In which of these substances are the atoms held together by metallic bonding?
A. Cr
B. Si
C. S8
D. CO2
E. Br2

Answers

Answer 1

In the given list of substances, the atoms held together by metallic bonding are found in option A, Chromium (Cr).

The substance in which the atoms are held together by metallic bonding is A, Cr (Chromium). Metallic bonding is a type of bonding that occurs between metal atoms, where the outermost electrons of the atoms are free to move around and are not associated with any one particular atom, resulting in a "sea" of delocalized electrons. This allows for strong bonds between the metal atoms, which is why metals tend to be strong and malleable. Metallic bonding occurs between metal atoms, and Chromium is the only metal on the list. Therefore the right option is A.

Learn more about Metallic bonding: https://brainly.com/question/21081009

#SPJ11


Related Questions

efore the first titration is performed you must mix the ascorbic acid powder sample with 1.5 m h2so4and kbr. what role do these reagentsplay in this initial mixing?

Answers

The 1.5 M H2SO4 and KBr reagents play a crucial role in the initial mixing of the ascorbic acid powder sample. The H2SO4 serves as a catalyst for the reaction between ascorbic acid and iodine in the subsequent titration process. Additionally, it helps to maintain a low pH, which is necessary for the stability of the iodine.

The KBr is added to help dissolve the iodine that will be used in the titration. Together, these reagents create an ideal environment for accurate and precise titration results.
Hi! In the initial mixing before the first titration, the reagents 1.5 M H2SO4 and KBr play specific roles. H2SO4, a strong acid, helps dissolve the ascorbic acid powder and creates an acidic environment that prevents oxidation of ascorbic acid. KBr acts as a catalyst, promoting the reaction between ascorbic acid and the titrant, leading to a more accurate titration result.

Visit here to learn more about ascorbic acid brainly.com/question/28783204

#SPJ11

4.100 A small post DE is supported by a short 10 x 10-in. column as shown. In a section ABC, sufficiently far from the post to remain plane, determine the stress at (a) corner A. (b) corner C. 15 kips D 4.5 in. 5 in. 5 in. 5.5 inc A

Answers

The stress at corner A is [tex]\sigma_{axial} = \frac{15 \text{ kips}}{55 \text{ in}^2} = 0.27 \text{ kips/in}^2[/tex].

What is corner?

A corner is where two or more sides or edges come together. The intersection of two walls or other surfaces is often at an angle. It can also be used to describe a location that is not in the middle or major portion of a room. Corners are frequently utilised in architecture to give a design a sense of structure and order. Corner cabinets or fireplaces are two examples of corner furnishings in a space.

(a) Corner A: The axial stress equation is used to determine the stress at

corner A, [tex]\sigma_{axial} = \frac{P}{A}[/tex].

where P denotes the applied force and A is the column's cross-sectional area. In this instance, the column's cross-sectional area is and the applied force is 15 kips [tex]10 \times 5.5 = 55 \text{ in}^2[/tex].

Consequently, the pressure at Corner A is [tex]\sigma_{axial} = \frac{15 \text{ kips}}{55 \text{ in}^2} = 0.27 \text{ kips/in}^2[/tex].

(b) Corner C:  The equation for shear stress is used to compute the stress

at corner C [tex]\tau = \frac{VQ}{I}[/tex].

where I is the second moment of inertia of the cross-section, Q is the distance from the shear force to the point of interest, and V is the applied shear force. The applied shear force in this instance is 15 kips, the distance from the point of interest to the shear force is 4.5 in., and the second moment of inertia of the cross-section [tex]10 \times 5^3/12 = 208.3 \text{ in}^4[/tex].

Consequently, the pressure at corner C is [tex]\tau = \frac{15 \text{ kips} \cdot 4.5 \text{ in}}{208.3 \text{ in}^4} = 0.035 \text{ kips/in}^2[/tex].

To know more about cross-section, visit:

https://brainly.com/question/28257972

#SPJ1

True or False? the 1h nmr spectrum of this compound −60°c shows a peak at 7.6 ppm, this would indicate aromaticity.

Answers

The 1H NMR spectrum of this compound −60°C shows a peak at 7.6 ppm, this would indicate aromaticity - True.

Nuclear magnetic resonance is used in proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR), which uses hydrogen-1 nuclei inside a substance's molecules to determine the structure of those molecules. Almost all of the hydrogen in samples containing natural hydrogen (H) is the isotope 1H (hydrogen-1; that is, hydrogen with a proton for a nucleus).

Solvent protons must not be permitted to obstruct the recording of simple NMR spectra since they are done in solutions. Deuterated solvents, such as deuterated water, D2O, deuterated acetone, (CD3)2CO, deuterated methanol, CD3OD, deuterated dimethyl sulfoxide, (CD3)2SO, and deuterated chloroform, CDCl3, are favoured for use in NMR. Deuterium, or 2H, is typically represented by the letter D. However, a non-hydrogen solvent, such as carbon tetrachloride (CCl4) or carbon disulfide, CS2, may also be used.

Learn more about 1H NMR spectrum:

https://brainly.com/question/30583972

#SPJ4

a buffer contains 0.15 mol of propionic acid (c2h5cooh ka = 1.3 × 10−5) and 0.10 mol of (nac2h5coo) in 1 l. (a) what is the ph of this buffer?

Answers

The pH of a buffer containing 0.15 mol of propionic acid and 0.10 mol of sodium propionate in 1 L is approximately 4.59.

To find the pH of the buffer solution containing 0.15 mol of propionic acid (C₂H₅COOH, Ka = 1.3 × 10⁻⁵) and 0.10 mol of sodium propionate (NaC₂H₅COO) in 1 L, you can use the Henderson-Hasselbalch equation:

pH = pKa + log ([A⁻] / [HA])

Here, pKa = -log(Ka) and [A⁻] is the concentration of the conjugate base (sodium propionate), and [HA] is the concentration of the weak acid (propionic acid).

First, let's calculate the pKa:
pKa = -log(1.3 × 10⁻⁵) ≈ 4.89

Now, plug in the concentrations of the weak acid and its conjugate base:
pH = 4.89 + log(0.10 / 0.15)

pH = 4.89 + log(2/3) ≈ 4.59

Therefore, the pH of the buffer solution is approximately 4.59.

Learn more about Henderson-Hasselbalch equation here: https://brainly.com/question/26746644

#SPJ11

A typical polyethylene grocery bag weighs 12.4 g. How many metric tons of CO2 would be released into the atmosphere if the 102 billion bags used in one year in the United States were burned?[1 metric ton = 1000 kg]

Answers

Assuming that burning one polyethylene grocery bag releases 0.04 kg of CO2 (as estimated by the EPA), the total amount of CO2 released from burning 102 billion .

bags would be 4.08 billion kg or 4.08 million metric tons (since 1 metric ton = 1000 kg). This calculation assumes that all 102 billion bags are burned and that all the carbon in the bags is converted to CO2 during the combustion process. However, it is important to note that recycling or properly disposing of plastic bags can significantly reduce their  environmental impact and prevent the release of greenhouse gases.metric tons of CO2 would be released into the atmosphere if the 102 billion bags used in one year in the United States were burned?[1 metric ton = 1000 kg]

Learn more about  CO2   here:

https://brainly.com/question/28870590

#SPJ11

calculate the mass, in grams, of cr2(so4)3 required to prepare exactly 250 ml of a 0.490-m solution of cr2(so4)3.

Answers

Therefore, you need 47.922 grams of [tex]Cr_{2}(SO_{4})_{3}[/tex] to prepare exactly 250 mL of a 0.490 M solution of [tex]Cr_{2}(SO_{4})_{3}[/tex].

How to calculate the mass required to prepare a solution?

To calculate the mass of [tex]Cr_{2}(SO_{4})_{3}[/tex] required to prepare exactly 250 mL of a 0.490 M solution of [tex]Cr_{2}(SO_{4})_{3}[/tex], follow these steps:

1. Convert the volume from mL to L: 250 mL * (1 L / 1000 mL) = 0.250 L
2. Use the formula for molarity: moles = molarity * volume
  Calculate the moles of [tex]Cr_{2}(SO_{4})_{3}[/tex]: moles = 0.490 M * 0.250 L = 0.1225 mol
3. Determine the molar mass of [tex]Cr_{2}(SO_{4})_{3}[/tex]: (2 * 51.996 g/mol for Cr) + (3 * (4 * 16.00 g/mol for O + 1 * 32.07 g/mol for S)) = 103.992 g/mol + 3 * (64 + 32.07) = 103.992 g/mol + 3 * 96.07 g/mol = 391.2 g/mol
4. Calculate the mass of [tex]Cr_{2}(SO_{4})_{3}[/tex]: mass = moles * molar mass
  Mass = 0.1225 mol * 391.2 g/mol = 47.922 g

To know more about Molarity:

https://brainly.com/question/16727614

#SPJ11

Classify each of the following reactants and products as an acid or base according to the Bronsted theory: hno3 + (ch3)3co (ch3)3coh + no3 HN03 (CH3)3Co (ch3)3coh no3

Answers

HNO3 is an acid, (CH3)3CO is a base, (CH3)3COH is a conjugate acid, and NO3^- is a conjugate base according to the Bronsted theory.

According to the Bronsted theory, an acid is a substance that donates a proton (H+) and a base is a substance that accepts a proton (H+). Let's classify each reactant and product in the given reaction: HNO3 + (CH3)3CO ⇌ (CH3)3COH + NO3^-
1. HNO3 (nitric acid): It donates a proton (H+) to the other reactant, so it is an acid according to the Bronsted theory.
2. (CH3)3CO (tert-butoxide ion): It accepts a proton (H+) from HNO3, so it is a base according to the Bronsted theory.
3. (CH3)3COH (tert-butanol): It is formed after the base (CH3)3CO accepts a proton, so it can be considered as the conjugate acid of the base (CH3)3CO.
4. NO3^- (nitrate ion): It is formed after the acid HNO3 donates a proton, so it can be considered as the conjugate base of the acid HNO3.


Learn more about Bronsted theory here, https://brainly.com/question/15516010

#SPJ11

for the given reaction, what volume of no2 can be produced from 2.6 l of o2, assuming an excess of no? assume the temperature and pressure remain constant.

Answers

5.2 L of NO2 can be produced from 2.6 L of O2, assuming an excess of NO and constant temperature and pressure.

For the given reaction, the volume of NO2 that can be produced from 2.6 L of O2, assuming an excess of NO and constant temperature and pressure, can be calculated using the stoichiometry of the reaction.
First, we need to know the balanced chemical equation for the reaction:
2 NO + O2 → 2 NO2
Now, we can use the stoichiometry of the reaction to determine the volume of NO2 produced:
From the balanced equation, we see that 1 mole of O2 reacts with 2 moles of NO to produce 2 moles of NO2. Since the volume ratio is equal to the mole ratio for gases at constant temperature and pressure (according to Avogadro's Law).As per Avogadro's law,

V ∝ n

V/n = k

V1/n1 = V2/n2 ( = k, as per Avogadro’s law)
Volume of O2 : Volume of NO2 = 1 : 2
Next, plug in the given volume of O2:
2.6 L O2 : Volume of NO2 = 1 : 2
To solve for the volume of NO2, we can cross-multiply:
2.6 L O2 × 2 = Volume of NO2 × 1
5.2 L = Volume of NO2
So, 5.2 L of NO2 can be produced from 2.6 L of O2, assuming an excess of NO and constant temperature and pressure.

Learn more about Temperature : https://brainly.com/question/27944554

#SPJ11

write out symbolic solution aluminum temperature as a function of time

Answers

"T(t) = T0 + (Q/k) * t" this equation represents the temperature of aluminum (T) at a given time (t) as a function of its initial temperature (T0), heat transferred (Q), and thermal conductivity (k).

To write out a symbolic solution for the temperature of aluminum as a function of time, we can use the following terms:

- T(t): temperature of aluminum at time t
- T0: initial temperature of aluminum
- k: thermal conductivity of aluminum
- t: time
- Q: heat transferred

The temperature of aluminum as a function of time can be represented using the heat equation. In a simplified form, the equation can be written as:

T(t) = T0 + (Q/k) * t

This equation represents the temperature of aluminum (T) at a given time (t) as a function of its initial temperature (T0), heat transferred (Q), and thermal conductivity (k).

Visit here to learn more about  thermal conductivity : https://brainly.com/question/23897839
#SPJ11

"T(t) = T0 + (Q/k) * t" this equation represents the temperature of aluminum (T) at a given time (t) as a function of its initial temperature (T0), heat transferred (Q), and thermal conductivity (k).

To write out a symbolic solution for the temperature of aluminum as a function of time, we can use the following terms:

- T(t): temperature of aluminum at time t
- T0: initial temperature of aluminum
- k: thermal conductivity of aluminum
- t: time
- Q: heat transferred

The temperature of aluminum as a function of time can be represented using the heat equation. In a simplified form, the equation can be written as:

T(t) = T0 + (Q/k) * t

This equation represents the temperature of aluminum (T) at a given time (t) as a function of its initial temperature (T0), heat transferred (Q), and thermal conductivity (k).

Visit here to learn more about  thermal conductivity : https://brainly.com/question/23897839
#SPJ11

what are δesys, δesur, and δeuniv for a system if 545 j of work is done by it while it absorbs 740. j of heat?

Answers

The values for δesys, δesur, and δeuniv are δesys = 740 J, δesur = -545 J, δeuniv = 195 J. The system gains 740 J of heat and does 545 J of work, resulting in a net increase of 195 J in the universe.

In this question, the system absorbs 740 J of heat, which means the change in internal energy of the system (δesys) is positive and equal to 740 J.

Since the system does 545 J of work, the surroundings experience a change in internal energy (δesur) of -545 J (work is done by the system on the surroundings, so energy is transferred out of the system).

The change in internal energy of the universe (δeuniv) is the sum of the changes in the system and the surroundings, which is δeuniv = δesys + δesur. In this case, δeuniv = 740 J + (-545 J) = 195 J. This means that there is a net increase in internal energy of 195 J in the universe as a result of this process.

To know more about internal energy click on below link:

https://brainly.com/question/14668303#

#SPJ11

Choose all of the reactions that will occur based on the metal activity series (See Appendix D). Note: you must choose all of the correct answers to receive credit on this question. Select all that apply A Cu(s) + H2SO4(aq) → B Zn(s) + H250,(aq) → C Cu(s) + ZnSO (aq) → D Zn(s) + Cuso,(aq) →

Answers

The reaction that will occur on the basis of metal activity series is  Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g) and Zn(s) + CuSO4(aq) → Cu(s) + ZnSO4(aq) .

Based on the metal activity series, the following reactions will occur:

A) Cu(s) + H2SO4(aq) → no reaction (copper is less active than hydrogen)
B) Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g)
C) Cu(s) + ZnSO4(aq) → no reaction (copper is less active than zinc)
D) Zn(s) + CuSO4(aq) → Cu(s) + ZnSO4(aq)

Therefore, the correct answers are B and D i.e. Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g) and Zn(s) + CuSO4(aq) → Cu(s) + ZnSO4(aq) .

Know more about Reactivity Series here:

https://brainly.com/question/30670473

#SPJ11

All of the following statements concerning acid-base buffers are true EXCEPT buffers are resistant to pH changes upon addition of small quantities of strong acids or bases.

Answers

Acid-base buffers are solutions that resist changes in pH when small amounts of acids or bases are added. They work by containing a weak acid and its conjugate base or a weak base and its conjugate acid.

When a strong acid or base is added to the buffer solution, the weak acid or base reacts with it to form its conjugate and thus maintains the pH of the solution.

However, the statement "buffers are resistant to pH changes upon addition of small quantities of strong acids or bases" is incorrect. Buffers do resist changes in pH, but only to a certain extent.

When large quantities of strong acids or bases are added to the buffer solution, they can overcome the buffering capacity and cause significant changes in pH.

Therefore, the statement should read, "Buffers are resistant to pH changes upon the addition of moderate quantities of strong acids or bases." It is important to note that the buffering capacity of a solution depends on the concentration and pKa value of the weak acid or base used in the buffer.

To know more about Acid-base buffers refer here:

https://brainly.com/question/24317038#

#SPJ11

1. For parts of the free response question that require calculations, clearly show the method used and the steps involved in arriving at your answers. You must show your work to receive credit for your answer. Examples and equations may be included in your answers where appropriate. Answer the following questions related to CO2. 30-C=0 0=c=0 Diagram X Diagram z (a) Two possible Lewis electron-dot diagrams for CO2 are shown above. Explain in terms of formal charges why diagram 2 is the better diagram. (b) Identify the hybridization of the valence orbitals of the Catom in the CO2 molecule represented in diagram 2 (c) A 0.1931 mol sample of dry ice, CO2(s), is added to an empty balloon. After the balloon is sealed, the CO2(8) sublimes and the CO2(g) in the balloon eventually reaches a temperature of 21.0°C and pressure of 0.998 atm. The physical change is represented by the following equation. CO2(8) + CO2(9) AHyublimation =? (1) What is the sign (positive or negative) of the enthalpy change for the process of sublimation? Justify your answer. (11) List all the numerical values of the quantities, with appropriate units, that are needed to calculate the volume of the balloon. (iii) Calculate the final volume, in liters, of the balloon.

Answers

V = Vf Vi = 18 cm3 18000 cm3 = 17982 cm3, for example. Since the volume in the final state is less than the volume in the starting state, the change is negative.

(a) Because K is in the fourth period whereas Na is in the third, K has a substantially higher atomic radius (280 pm vs. 227 pm). K has a bigger size since it has an additional shell.

(b) Because the K+ ion is significantly more stable than the Ca+ ion, the first-ionization energy of K is lower than that of Ca. K has the following electronic configuration: 1s2 2s2 2p6 3s1. The cation achieves the stable structure of a noble gas after losing an electron.

(c) The brittle, ionic compound Na2O also has the formula M2O. This is true because potassium and sodium are both members of the same periodic table group. They are chemically similar since they both have valency+1.

(d) The chemist has the ability to identify the substance in the sample. The chemist can determine the mass of K in the sample using elemental analysis because he is aware of its mass. The ratio of K to O in the sample can then be calculated, and it can be compared to ratios of K2O or K2O2.

To know more about electronic configuration, click here:

https://brainly.com/question/29757010

#SPJ4

Draw the major organic products of this reaction, showing any nonzero formal charges. Then answer the question that follows.
1. NaOH 2. CH3CH2Br 3. H30, heat NH
There are two parts to this question. Both are required.
Draw the product with the higher molecular weight here:
Draw the product with the lower molecular weight here:

Answers

The products of the given SN2 reaction are ethyl alcohol (CH3CH2OH) and bromide ion (Br-). Ethanol has a higher molecular weight of 46 g/mol compared to the lower molecular weight of Br- which is 80 g/mol.

The given reaction is an SN2 reaction between ethyl bromide (CH3CH2Br) and hydroxide ion (OH-) followed by protonation with H3O+ under heat. The mechanism and products are:
Step 1: The nucleophilic OH- attacks the electrophilic carbon of the ethyl bromide to displace the bromide ion and form the intermediate alkoxide.

CH3CH2Br + NaOH → CH3CH2O- Na+ + Br-

Step 2: The alkoxide ion is protonated by the acidic H3O+ to give the alcohol product.

CH3CH2O- + H3O+ → CH3CH2OH + H2O

The product with the higher molecular weight is CH3CH2OH (ethanol) with a molecular weight of 46 g/mol. The product with the lower molecular weight is Br- with a molecular weight of 80 g/mol.

Therefore, the answer is:
Draw the product with the higher molecular weight here: CH3CH2OH
Draw the product with the lower molecular weight here: Br-

learn more about ethyl alcohol here:

https://brainly.com/question/29153788

#SPJ11

How many D atoms are there in a molecule of the major organic product of the following reaction sequence? Mg.ether/anhydrous condtions CD2OD/(D=^2H) O 0O 1 O 2 O 3 O none of the above

Answers

There is 1 D atom in a molecule of the major organic product of the given reaction sequence.

Explain the D atom?

To determine the number of D atoms in a molecule of the major organic product of the given reaction sequence, please follow these steps:

Identify the starting material and reagents: In this case, the starting material is not provided, and the reagents are Mg in ether under anhydrous conditions, followed by CD2OD (where D is deuterium, ^2H).

Analyze the reaction conditions: Mg in ether is often used for the formation of Grignard reagents. Anhydrous conditions are necessary to ensure the Grignard reagent does not react with any water molecules.

Identify the reaction with CD2OD: The Grignard reagent formed in the first step will react with CD2OD, transferring one deuterium atom (D) from CD2OD to the carbon atom in the starting material, creating an alcohol with one deuterium atom.

Count the number of D atoms in the major organic product: Based on the reactions, the major organic product will contain one D atom in its molecule.

So, the answer to your question is: There is 1 D atom in a molecule of the major organic product of the given reaction sequence.

Learn more about D atom

brainly.com/question/1715047

#SPJ11

write the electron configuration for an argon cation with a charge of 2

Answers

An argon cation with a charge of 2+ has the following electron configuration: 1s2 2s2 2p6 3s2 3p6

The argon cation's current electron configuration shows that it has lost two electrons from its initial state of 1s2 2s2 2p6 3s2 3p6. It has specifically lost the two electrons in its outermost shell, leaving the filled inner shells in place. An atom becomes a positive-charged cation when one or more of its electrons are lost. The argon cation has lost two electrons in this instance, giving it a 2+ charge. The final form resembles the stable noble gas configuration of the element neon. The chemical characteristics of an argon cation with a 2+ charge, which has a decreased affinity for electrons and a greater propensity to interact with other elements in order to recoup electrons and reach a stable configuration, are explained by this configuration.

learn more about electrons here:

https://brainly.com/question/28977387

#SPJ11

T19. What is the main difference in the degree of electron delocalization between a 4-dimethylamino-4'nitrostilbene and a 4-dimethylamino-3'-nitrostilbene? Draw the relevant resonance contributors.

Answers

The main difference in the degree of electron delocalization between a 4-dimethylamino-4'nitrostilbene and a 4-dimethylamino-3'-nitrostilbene is their resonance structure.

In 4-dimethylamino-4'-nitrostilbene, the electron-donating dimethylamino group and electron-withdrawing nitro group are located on opposite ends of the stilbene molecule, both para to the central double bond. This allows for greater resonance stabilization and extended electron delocalization across the entire molecule.

In contrast, in 4-dimethylamino-3'-nitrostilbene, the nitro group is meta to the central double bond. This arrangement disrupts the resonance stabilization, resulting in reduced electron delocalization.

So, the main difference is that the 4-dimethylamino-4'-nitrostilbene has greater electron delocalization due to its para positioning, while the 4-dimethylamino-3'-nitrostilbene has reduced electron delocalization due to its meta positioning.

To know more about electron delocalization:

https://brainly.com/question/28039656

#SPJ11

Consider the reaction: 2H2O(l)2H2(g) + O2(g) Using standard absolute entropies at 298K, calculate the entropy change for the system when 2.21 moles of H2O(l) react at standard conditions. S°system = ?J/K

Answers

The entropy change for the system when 2.21 moles of H2O(l) react at standard conditions is 538.1 J/K.

The entropy change of the system can be calculated using the standard molar entropies of the reactants and products:

ΔS° = ΣnS°(products) - ΣmS°(reactants)

where n and m are the stoichiometric coefficients of the products and reactants, respectively, and S° is the standard molar entropy.

For the given reaction:

2H2O(l) → 2H2(g) + O2(g)

The standard molar entropies at 298K are:

S°(H2O,l) = 69.91 J/mol·K

S°(H2,g) = 130.68 J/mol·K

S°(O2,g) = 205.03 J/mol·K

Using the equation above, we can calculate the entropy change of the system:

ΔS° = 2 × S°(H2,g) + S°(O2,g) - 2 × S°(H2O,l)

ΔS° = 2 × 130.68 J/mol·K + 205.03 J/mol·K - 2 × 69.91 J/mol·K

ΔS° = 243.57 J/mol·K

The reaction involves the conversion of 2.21 moles of water, so the entropy change for the system will be:

S°system = ΔS° × n = 243.57 J/mol·K × 2.21 mol = 538.1 J/K

learn more about entropy change here:

https://brainly.com/question/30691597

#SPJ11

What would be the major product of the following reaction? i) NaBH4 ii) NaH, Et20 A O=S=0 OCH2CH3 1) CH3CH2OCH(CH3)CH2CH2CH2CH3 II) (CH3CH20)2CHCHOHCH2CH2CH3 III) (CH3CH2)2CHOHCH2CH2CHOHCH3 IV) CH3OCH(C2H5)CH2CH2CH2CH3 V CH3CH2CH(OCH3)CH2CH2CHOHCH3

Answers

The major product of the reaction with reagents i) NaBH₄ and ii) NaH, Et₂0 is III) (CH₃CH₂O)₂CHCHOHCH₂CH₂CH₃.


In this reaction, we have two steps. First, NaBH₄ reduces the carbonyl group of the original compound A (an ester) to an alcohol. The reduction proceeds through a hydride transfer from the borohydride to the carbonyl carbon, resulting in an alkoxide intermediate, which subsequently picks up a proton to form the alcohol.

In the second step, NaH (a strong base) deprotonates the newly formed alcohol, forming an alkoxide anion.

The alkoxide then undergoes an intramolecular nucleophilic attack on the sulfur atom of the remaining ester group in a 5-membered ring transition state, leading to the formation of the final product III) (CH₃CH₂O)₂CHCHOHCH₂CH₂CH₃ through an S₃N-type reaction mechanism.

To know more about nucleophilic attack click on below link:

https://brainly.com/question/31279781#

#SPJ11

The pH of a 0.25 M solution of HCN is 4.90. Calculate the Kavalue for HCN.a. 6.3 x 10−10b. 1.26 x 10−5c. More information is needed.d. 2.29 x 10−4e. 7.94 x 10 −10

Answers

The Ka value for HCN is 6.3 x [tex]10^{-10[/tex] given the pH of a 0.25 M solution of HCN is 4.90. The correct option is a.

To calculate the Ka value for HCN, we first need to determine the concentration of H+ ions using the given pH value. Then, we can set up an equilibrium expression and solve for Ka.

1. Calculate the concentration of H+ ions:
pH = 4.90
[H+] = [tex]10^{(-pH)} = 10^{(-4.90)} = 1.26 * 10^{-5} M[/tex]

2. Set up the equilibrium expression for HCN:
HCN ↔ H+ + CN-
Initial concentration: 0.25 M ----- 0 ----- 0
Change in concentration: -x ----- +x ----- +x
Equilibrium concentration: 0.25-x ----- x ----- x

Since x (concentration of H+) is much smaller than 0.25, we can assume that (0.25 - x) ≈ 0.25.

3. Write the expression for Ka:
Ka = ([H+][CN-])/[HCN] = (x)(x)/(0.25)

4. Solve for Ka:
Ka = (1.26 x[tex]10^{-5[/tex])(1.26 x [tex]10^{-5[/tex])/0.25 ≈ 6.3 x [tex]10^{-10[/tex]

Therefore, the Ka value for HCN is approximately 6.3 x [tex]10^{-10[/tex] (option a).

For more such questions on Ka.

https://brainly.com/question/29006496#

#SPJ11

write the formula of three different lewis acids

Answers

Answer:

AlCl3 / SO2 / NO2

Explanation:

Lewis acid are species that have lack of electrons

The equilibrium constant for the gas phase reaction N2(g) + 3H2(g) <---> 2NH3(g) is Keq = 4.34x10^-3 at 300 degrees Celsius. At equilibrium
a) products predominate
b) roughly equal amounts of products and reactants are present
c) only products are present
d) only reactants are present
e) reactants predominate

Answers

Okay, let's break this down step-by-step:

The equilibrium constant, Keq, indicates the ratio of products to reactants at equilibrium.

A Keq of 4.34x10^-3 means the products (2NH3) will predominate, but the reactants (N2 and 3H2) will still be present.

So the options are:

a) products predominate - Correct. The products predominate since Keq > 1.

b) roughly equal amounts of products and reactants are present - Incorrect. For Keq = 4.34x10^-3, the amounts of products and reactants will not be equal.

c) only products are present - Incorrect. There will still be some reactants at equilibrium.

d) only reactants are present - Incorrect. There will be some products formed at equilibrium.

e) reactants predominate - Incorrect. The products will predominate.

Therefore, the correct option is:

a) products predominate

Let me know if this makes sense! I can provide more details or explanations if needed.

draw the two possible enols that can be formed from 3-methyl-2-butanone:

Answers

CH₂=C(OH)CH(CH₃)CH₃ and CH₃C(OH)=CHCH(CH₃)₂  can be formed from 3-methyl-2-butanone.

Step 1: Start with the structure of 3-methyl-2-butanone. It has the formula: CH₃C(O)CH(CH₃)CH₃.

Step 2: Identify the alpha carbons. These are the carbons directly adjacent to the carbonyl carbon (C=O). In this case, there are two alpha carbons: one is bonded to the CH₃ group, and the other is bonded to the CH(CH₃)₂group.

Step 3: Remove a hydrogen from each of the alpha carbons and replace the carbonyl bond (C=O) with a double bond between the alpha carbon and the oxygen (C-OH).

Enol 1: CH₂=C(OH)CH(CH₃)CH₃
Enol 2: CH₃C(OH)=CHCH(CH₃)₂

These are the two possible enols that can be formed from 3-methyl-2-butanone.

To learn more about enol https://brainly.com/question/27749729

#SPJ11

Draw all of the expected products for each of the following solvolysis reactions: Get help answering Molecular Drawing questions. X Your answer is incorrect. Try again. (a) Br ? E1OH heat Edit Get help answering Molecular Drawing questions. X Your answer is incorrect. Try again. (b) ? Hо heat CI (c) Br ? МеОн heat Edit Get help answering Molecular Drawing questions. Your answer is incorrect. Try again. (d) CI ? МеОн heat Edit

Answers

(a) The solvolysis reaction of Br with E1OH in the presence of heat will result in the formation of two products - 1-bromoethanol and hydrogen bromide (HBr). The molecular drawing of the products is:

CH2OH-CH2Br + HBr

(b) The solvolysis reaction of Cl with H2O in the presence of heat will result in the formation of two products - 2-chloroethanol and hydrogen chloride (HCl). The molecular drawing of the products is:

CH3-CH(OH)-Cl + HCl

(c) The solvolysis reaction of Br with MeOH in the presence of heat will result in the formation of two products - methyl bromide and methanol. The molecular drawing of the products is:

CH3Br + CH3OH

(d) The solvolysis reaction of Cl with MeOH in the presence of heat will result in the formation of two products - methyl chloride and methanol. The molecular drawing of the products is:

CH3Cl + CH3OH

Learn more about solvolysis reaction here:
https://brainly.com/question/21796580

#SPJ11

a buffer solution is 0.341 m in hcn and 0.345 m in nacn . if ka for hcn is 4.0×10-10 , what is the ph of this buffer solution?

Answers

The pH of the buffer solution is 9.06.

To solve this problem, we need to use the Henderson-Hasselbalch equation, which relates the pH of a buffer solution to the concentrations of the acid and its conjugate base:

pH = pKa + log([A-]/[HA])

where pKa is the acid dissociation constant, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the acid.

In this case, HCN is the acid and CN- is its conjugate base. The dissociation constant for HCN is given as Ka = 4.0×10^-10. The concentrations of HCN and CN- in the buffer solution are 0.341 M and 0.345 M, respectively.

We can first calculate the ratio of [CN-]/[HCN]:

[Cn-]/[HCN] = 0.345/0.341 = 1.017

Next, we can calculate the pKa using the formula:

Ka = [H+][CN-]/[HCN]

Rearranging this equation gives:

pKa = -log(Ka) + log([HCN]/[CN-])

Substituting the values given:

4.0×10^-10 = [H+][0.345]/[0.341]

[H+] = 2.99×10^-5 M

pKa = -log(4.0×10^-10) + log(0.341/0.345) = 9.21

Finally, we can plug in the values of pKa and [CN-]/[HCN] into the Henderson-Hasselbalch equation to solve for the pH:

pH = 9.21 + log(1.017) = 9.06

Therefore, the pH of the buffer solution is 9.06.

Know more about Henderson-Hasselbalch Equation here:

https://brainly.com/question/13423434

#SPJ11

consider a mixture containing equal number of moles of he o2 ch4. determine the multicomponen diffusion coefficients associated with this mixture at 500 k and 1 atm

Answers

the multicomponent diffusion coefficients associated with the given mixture at 500 K and 1 atm are: - DHeO2 = 1.36*10^-5 m^2/s ;- DHeCH4 = 1.44*10^-5 m^2/s ;- DO2CH4 = 0.90*10^-5 m^2/s

To determine the multicomponent diffusion coefficients associated with the mixture containing equal number of moles of He, O2, and CH4 at 500 K and 1 atm, we need to use the Stefan-Maxwell equations. These equations describe the flux of each component in a mixture and are based on the molecular weights and diffusion coefficients of each component.

The multicomponent diffusion coefficient (Dij) is defined as the rate at which a component i diffuses relative to a component j. To calculate the Dij values for the given mixture, we can use the following equation:

Dij = (1/P)*[(1/Mi) + (1/Mj)]^0.5 *[(8*k*T)/(π*μij)]

Where P is the pressure of the mixture, Mi and Mj are the molecular weights of components i and j, k is the Boltzmann constant, T is the temperature, and μij is the average viscosity between components i and j.

For the given mixture, we have:

- He: Mi = 4 g/mol
- O2: Mi = 32 g/mol
- CH4: Mi = 16 g/mol

We also need to calculate the average viscosity (μij) between each pair of components. This can be done using the Wilke-Chang equation:

μij = [∑(xi*xj*(Mi+Mj)^0.5)/(∑(xi*Vi^0.5))]^2 * [∑(xi*Vi)/(∑(xi*Vi^0.5))]

Where xi and xj are the mole fractions of components i and j, and Vi is the molar volume of component i.

At 500 K and 1 atm, we can assume ideal gas behavior and use the ideal gas law to calculate the mole fractions of each component:

- He: xi = 1/3
- O2: xi = 1/3
- CH4: xi = 1/3

We also need to calculate the molar volumes of each component at 500 K using the ideal gas law:

- He: Vi = (k*T)/P = (1.38*10^-23 J/K * 500 K)/(1 atm * 1.01325*10^5 Pa/atm) = 2.710*10^-5 m^3/mol
- O2: Vi = (k*T)/P = (1.38*10^-23 J/K * 500 K)/(1 atm * 1.01325*10^5 Pa/atm) = 2.155*10^-5 m^3/mol
- CH4: Vi = (k*T)/P = (1.38*10^-23 J/K * 500 K)/(1 atm * 1.01325*10^5 Pa/atm) = 5.387*10^-5 m^3/mol

Using these values, we can calculate the Dij values for each pair of components:

- DHeO2 = 1.36*10^-5 m^2/s
- DHeCH4 = 1.44*10^-5 m^2/s
- DO2CH4 = 0.90*10^-5 m^2/s

Therefore, the multicomponent diffusion coefficients associated with the given mixture at 500 K and 1 atm are:

- DHeO2 = 1.36*10^-5 m^2/s
- DHeCH4 = 1.44*10^-5 m^2/s
- DO2CH4 = 0.90*10^-5 m^2/s

Note that these values indicate that He and CH4 diffuse faster than O2 in this mixture.

Visit here to learn more about mole fractions  : https://brainly.com/question/29808190
#SPJ11

Sort the following statements into the correct bins based on whether they most appropriately describe the binding pocket of chymotrypsin, trypsin, or elastase. Items (6 items) (Drag and drop into the appropriate area below Binding pocket consists of Binding pocket isBinding pocket relatively smallcontains two Binding pocket is relatively large Binding pocket Binding pocket contains an threonine, valine, so that only small glycine residues so that aromatic accommodate and a serine residue. amino acids can be accommodated. amino acids can positively enter the pocket. charged amino aspartic acid and two glycine and serine. ! acids due to the negatively charged aspartic acid residue.

Answers

Binding pocket consists of aspartic acid and two glycine and serine. Binding pocket is relatively small: chymotrypsin.
Binding pocket contains two glycine residues so that only small aromatic amino acids can be accommodated: chymotrypsin.

Binding pocket is relatively large: elastase.
Binding pocket contains an aspartic acid residue: elastase.
Binding pocket can positively enter the pocket: trypsin.
The classification of the statements for the binding pockets of chymotrypsin, trypsin, and elastase:
Chymotrypsin:
1. Binding pocket contains threonine, valine, and a serine residue.
2. Binding pocket is relatively large so that aromatic amino acids can be accommodated.
Trypsin:
1. Binding pocket contains two glycine residues and a serine.
2. Binding pocket is positively charged due to the negatively charged aspartic acid residue, allowing positively charged amino acids to enter the pocket.
Elastase:
1. Binding pocket contains an aspartic acid and two glycine residues.
2. Binding pocket is relatively small so that only small amino acids can be accommodated.

Visit here to learn more about aspartic acid:

brainly.com/question/30714122

#SPJ11

At 25 Celsius does hydrogen or nitrogen have the greater velocity?

Answers

Hydrogen has the greater velocity

Answer:

hydrogen.

Explanation:

a)benzoic acid (pka=4.2) and b)phenol (pka=10) is a stronger acid. a)citric acid (pka=3.08) and b)phosphoric acid (pka=2.10) is a stronger acid.

Answers

Answer:

Phosphoric Acid

Explanation:

Phosphoric Acid is the strongest acid. The lower the pKa the stronger the acid.

You can justify this by calculating Ka, which Ka = 10^-pKa

The higher the Ka value, the greater the dissociation of the acid, the more hydrogen protons will be formed and the lower the pH making it a stronger acid.

calculate the concentration of c6h5nh3 c6h5nh3 and cl−cl− in a 0.215 mm c6h5nh3clc6h5nh3cl solution.

Answers

The concentration of c6h5nh3 and cl− in the 0.215 mm c6h5nh3clc6h5nh3cl solution is 0.001 mol/L for both. To calculate the concentration of c6h5nh3 and cl− in a 0.215 mm c6h5nh3clc6h5nh3cl solution, we need to use the equation:

concentration = moles of solute / volume of solution

First, we need to determine the moles of c6h5nh3 in the solution:

moles of c6h5nh3 = (0.215 mm) * (1 mol / 1000 mm) = 0.000215 mol

Next, we need to determine the moles of cl− in the solution. Since there is an equal number of moles of cl− as there are moles of c6h5nh3, we can simply use the same value:

moles of cl− = 0.000215 mol

Finally, we can use the same equation to calculate the concentration of c6h5nh3 and cl−:

concentration of c6h5nh3 = 0.000215 mol / 0.215 L = 0.001 mol/L
concentration of cl− = 0.000215 mol / 0.215 L = 0.001 mol/L

Therefore, the concentration of c6h5nh3 and cl− in the 0.215 mm c6h5nh3clc6h5nh3cl solution is 0.001 mol/L for both.

Learn more about concentration here:

https://brainly.com/question/13872928

#SPJ11

Other Questions
A composite figure is created using a rectangle and a semi circle. What is the area of the figure? Use 3.14 for Pi by the way.Rectangle = 216 (12x18) ( already solved just need semi circle) Would using more sulfuric acid in the Fischer esterification reaction cause the reaction to occur faster? Use the mechanism to explain your answer.This is part AWrite a detailed mechanism for a) the Fischer esterification of acetic acid with ethanol in the presence of sulfuric acid and b) the reaction of acetyl chloride with ethanolI only need answer for sulfuric answer part Biologists at the University of California (Riverside) are studying the patterns of extinction in the New Zealand bird population. (Evolutionary Ecology Research, July 2003.) At the time of the Maori colonization of New Zealand (prior to European contact), the following variables were measured for each bird species:a. Flight capability (volant or flightless)b. Type of habitat (aquatic, ground terrestrial, or aerial terrestrial)c. Nesting site (ground, cavity within ground, tree, cavity above ground)d. Nest density (high or low)e. Diet (fish, vertebrates, vegetables, or invertebrates)f. Body mass (grams)g. Egg length (millimeters)h. Extinct status (extinct, absent from island, present) Identify each variable as quantitative or qualitative. expliquer la notion d engagement dans les anne 2000 ? JE CHERCHE QUELQU UN QUI POURRAIT REPONDRE A CETTE PROBLEMATIQUE SVP the students most likely to benefit from strategy instruction are those who (select all that apply): Will all proteins give positive result in Millons test? Explain why identify the weaknesses in phc's inventory-taking procedures. what implications did those weaknesses have for the two teams of auditors? use calculus to find the area a of the triangle with the given vertices (0,0) (4,2) (1,7) the value of an influencer may be determined by the number of followers they have. true false Consider the following balanced redox reaction.2S2O32- + I2 2I- + S4O62-How many electrons are being transferred in this reaction?a.3b.1c.2d.4 Suppose that a country's inflation rate increases sharply.- What happens to the inflation tax on the holders of money?- Why is wealth that is held in savings accounts not subject to a change in the inflation tax?- Can you think of any way holders of savings accounts are hurt by the increase in the inflation rate? -1+2-3+4-5+6...-99+100Can someone pls help How many website graphics can be created? HELP QUICKLY PLEASE! Need 3-4 paragraphs, WILL MARK BRAINLIEST & 25 POINTS!!! Describe and explain the four types of unemployment that can be found in a given nation. Whatis considered to be the Natural Rate of Unemployment? Describe what is included and excludedin the National unemployment rates. Knowing the importance of the Essential Elements, why would someone chose a diet that does not address all of them? An effectively worded mission statement does not Multiple Choice:- specifically mention the enterprise's present business and purpose.- describe the company's current business and purpose: who we are, what we do, and why we are here. - identify the company's products and/or services.- specify the buyer needs that the company seeks to satisfy and the customer groups or markets it serves.- express that making a profit is the company's true business purpose. A particle of mass m moves with momentum of magnitude p.(a) Show that the kinetic energy of the particle is K = p2/(2m) .(b) Express the magnitude of the particle's momentum in terms of its kinetic energy and mass. p = The specific heat capacity of benzene (C6H6) is 1.74 J/g*K. How much energy as heat is required to raise the temperature of 50.00 mL of benzene from 25.52 C to 28.75 C. Density of benzene is 0.876 g/cm3. The cars waited for us, Stan and (me, I), to cross, but (him and me, he and I) could not hurry. financial analysis indicates a company's relative strengths and weaknesses. -select- use this information to improve the firm's operations and stock price; -select- use this information to evaluate whether borrowers have the ability to pay off loans; and security analysts use this information to forecast earnings, dividends, and stock prices. financial analysis compares a firm's performance to other firms in the same industry and evaluates trends in the firm's financial position over time. -select- are the tools used in financial analysis and they are grouped into five categories: (1) liquidity, (2) asset management, (3) debt management, (4) profitability, and (5) market value.