4, 6, 8 and 10.

Then, the numerator of missing fraction is

= 4 +3 = 7

and, denominator = 7 + 6 =13

Thus, the required number is 7/13.

Learn more about sequence here:

https://brainly.com/question/10049072

#SPJ1

HELP ITS DUE IN 3MIN :(
Bisecting Bakery sells cylindrical round cakes. The most popular cake at the bakery is the red velvet cake. It has a radius of 15 centimeters and a height of 12 centimeters.

If everything but the circular bottom of the cake was iced, how many square centimeters of icing is needed for one cake? Use 3.14 for π and round to the nearest square centimeter.

810 cm2
585 cm2
2,543 cm2
1,837 cm2

Answers

Answer:

1,837

Step-by-step explanation:

find y' and y'' for x2 4xy − 3y2 = 8.

Answers

The derivatives are:

[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

To find y' and y'' for the given equation x^2 + 4xy - 3y^2 = 8, follow these steps:

Step 1: Differentiate both sides of the equation with respect to x.
For the left side, use the product rule for 4xy and the chain rule for -3y^2.
[tex]d(x^2)/dx + d(4xy)/dx - d(3y^2)/dx = d(8)/dx[/tex]

Step 2: Calculate the derivatives.
[tex]2x + 4(dy/dx * x + y) - 6y(dy/dx) = 0[/tex]

Step 3: Solve for y'.
Rearrange the equation to isolate dy/dx (y'):
[tex]y' = (2x + 4y) / (4x - 6y)[/tex]

Step 4: Differentiate y' with respect to x to find y''.
Use the quotient rule: [tex](v * du/dx - u * dv/dx) / v^2[/tex],

where u = (2x + 4y) and v = (4x - 6y).
[tex]y'' = [(4x - 6y)(2 + 4(dy/dx)) - (2x + 4y)(4 - 6(dy/dx))] / (4x - 6y)^2[/tex]

Step 5: Substitute y' back into the equation for y''.
[tex]y'' = [(4x - 6y)(2 + 4((2x + 4y) / (4x - 6y))) - (2x + 4y)(4 - 6((2x + 4y) / (4x - 6y)))] / (4x - 6y)^2[/tex]

This is the expression for y'' in terms of x and y.

Learn more about differentiation:https://brainly.com/question/25081524

#SPJ11

Suppose a binary tree has leaves l1, l2, . . . , lMat depths d1, d2, . . . , dM, respectively.
Prove that Σ 2^-di <= 1.

Answers

In a binary tree with leaves l1, l2, ..., lM at depths d1, d2, ..., dM respectively, the sum of [tex]2^-^d^_i[/tex] for all leaves is always less than or equal to 1: Σ  [tex]2^-^d^_i[/tex] <= 1.

In a binary tree, each leaf node is reached by following a unique path from the root. Since it is a binary tree, each internal node has two child nodes.

Consider a full binary tree, where all leaves have the maximum number of nodes at each depth. For a full binary tree, the total number of leaves is  [tex]2^d[/tex] , where d is the depth.

Each leaf node contributes [tex]2^-^d[/tex] to the sum. Thus, the sum for a full binary tree is Σ  [tex]2^-^d[/tex] = (2⁰ + 2⁰ + ... + 2⁰) = [tex]2^d[/tex] * [tex]2^-^d[/tex]  = 1. Now, if we remove any node from the full binary tree, the sum can only decrease, as we are reducing the number of terms in the sum. Hence, for any binary tree, the sum Σ [tex]2^-^d^_i[/tex]  will always be less than or equal to 1.

To know more about binary tree click on below link:

https://brainly.com/question/13152677#

#SPJ11

find the derivative of the function. f(x) = (9x6 8x3)4

Answers

The derivative of the function f(x) = (9[tex]x^{6}[/tex] + 8x³)³ is f'(x) = 4(9[tex]x^{6}[/tex] + 8x³)³(54x³ + 24x²).

To find the derivative of the function f(x) = (9x² + 8x³)³, you need to apply the Chain Rule. The Chain Rule states that the derivative of a composite function is the derivative of the outer function times the derivative of the inner function. In this case, let u = 9x + 8x.

First, find the derivative of the outer function with respect to u: d( u³ )/du = 4u³.
Next, find the derivative of the inner function with respect to x: d(9x² + 8x³)/dx = 54x³ + 24x².

Know more about derivative of the function here:

https://brainly.com/question/25752367

#SPJ11

Algebra 2, logs! Please help!

Answers

log₂(7) + log₂(8) is equal to log₂(56).

Describe logarithmic ?

Logarithmic is a mathematical concept that is used to describe the relationship between a number and its exponent. In particular, a logarithm is the power to which a base must be raised to produce a given number. For example, if we have a base of 2 and a number of 8, the logarithm (base 2) of 8 is 3, since 2 raised to the power of 3 equals 8.

Logarithmic functions are commonly used in mathematics, science, and engineering to describe exponential growth and decay, as well as to solve various types of equations. They are particularly useful in dealing with large numbers, as logarithms allow us to express very large or very small numbers in a more manageable way.

The logarithmic function is typically denoted as log(base a) x, where a is the base and x is the number whose logarithm is being taken. There are several different bases that are commonly used, including base 10 (common logarithm), base e (natural logarithm), and base 2 (binary logarithm). The properties of logarithmic functions, including rules for combining and simplifying logarithmic expressions, are well-defined and widely used in mathematics and other fields.

We can use the logarithmic rule that states that the sum of the logarithms of two numbers is equal to the logarithm of the product of the two numbers. That is,

log₂(7) + log₂(8) = log₂(7 × 8)

Now we can simplify the product of 7 and 8 to get:

log₂(7) + log₂(8) = log₂(56)

Therefore, log₂(7) + log₂(8) is equal to log₂(56).

To know more about function visit:

https://brainly.com/question/4952651

#SPJ1

given n(l) = 750, n(m) = 230 and n(l ∩ m) = 30, find n(l ∪ m).

Answers

The n(l ∪ m) = 950. This can also be said as the size of the union of sets l and m is 950.

In the question, we have

n(l) = 750, n(m) = 230 and n(l ∩ m) = 30,

To find n(l ∪ m), we need to add the number of elements in both sets, but since they have some overlap n(l ∩ m), we need to subtract that overlap to avoid counting those elements twice.

n(l ∪ m) = n(l) + n(m) - n(l ∩ m)

Substituting the given values, we get:


n(l ∪ m) = 750 + 230 - 30
n(l ∪ m) = 950

Learn more about n(l ∪ m) here:

https://brainly.com/question/20416466

#SPJ11

To find the length of the curve defined by y=3x^5 + 15x from the point (-2,-126) to the point (3,774), you'd have to compute∫^b_a f(x)dx where a = ______, b=______and f(x) =____>

Answers

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

The length of the curve L is [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex] where a = -2, b= 3 and f'(x) =  [tex]15x^4[/tex] + 15.

To find the length of the curve defined by y = [tex]3x^5[/tex] + 15x from the point (-2, -126) to the point (3, 774), you'd actually need to compute the arc length using the formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(f'(x)^2)} } \, dx[/tex]
First, find the derivative of the function, f'(x):
f'(x) = d([tex]3x^5[/tex] + 15x)/dx = [tex]15x^4[/tex] + 15
Now, substitute f'(x) into the arc length formula:
L = [tex]\int\limits^b_a {\sqrt{(1+(15x^4+15)^2)} } \, dx[/tex]
Here, the points given are (-2, -126) and (3, 774). Therefore, the limits of integration are:
a = -2
b = 3
So the final integral to compute the length of the curve is:
L = [tex]\int\limits^3_{-2} {\sqrt{1+(15x^4+15)^2} } \, dx[/tex]

To learn more about function, refer:-

https://brainly.com/question/12431044

#SPJ11

A regular octagon has an area of 48 inches squared. If the scale factor of this octagon to a similar octagon is 4:5, then what is the area of the other pentagon?

Answers

The area of the other octagon is 75 square inches.

To find the area of the other octagon, we can use the concept of scale factors. The scale factor of 4:5 tells us that corresponding lengths of the two similar octagons are in a ratio of 4:5.

Since the scale factor applies to the lengths, it will also apply to the areas of the two octagons. The area of a shape is proportional to the square of its corresponding side length.

Let's assume the area of the other octagon (with the scale factor of 4:5) is A.

The ratio of the areas of the two octagons can be expressed as:

(Area of the given octagon) : A = (Side length of the given octagon)^2 : (Side length of the other octagon)^2

48 : A = (4/5)^2

48 : A = 16/25

Cross-multiplying:

25 * 48 = 16A

1200 = 16A

Dividing both sides by 16:

75 = A

Therefore, the area of the other octagon is 75 square inches.

For more such questions on area, click on:

https://brainly.com/question/22972014

#SPJ8

to determine the entropy change for an irreversible process between states 1 and 2, should the integral ∫1 2 δq/t be performed along the actual process path or an imaginary reversible path? explain.

Answers

The integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To determine the entropy change for an irreversible process between states 1 and 2, the integral ∫1 2 δq/t should be performed along an imaginary reversible path. This is because entropy is a state function and is independent of the path taken to reach a particular state. Therefore, the entropy change between two states will be the same regardless of whether the process is reversible or irreversible.

However, performing the integral along an imaginary reversible path will give a more accurate measure of the entropy change as it represents the maximum possible work that could have been obtained from the system. In contrast, an irreversible process will always result in a lower amount of work being obtained due to losses from friction, heat transfer to the surroundings, and other factors.

Therefore, performing the integral along the actual process path will not accurately represent the maximum possible entropy change for the system.

To learn more about entropy here:

brainly.com/question/13135498#

#SPJ11

Solve for missing angle. round to the nearest degree

Answers

Answer:

Set your calculator to degree mode.

[tex] { \sin }^{ - 1} \frac{18}{20} = 64 [/tex]

So theta measures approximately 64 degrees.

consider the function (x)=3−6x2 f ( x ) = 3 − 6 x 2 on the interval [−6,4] [ − 6 , 4 ] . Find the average or mean slope of the function on this interval, i.e. (4)−(−6)4−(−6) f ( 4 ) − f ( − 6 ) 4 − ( − 6 ) Answer: By the Mean Value Theorem, we know there exists a c c in the open interval (−6,4) ( − 6 , 4 ) such that ′(c) f ′ ( c ) is equal to this mean slope. For this problem, there is only one c c that works. c= c = Note: You can earn partial credit on this problem

Answers

The average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

How to find the average or mean slope of the function on given interval?

The Mean Value Theorem (MVT) for a function f(x) on the interval [a,b] states that there exists a point c in (a,b) such that f'(c) = (f(b) - f(a))/(b - a).

In this problem, we are asked to find the average slope of the function f(x) = 3 - 6x² on the interval [-6,4]. The average slope is:

(f(4) - f(-6))/(4 - (-6)) = (3 - 6(4)² - (3 - 6(-6)²))/(4 + 6) = -42

So, we need to find a point c in (-6,4) such that f'(c) = -42. The derivative of f(x) is:

f'(x) = -12x

Setting f'(c) = -42, we get:

-12c = -42

c = 3.5

Therefore, the point c = 3.5 satisfies the conditions of the Mean Value Theorem, and the average slope of f(x) on the interval [-6,4] is equal to f'(3.5) = -12(3.5) = -42.

Learn more about average slope.

brainly.com/question/31376837

#SPJ11

how to find AX? help for III) and II) too​

Answers

The length of line AX is 3p/4q.

The length of side AY is  9p²/4q + 3p/4.

What is the length of AX?

The length of line AX is calculated as follows;

From the given figure, we can apply the principle of congruent sides of the parallellogram.

AD/DC = CX/AX

8q/6p = 1/AX

AX = 6p/8q

AX = 3p/4q

The length of side AY is calculated by applying the following formula as shown below.

Apply similar principle of congruent sides;

AX/CX = AY/CY

3p/4q / 1 = AY/(3p + q)

AY = 3p/4q(3p + q)

AY = 9p²/4q + 3p/4

Learn more about side lengths of parallelogram here: https://brainly.com/question/14386432

#SPJ1

Use the Chain Rule to find the indicated partial derivatives.
u =
r2 + s2
, r = y + x cos t, s = x + y sin t
∂u
∂x
∂u
∂y
∂u
∂t
when x = 4, y = 5, t = 0
∂u
∂x
= ∂u
∂y
= ∂u
∂t
=

Answers

The partial derivatives of u with respect to x, y, and t are, [tex]\dfrac{\partial u}{\partial x}[/tex] = 22, [tex]\dfrac{\partial u}{\partial y}[/tex] = 18 and [tex]\dfrac{\partial u}{\partial t}[/tex] = 40.

We can use the chain rule to find the partial derivatives of u with respect to x, y, and t.

First, we will find the partial derivative of u with respect to r and s:

u = r² + s²

[tex]\dfrac{\partial u}{\partial r}[/tex] = 2r

[tex]\dfrac{\partial u}{\partial s}[/tex] = 2s

Next, we will find the partial derivatives of r with respect to x, y, and t:

r = y + xcos(t)

[tex]\dfrac{\partial r}{\partial x}[/tex] = cos(t)

[tex]\dfrac{\partial r}{\partial y}[/tex] = 1

[tex]\dfrac{\partial r}{\partial t}[/tex] = -xsin(t)

Similarly, we will find the partial derivatives of s with respect to x, y, and t:

s = x + ysin(t)

[tex]\dfrac{\partial s}{\partial x}[/tex] = 1

[tex]\dfrac{\partial s}{\partial y}[/tex] = sin(t)

[tex]\dfrac{\partial s}{\partial t}[/tex] = ycos(t)

Now, we can use the chain rule to find the partial derivatives of u with respect to x, y, and t:

[tex]\dfrac{\partial u}{\partial x} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial x} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial x}[/tex]

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2r * cos(t) + 2s * 1

At x = 4, y = 5, t = 0, we have:

r = 5 + 4cos(0) = 9

s = 4 + 5sin(0) = 4

Substituting these values into the partial derivative formula, we get:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 2(9)(1) + 2(4)(1) = 22

Similarly, we can find the partial derivatives with respect to y and t:

[tex]\dfrac{\partial u}{\partial y} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial y} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial y}[/tex]

[tex]\dfrac{\partial u}{\partial y}[/tex] = 2r * 1 + 2s * sin(t)

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(1) + 2(4)(0) = 18

[tex]\dfrac{\partial u}{\partial t} = \dfrac{\partial u}{\partial r} \times \dfrac{\partial r}{\partial t} + \dfrac{\partial u}{\partial s} \times \dfrac{\partial s}{\partial t}[/tex]

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2r * (-xsin(t)) + 2s * (ycos(t))

[tex]\dfrac{\partial u}{\partial t}[/tex] = 2(9)(-4sin(0)) + 2(4)(5cos(0)) = 40

Therefore, the partial derivatives of u with respect to x, y, and t are:

[tex]\dfrac{\partial u}{\partial x}[/tex] = 22

[tex]\dfrac{\partial u}{\partial y}[/tex] = 18

[tex]\dfrac{\partial u}{\partial t}[/tex] = 40

To know more about partial derivatives, here

https://brainly.com/question/31397807

#SPJ4

Sam is competing in a diving event at a swim meet. When it's his turn, he jumps upward off
the diving board at a height of 10 meters above the water with a velocity of 4 meters per
second.
Which equation can you use to find how many seconds Sam is in the air before entering the
water?
If an object travels upward at a velocity of v meters per second from s meters above the
ground, the object's height in meters, h, after t seconds can be modeled by the formula
h = -4.9t² vt + s.
0 -4.9t² + 4t + 10
10 = -4.9t² + 4t
To the nearest tenth of a second, how long is Sam in the air before entering the water?

Answers

The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)

t = (-4 ± √(16 + 196)) / (-9.8)

t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)

Read more on quadratic equation here:https://brainly.com/question/1214333

#SPJ1

Answer: The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic  formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)t = (-4 ± √(16 + 196)) / (-9.8)t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)


Read more on quadratic equation here:

brainly.com/question/1214333#SPJ1

Suppose that {an}n-1 is a sequence of positive terms and set sn= m_, ak. Suppose it is known that: 1 lim an+1 11-00 Select all of the following that must be true. 1 ak must converge. 1 ak must converge to 1 must converge. {sn} must be bounded. {sn) is monotonic. lim, + 8. does not exist. ? Check work Exercise.

Answers

From the given information, we know that {an} is a sequence of positive terms, so all of its terms are greater than 0. We also know that sn = m∑ ak, which means that sn is a sum of a finite number of positive terms.

Now, let's look at the given limit: lim an+1 = 0 as n approaches infinity. This tells us that the terms of {an} must approach 0 as n approaches infinity since the limit of an+1 is dependent on the limit of an. Therefore, we can conclude that {an} is a decreasing sequence of positive terms. Using this information, we can determine the following:- ak must converge: Since {an} is decreasing and positive, we know that the terms of {ak} are also decreasing and positive. Therefore, {ak} must converge by the Monotone Convergence Theorem. - ak must converge to 0: Since {an} approaches 0 as n approaches infinity, we know that the terms of {ak} must also approach 0. Therefore, {ak} must converge to 0.
- {sn} must be bounded: Since {ak} converges to 0, we know that there exists some N such that ak < 1 for all n > N. Therefore, sn < m(N-1) + m for all n > N. This shows that {sn} is bounded above by some constant.
- {sn} is monotonic: Since {an} is decreasing and positive, we know that {ak} is also decreasing and positive. Therefore, sn+1 = sn + ak+1 < sn, which shows that {sn} is a decreasing sequence. - limn→∞ sn does not exist: Since {an} approaches 0 as n approaches infinity, we know that {sn} approaches a finite limit if and only if {ak} approaches a nonzero limit. However, we know that {ak} approaches 0, so {sn} does not approach a finite
Therefore, the correct answers
- ak must converge
- ak must converge to 0
- {sn} must be bounded
- {sn} is monotonic
- limn→∞ sn does not exist

Learn more about finite number here:brainly.com/question/1622435

#sPJ11

An item is regularly priced at $55 . It is on sale for $40 off the regular price. What is the sale price?

Answers

Answer:22

Step-by-step explanation:

First you put

40/100

and that makes

11/22

change f(x) = 40(0.96)x to an exponential function with base e. and approximate the decay rate of f.

Answers

The decay rate of f is approximately 4.0822% per unit of x.

How to change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function?

To change [tex]f(x) = 40(0.96)^x[/tex] to an exponential function with base e, we can use the fact that:

[tex]e^{ln(a)} = a[/tex], where a is a positive real number.

First, we can rewrite 0.96 as[tex]e^{ln(0.96)}[/tex]:

[tex]f(x) = 40(e^{ln(0.96)})^x[/tex]

Then, we can use the property of exponents to simplify this expression:

[tex]f(x) = 40e^{(x*ln(0.96))}[/tex]

This is an exponential function with base e.

To approximate the decay rate of f, we can look at the exponent x*ln(0.96).

The coefficient of x represents the rate of decay. In this case, the coefficient is ln(0.96).

Using a calculator, we can approximate ln(0.96) as -0.040822. This means that the decay rate of f is approximately 4.0822% per unit of x.

Learn more about exponential function

brainly.com/question/14355665

#SPJ11

Any help please?
I need to find the area and perimeter of the sheep pin, fill in the blanks to get the area and perimeter

Answers

Answer:

perimeter= 96feet

area= 470 feet ^2

Step-by-step explanation:

to find the perimeter u add all the sides together

top missing side= 10feet

right missing side= 19feet

perimeter= 28+20+10+9+10+19

perimeter= 96 feet

area= 20×19=380

9×10=90

area=380+90

area=470 feet^2

Answer: Top box : 10 Ft. , Side box: 21 Ft. , Area: 510 Ft^2, Perimeter: 98 Ft.

Step-by-step explanation:

- Think about it as two shapes. A smaller rectangle that the sheep is in and a larger one with the rest of the pen. Doing this visually will help.

Top box:

20-10 = 10

- We minus 10 feet from 200 because we are dealing with the 'smaller' shape first, to find the length of its missing side we must subtract the known lengths; we removed the excess.

Side box:

28-9=21

- We do this because 28 Ft was a whole length from end to end when we only need the bigger shape, hence we remove the excess which is 9 Ft.

Area:

-Now we know all our lengths, deal with the two self-allocated 'shapes' as you would normally.

10 x 9 = 90. (Smaller shape.)

20 x 21 = 420. (Larger shape.)

- Then we add them to find the area of the WHOLE shape combined.

90 + 420 = 410 FT²

Perimeter:

- Once again, we know all our lengths and simply add them all together.

10 + 28 + 20 + 21 + 10 + 9 = 98 FT

If this helped, consider dropping a thanks ! Have a good day !

in each of the problems 7 through 9 find the inverse laplace transform of the given function by using the convolution theoremf(s)=1/(s +1)^2 (s^2+ 4)

Answers

The inverse Laplace transform of f(s) is: f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t)

What is convolution theorem?

The convolution theorem is a fundamental result in mathematics and signal processing that relates the convolution operation in the time domain to multiplication in the frequency domain.

To find the inverse Laplace transform of the given function, we will use the convolution theorem, which states that the inverse Laplace transform of the product of two functions is the convolution of their inverse Laplace transforms.

We can rewrite the given function as:

f(s) = 1/(s+1)² * (s² + 4)

Taking the inverse Laplace transform of both sides, we get:

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} *[tex]L^{-1}[/tex]{s² + 4}

We can use partial fraction decomposition to find the inverse Laplace transform of 1/(s+1)²:[tex]e^{-t}[/tex]

1/(s+1)² = d/ds(-1/(s+1))

Thus, [tex]L^{-1}[/tex]{1/(s+1)²} = -t*[tex]e^{-t}[/tex]

To find the inverse Laplace transform of s²+4, we can use the table of Laplace transforms and the property of linearity of the Laplace transform:

L{[tex]t^{n}[/tex]} = n!/[tex]s^{(n+1)}[/tex]

L{4} = 4/[tex]s^{0}[/tex]

[tex]L^{-1}[/tex]{s² + 4} = L^-1{s²} + [tex]L^{-1}[/tex]{4} = 2*d²/dt²δ(t) + 4δ(t)

Now, we can use the convolution theorem to find the inverse Laplace transform of f(s):

[tex]L^{-1}[/tex]{f(s)} = [tex]L^{-1}[/tex]{1/(s+1)²} * [tex]L^{-1}[/tex]{s² + 4} = (-te^(-t)) * (2d²/dt²δ(t) + 4δ(t))

Simplifying this expression, we get:

[tex]L^{-1}[/tex]{f(s)} = -2[tex]te^{-t}[/tex]δ''(t) - 4[tex]te^{-t}[/tex]δ'(t) + 4[tex]e^{-t}[/tex]δ(t)

Therefore, the inverse Laplace transform of f(s) is:

f(t) = -2t*u(t)[tex]e^{-t}[/tex] - 4u(t)[tex]e^{-t}[/tex]+ 4u(t).

To learn more about convolution theorem  from the given link:

https://brainly.com/question/29673703

#SPJ1

Other Questions
I need help with this Balancing Nuclear Equations bacteria and archaea were initially classified based on shape, arrangement, and staining, but were found to have significant differences in Indicate whether each of the following statements is true or false. Double taxation refers to the fact that both a partnership and its partners must pay income tax on a) the earnings of the partnership. b) A sole proprietorship is an accounting entity separate from its owner. c) Limited liability is a benefit to both corporations and partnerships, but not to sole proprietorships Unlike a partnership, a corporation is not terminated when a major stockholder withdraws his or d) her investment. e) Sole proprietorships are, generally, subject to fewer governmental regulations than corporations. After 50 mL of 0.5 M Ba(OH)2 and HCl of the same volume and concentration react in a coffee cup calorimeter, you find Qrxn to be 1.386 kJ.Calculate the H of this reaction in kJ/mol. using sigma notation, write the following expressions as infinite series 1/3+ 1/2 + 3/5 + 5/7 +... find the volume formed by rotating the region enclosed by: y = 5vx and y = x about the line y = 25 The exponential mode a=979e 0. 0008t describes the population,a, of a country in millions, t years after 2003. Use the model to determine the population of the country in 2003 assume for a competitive firm that mc = avc at $10, mc = atc at $14.50, and mc = mr at $17. this firm will:A. minimize its losses by producing in the short run.B. shut down in the short run.C. realize a profit of $5 per unit of output.D. maximize its profit by producing in the short run. Lack of ________ can cause maintenance efforts to increase exponentially.1Maintenance personnel2Measurement for unknown errors3Quality documentation4Customer use I wedded in December 2010 and moved in with my husband who got an apartment somewhere in Suleja. I worked in a firm in Abuja and he (my husband) worked in Kaduna so he was not always around. By January 2011, I found out that I was already pregnant with my son. It was a joyful moment especially when I broke the news to my husband that he would soon be a father. All through the pregnancy, I could count how many times my husband came home. Most of the time he would come home, he would only spend the weekend and leave by either Sunday evening or Monday morning. I practically carried the pregnancy alone. I worked in a call Centre where we worked based on schedule; either a Morning shift or an Afternoon shift. I earned $3,000 per year. My cost of transportation was $500, feeding was $800, rent was $500, and utilities took $200. This would leave me with a savings of $1,000 that I could use to do any other activity that would satisfy me. All of a sudden, the city became unsafe to reside in. I love my job so I would pay $200 to do it. There was practically killing that would happen at some point. Needless to mention that whenever I was on morning duty, I would leave my house by 5 am just to beat the traffic. In all, I was unsettled. When I was a few months before my due date, my mother suggested that I come over to Enugu to deliver my son. I took a maternity leave and left for Enugu. I gave birth to my cute son who would soon be 12 years old. After I delivered my son, my husband got a job in Enugu and we were left to decide whether to resign from my job and relocate to Enugu. Mind you, it would cost us about $500 to move our properties to Enugu, rent an apartment which would cost about $600 then stay jobless for a while. However, I would have peace of mind because Enugu is more peaceful and I would have the opportunity to stay together with my husband. Therefore, I would pay $5,000 to have the latter. I was left with the decision of either going back to Abuja and continuing with my job with the unsettled nature of the city or staying back in Enugu and losing my job.Calculate the following: Opportunity Cost With each alternative you outline in your introduction, discuss the opportunity costs which come along with making those decisions. For instance, if you have alternatives A and B, discuss the opportunity costs of selecting A over B, and then discuss the opportunity costs of selecting B over A. Remember to always assign a dollar value to the level of enjoyment or other non-monetary elements of your decision-making. Cost-Benefit Analysis Prepare a cost-benefit analysis clearing showing in real dollars the results of this analysis for each alternative. Performance measures are only useful if they are objective; subjective performance review measures are a waste of time for managersSelect one:a. Trueb. False what were the original goals of the House rules? How have these goals changed over time? grouping small inbound loads into larger loads is called mixing/creating assortments. True or False? From Trumans perspective, why might the events in Korea have consequences elsewhere in the Pacific region? Read the excerpt from Act I, scene i of Romeo andJuliet.Montague: Many a morning hath he there beenseen,With tears augmenting the fresh morning's dew,Adding to clouds more clouds with his deep sighs:But all so soon as the all-cheering sunShould in the furthest east begin to drawThe shady curtains from Aurora's bed,Away from light steals home my heavy son,And private in his chamber pens himself,Shuts up his windows, locks fair daylight out,And makes himself an artificial night.Mark this and return120125What inference can be made about Montague fromthis dialogue?TIME REMAINING57:06O He is very concerned about Romeo.O He is annoyed with Romeo's bad mood.O He is unaware that Romeo is having troubles.O He is the reason Romeo is in such despair.Save and ExitNextSubmit Drag the descriptions to their corresponding class to review the catabolic pathways of aerobic respiration. 56 oints Both NADH and FADH, are produced in the reactions, Generatos theoretic yield of approximately 30 ATPs. TWO NADHS AGO produced The initial reactant of the pathway is regenerated through the reactions Involves protein in the cel membrane of prokaryotes or the innar mitochondrial brane of karyotes 03:15:51 Skipped Four ATPs are made through substrate loval phosphorylation but two ATP used in the reactions. TWO ATPs are made through substrate lovel phosphorylation Oxygen is required as the final electron acceptor, Asbe-carbon compounds catabolized into two three-carbon compounds Oxidativo phosphorylation eBook References Glycolysis Krebs Cycle Electron Transport Chain Sally has made a cake (as shown on the right) and frosted the top and all sides but not the bottom of the cake. She cuts the cake into 9 pieces. How many pieces are frosted on only one side? chronic victims of bullying experience more physical and psychological problems than their peers who are not harassed by other children.a. Trueb False A future uncertain project has known information, such as activities involved, activity relationshipsand each activity's expected finish time and variance. Which one of the following information isneeded in order to determine a reasonable project deadline, so that the probability that the projectcan be finished before the deadline is at least a certain probability p?a.normsdist(z)b.normsinv(p)c.normsdist(p)d.normsinv(z) Doug files a suit in Illinois against Beth over the ownership of a boat docked in Illinois. Doug and Beth are residents of New York. Beth could ask for a change of venue on the ground that New Yorka. has sufficient minimum contacts with the parties.b. has a sufficient stake in the matter.c. has jurisdiction.d. is a more convenient location to hold the trial.