if the specific weight of the spring steel is approximately 77 kn/m3, determine the weight of the spring in units of n. do not include the unit in your answer. blackboard will not understand.

Answers

Answer 1

To determine the weight of the spring in units of n, we need to know the volume of the spring. Let's assume the spring has a volume of 1 m3.

Using the specific weight of spring steel (77 kn/m3), we can calculate the weight of the spring as follows Weight = Specific weight x Volume Weight = 77 kn/m3 x 1 m3 Weight = 77 kn Therefore, the weight of the spring is 77 n (without units). Note: The blackboard may not understand the units of measurement, so it's important to provide the answer without any units. To determine the weight of the spring steel in Newtons (N), we will need additional information such as the volume of the spring. Once you have the volume (in m³), you can use the formula: Weight = Specific Weight × Volume Weight = 77 kN/m³ × Volume (in m³) Please provide the volume of the spring, and I can help you calculate the weight in Newtons. Note that 1 kN is equal to 1000 N.

Learn more about volume here-

https://brainly.com/question/1578538

#SPJ11

Answer 2

To determine the weight of the spring in units of n, we need to know the volume of the spring. Let's assume the spring has a volume of 1 m3.

Using the specific weight of spring steel (77 kn/m3), we can calculate the weight of the spring as follows Weight = Specific weight x Volume Weight = 77 kn/m3 x 1 m3 Weight = 77 kn Therefore, the weight of the spring is 77 n (without units). Note: The blackboard may not understand the units of measurement, so it's important to provide the answer without any units. To determine the weight of the spring steel in Newtons (N), we will need additional information such as the volume of the spring. Once you have the volume (in m³), you can use the formula: Weight = Specific Weight × Volume Weight = 77 kN/m³ × Volume (in m³) Please provide the volume of the spring, and I can help you calculate the weight in Newtons. Note that 1 kN is equal to 1000 N.

Learn more about volume here-

https://brainly.com/question/1578538

#SPJ11


Related Questions

Create the recursion tree for the recurrence T(n) = T( 2n/5 ) + T( 3n/5 ) + O(n). Show total complexity.

Answers

The diagram of the recursion tree for the recurrence is attached below.

What is a recursion tree?

A recursion tree is a tree-like data structure that is used to visualize the recursive calls made in a recursive algorithm. Each node in the tree represents a subproblem, and the children of each node represent the subproblems that result from dividing the original subproblem into smaller subproblems.

Each level of the recursion tree has a total cost of O(n), and the tree has log base 5/2 (n) levels, since we divide the problem size by a factor of 5/2 at each level. Therefore, the total complexity of the algorithm can be expressed as:

T(n) = O(n) × log base 5/2 (n) = O(n log n).

Find out more on recursion tree here: https://brainly.com/question/30425942

#SPJ1

what are the primary chemical reactions during the hydration of portland cement

Answers

Hi! The primary chemical reactions during the hydration of Portland cement are:

1. Hydration of tricalcium silicate (C3S): C3S reacts with water to form calcium silicate hydrate (C-S-H) and calcium hydroxide. This chemical reaction is responsible for the initial strength development in concrete.

2. Hydration of dicalcium silicate (C2S): C2S reacts with water to form C-S-H and calcium hydroxide, similar to the C3S reaction. However, this reaction occurs at a slower rate and contributes to the long-term strength of concrete.

3. Hydration of tricalcium aluminate (C3A): C3A reacts rapidly with water to form calcium aluminate hydrates, which contribute to the initial setting and early strength development of the concrete. This reaction is highly exothermic and can lead to flash setting if not properly controlled.

4. Hydration of tetracalcium aluminoferrite (C4AF): C4AF reacts with water to form calcium aluminoferrite hydrates. This reaction contributes to the overall strength development of the concrete but is less significant compared to the other three reactions.

These four primary chemical reactions collectively contribute to the hydration process of Portland cement, resulting in the hardening and strength development of the concrete.

Learn more about chemical reactions: https://brainly.com/question/11231920

#SPJ11

calculate the eoq for philips heads screws. the expected usage rate for the screws

Answers

plug them into the formula, and you will be able to calculate the EOQ for Philips head screws.

EXPLAIN philips heads screws?

To calculate the EOQ (Economic Order Quantity) for Philips head screws with the expected usage rate for the screws, you need to know the following parameters:

Demand (D): The expected annual usage rate for the screws.Ordering Cost (S): The cost of placing an order for the screws.

Holding Cost (H): The cost of holding one unit of screw inventory per year.

The EOQ formula is:

EOQ = √(2DS / H)
Unfortunately, I cannot provide specific numerical values for the EOQ without the given values for D, S, and H. Once you have these values, plug them into the formula, and you will be able to calculate the EOQ for Philips head screws.

Learn more about head screws.

brainly.com/question/16399280

#SPJ11

what is a possible solution to avoid long migration time for a large volume of data?

Answers

A possible solution to avoid long migration time for a large volume of data is to use incremental data migration. This approach involves transferring data in smaller chunks or batches instead of migrating the entire data set at once, allowing for a more manageable process and reducing the overall migration time.

we break up the migration process into smaller chunks. This can be done by prioritizing the data that needs to be migrated first and focusing on moving that data first before moving on to less important data. Additionally, using a tool or software that specializes in data migration can also help streamline the process and reduce migration time. Another option could be to use a cloud-based migration service that can handle large volumes of data more efficiently. Finally, optimizing the network and server infrastructure can also help reduce migration time.

To learn more about Data Here:

https://brainly.com/question/13650923

#SPJ11

A steel bar is tested in torsion. Two strain gages are applied to the surface of the specimen one positioned in the principal tensile stress direction and the other in the principal compressive stress direction. Thus they are both positioned 45 degrees from the longitudinal member axis and 90 degrees from reach other. The strain gages utilize a half bridge. A torsion of 1,000 lb-in. at intervals of 250 lb-in. is applied in increments.
If an axial load was applied to the rod would the orientation of the strain gages need to change or would the orientation of 45 degrees still be valid? Justify your answer.

Answers

The orientation of the strain gages would need to change if an axial load was applied to the rod. This is because the axial load will cause longitudinal strains in the rod, which are in a different direction than the strains caused by torsion.

The orientation of the strain gages at 45 degrees from the longitudinal member axis would still be valid for measuring strain caused by torsion even if an axial load is applied to the rod. This is because strain caused by axial loading is different from strain caused by torsion. The strain gages positioned at 45 degrees from the longitudinal member axis are only sensitive to strains in the principal tensile and compressive stress directions caused by torsion. Thus, they would not accurately measure the longitudinal strains caused by the axial load. To measure the longitudinal strains, strain gages would need to be positioned along the longitudinal axis of the rod.

To learn more about torsion; https://brainly.com/question/26838571

#SPJ11

An 18,000 Btu/h split air conditioner is running at full load to keep a room at 25°C in an environment at 45°C. The power input to the air conditioner compressor is 2.5 kw. Determine the COP of the air conditioning unit and the rate at which heat is rejected to the ambient from the air conditioner condenser. [1 Btu = 1,055 kJJ.

Answers

The COP of the air conditioning unit is 7.596, and the rate at which heat is rejected to the ambient is 27,990 kJ/h.

How can we calculate COP and rate of heat rejection ?

To determine the COP of an 18,000 Btu/h split air conditioner and the rate at which heat is rejected to the environment at 45°C, follow these steps:

Calculate the cooling capacity in kilojoules per hour:
18,000 Btu/h × 1,055 kJ/Btu = 18,990 kJ/h

Calculate the COP (Coefficient of Performance) by dividing the cooling capacity by the power input to the compressor:
COP = Cooling Capacity / Power Input
COP = 18,990 kJ/h / 2,500 W
COP = 18,990 kJ/h / 2.5 kW (convert W to kW)
COP = 7.596

The COP of the air conditioning unit is 7.596.
Determine the rate at which heat is rejected to the ambient from the air conditioner condenser:
Heat Rejected = Cooling Capacity + Power Input
Heat Rejected = 18,990 kJ/h + 2.5 kW × 3600 s/h (convert kW to kJ/h)
Heat Rejected = 18,990 kJ/h + 9,000 kJ/h
Heat Rejected = 27,990 kJ/h


The rate at which heat is rejected to the ambient from the air conditioner condenser is 27,990 kJ/h.

Learn more about COP

brainly.com/question/30482863

#SPJ11

For each pair of atomic sentences, give the most general unifier if it exists. If not,state that one does not exist. In the sentences below, P, Q, Older, and Knows are predicates,while G and Father are functionsa. P(A, B, B)b. Q(y, G (A,B))c. Older (Father(y),y)d. Knows(Father(y),y)P(x, y, z)Q(G(x,x),y)Older(Father(x),John)Knows(x,x)

Answers

a. There is no unifier for P(A, B, B) and any other sentence since the variables A and B appear twice and have to be unified with the same term, but there is no term that can satisfy this requirement.

b. The most general unifier for Q(y, G(A, B)) and P(X, Y, Z) is {X/A, Y/B, Z/B, y/G(A, B)}.

c. The most general unifier for Older(Father(y), y) and Knows(Father(y), y) is { }.

d. There is no unifier for the sentences P(x, y, z) and Q(G(x,x),y) because the first sentence has three variables while the second sentence has two variables. Hence, they cannot be unified.

a. P(A, B, C) and P(x, y, z)

The most general unifier is {x/A, y/B, z/C}.

b. R(a, G(b), c) and R(x, y, z)

There is no unifier for these sentences because the second sentence has three variables while the first sentence has two variables and a function.

c. Loves(John, Mary) and Loves(x, y)

The most general unifier is {x/John, y/Mary}.

d. Knows(Father(x), y) and Knows(Father(John), z)

The most general unifier is {x/John, y/z}.

e. Older(Father(x), John) and Older(Father(y), z)

The most general unifier is {x/y, John/z}.

Learn more about general unifier here:

https://brainly.com/question/5316794

#SPJ11

make_df (housing_file, pop_file): This function takes two inputs: o housing_file: the name of a CSV file containing housing units from OpenData NYC. o pop_file: the name of a CSV file containing population counts from OpenData NYC. The data in the two files are read and merged into a single DataFrame using nta2010 and NTA Code as the keys. If the total is null or Year differs from 2010, that row is dropped. The columns the_geom, nta2010 are dropped, and the resulting DataFrame is returned.

Answers

The make_df() function combines the housing and population data from OpenData NYC, filters out incomplete or irrelevant rows, and returns a cleaned-up DataFrame for further analysis.

What does the make_df() function do with the housing and population data from OpenData NYC?

The make_df(housing_file, pop_file) function takes two inputs: housing_file, which is the name of a CSV file containing housing units from OpenData NYC, and pop_file, which is the name of a CSV file containing population counts from OpenData NYC. Here's a step-by-step explanation:

Read the data from the two input CSV files (housing_file and pop_file).
Merge the data into a single DataFrame using the 'nta2010' and 'NTA Code' as the keys.
Drop any rows where the total is null or the 'Year' differs from 2010.
Drop the columns 'the_geom' and 'nta2010'.
Return the resulting DataFrame.


This function essentially combines housing and population data from OpenData NYC, filters out any irrelevant or incomplete rows, and provides a cleaned-up DataFrame for further analysis.

Learn more about function

brainly.com/question/29142324

#SPJ11

The make_df() function combines the housing and population data from OpenData NYC, filters out incomplete or irrelevant rows, and returns a cleaned-up DataFrame for further analysis.

What does the make_df() function do with the housing and population data from OpenData NYC?

The make_df(housing_file, pop_file) function takes two inputs: housing_file, which is the name of a CSV file containing housing units from OpenData NYC, and pop_file, which is the name of a CSV file containing population counts from OpenData NYC. Here's a step-by-step explanation:

Read the data from the two input CSV files (housing_file and pop_file).
Merge the data into a single DataFrame using the 'nta2010' and 'NTA Code' as the keys.
Drop any rows where the total is null or the 'Year' differs from 2010.
Drop the columns 'the_geom' and 'nta2010'.
Return the resulting DataFrame.


This function essentially combines housing and population data from OpenData NYC, filters out any irrelevant or incomplete rows, and provides a cleaned-up DataFrame for further analysis.

Learn more about function

brainly.com/question/29142324

#SPJ11

derive the expression for the extrinsic transconductance(eq. 42) degraded by an emitter resistance r,.

Answers

To derive the expression for the extrinsic transconductance degraded by an emitter resistance, we'll consider a bipolar junction transistor (BJT) with an extrinsic base-emitter resistance (r) connected to the emitter. The extrinsic transconductance (gm) is the rate of change of collector current (Ic) with respect to the base-emitter voltage (Vbe).

Extrinsic transconductance (gm) is given by the equation:
gm = d(Ic) / d(Vbe)
When an emitter resistance (r) is present, the base-emitter voltage (Vbe) is divided between the intrinsic base-emitter voltage (Vbei) and the voltage drop across the emitter resistance (Vr), where:
Vbe = Vbei + Vr
We also know that Vr = Ie * r, where Ie is the emitter current. Since Ie ≈ Ic (assuming base current is negligible), we can rewrite Vr as:
Vr = Ic * r
Now, we can substitute this expression for Vr in the Vbe equation:
Vbe = Vbei + (Ic * r)
Next, differentiate both sides of the equation with respect to Ic:
d(Vbe) = d(Vbei) / d(Ic) + r
The intrinsic transconductance (gmi) is given by:
gmi = d(Ic) / d(Vbei)
So, we can write:
d(Vbe) = (1 / gmi) * d(Ic) + r
Rearrange the equation to find the extrinsic transconductance:
gm = d(Ic) / d(Vbe) = 1 / [(1 / gmi) + r]
This is the expression for the extrinsic transconductance (gm) degraded by an emitter resistance (r).

To learn more about emitter click the link below:

brainly.com/question/30783357

#SPJ11

The "solution" to the two-process mutual exclusion problem below was actually published in the January 1966 issue of Communications of the ACM. It doesn’t work! Your task: Provide a detailed counterexample that illustrates the problem. As in lecture, assume that simple assignment statements (involving no computation) like turn = 0 are atomic.
Shared Data: blocked: array[0..1] of Boolean; turn: 0..1; blocked [0]=blocked[1]= false; turn=0; Local Data: ID: 0..1; ∗
(identifies the process; set to 0 for one process, 1 for the other) */ Code for each of the two processes: while (1) i blocked[ID] = true; while (turn <> ID) \{ while (blocked[1 - ID]); turn = ID; 3 < critical section >> blocked[ID] = false; << normal work >> 3

Answers

Your question is related to the two-process mutual exclusion problem published in the January 1966 issue of Communications of the ACM. You would like a detailed counterexample that illustrates the problem, while considering simple assignment statements like turn = 0 as atomic.

The given solution for mutual exclusion contains shared data and code for each of the two processes. Here's a counterexample that shows this solution doesn't work:

1. Process 0 enters the while loop and sets blocked[0] = true.
2. Process 1 enters the while loop and sets blocked[1] = true.
3. Process 0 checks the value of turn, which is currently 0, and skips the first inner while loop.
4. Meanwhile, process 1 checks the value of turn, which is still 0, and enters the first inner while loop.
5. Process 0 enters the critical section and sets blocked[0] = false.
6. Process 1 now checks the value of blocked[0] in the first inner while loop, sees that it is false, and exits the loop.
7. Process 1 sets turn = 1, but since process 0 has already set blocked[0] = false, process 1 enters the critical section even though process 0 is still inside its critical section.

This counterexample demonstrates that the given solution does not ensure mutual exclusion because both processes were allowed to enter their critical sections simultaneously.

To know more about mutual exclusion

https://brainly.com/question/9857599?

#SPJ11

if a hashtable requires integer keys, what hash algorithm would you choose? write java code for your hash algorithm.

Answers

For a hashtable that requires integer keys, I would choose the Jenkins one-at-a-time hash algorithm. It is a simple and efficient hash algorithm that produces a 32-bit hash value for any given key.

Here is an example implementation of the Jenkins one-at-a-time hash algorithm in Java:

public static int hash(int key) {

   int hash = 0;

   for (int i = 0; i < 4; i++) {

       hash += (key >> (i * 8)) & 0xFF;

       hash += (hash << 10);

       hash ^= (hash >> 6);

   }

   hash += (hash << 3);

   hash ^= (hash >> 11);

   hash += (hash << 15);

   return hash;

}

This implementation takes an integer key as input and produces a 32-bit hash value as output. It uses a loop to process each byte of the key in turn, adding it to the hash value and performing some bitwise operations to mix the bits together. Finally, it applies some additional mixing operations to produce the final hash value.

The Jenkins one-at-a-time hash algorithm is a good choice for integer keys because it is fast, simple, and produces a good distribution of hash values for most inputs.

For more questions like Algorithm click the link below:

https://brainly.com/question/22984934

#SPJ11

when using the inclusion/exclusion method to find the size of the union of five sets, you need to subtract the size of the triple intersections. true or false

Answers

The correct answer is True.

When using the inclusion/exclusion method to find the size of the union of five sets, you need to subtract the size of the triple intersections, in addition to accounting for single set sizes, pairwise intersections, and adding back quadruple intersections. This ensures that elements are not overcounted or undercounted when calculating the total size of the union.

Learn more about inclusion/exclusion method here:

https://brainly.com/question/29763657

#SPJ11

False. When using the inclusion/exclusion method to find the size of the union of five sets, you need to add the sizes of the individual sets, subtract the sizes of the pairwise intersections.

The sizes of the triple intersections, subtract the sizes of the quadruple intersections, and add the size of the quintuple intersection. The formula for the inclusion/exclusion method for five sets is:

|A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5| = |A1| + |A2| + |A3| + |A4| + |A5| - |A1 ∩ A2| - |A1 ∩ A3| - |A1 ∩ A4| - |A1 ∩ A5| - |A2 ∩ A3| - |A2 ∩ A4| - |A2 ∩ A5| - |A3 ∩ A4| - |A3 ∩ A5| - |A4 ∩ A5| + |A1 ∩ A2 ∩ A3| + |A1 ∩ A2 ∩ A4| + |A1 ∩ A2 ∩ A5| + |A1 ∩ A3 ∩ A4| + |A1 ∩ A3 ∩ A5| + |A1 ∩ A4 ∩ A5| + |A2 ∩ A3 ∩ A4| + |A2 ∩ A3 ∩ A5| + |A2 ∩ A4 ∩ A5| - |A1 ∩ A2 ∩ A3 ∩ A4| - |A1 ∩ A2 ∩ A3 ∩ A5| - |A1 ∩ A2 ∩ A4 ∩ A5| - |A1 ∩ A3 ∩ A4 ∩ A5| - |A2 ∩ A3 ∩ A4 ∩ A5| + |A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5|.

The inclusion/exclusion method is a combinatorial technique used to calculate the size of the union of multiple sets. The method involves adding and subtracting the sizes of the intersections of the sets in a systematic way to avoid double-counting or omitting elements.

The general formula for the inclusion/exclusion principle for n sets is:

|A1 ∪ A2 ∪ ... ∪ An| = ∑|Ai| - ∑|Ai ∩ Aj| + ∑|Ai ∩ Aj ∩ Ak| - ∑|Ai ∩ Aj ∩ Ak ∩ Al| + ... + (-1)^(n+1) |A1 ∩ A2 ∩ ... ∩ An|,

where |A| denotes the size or cardinality of set A, and the sum ranges over all possible combinations of 1, 2, 3, ..., n sets. The inclusion/exclusion principle is a powerful tool that can be used in various combinatorial problems such as counting arrangements, permutations, combinations, and probabilities. It can also be extended to infinite sets and used to prove some important theorems in analysis, number theory, and other branches of mathematics.

Learn more about multiple sets here:

https://brainly.com/question/29157806

#SPJ11

In the circuit shown below power dissipation in 1 ohm resistance is 576 W, when voltage is acting alone & power dissipation in 1 ohm resistance is 1 W, when current source is acting alone. Find total power dissipation in 1 ohm resistance.

Answers

We can see here that the total power dissipation in 1 ohm resistance is 577W.

What is power dissipation?

Power dissipation refers to the process of converting electrical energy into heat energy in an electrical circuit or device. When electrical current flows through a circuit or device, it encounters resistance, which causes some of the electrical energy to be converted into heat energy.

To solve this problem, we need to use the concept of power dissipation in resistors. The power dissipated in a resistor can be calculated using either the voltage across the resistor or the current flowing through it, as given by the formulas:

P = V² / R and P = I² × R

where P is the power dissipated in watts,

V is the voltage across the resistor in volts,

I is the current flowing through the resistor in amperes, and

R is the resistance of the resistor in ohms.

Given that the power dissipation in a 1 ohm resistor is 576 W when voltage is acting alone, we can use the first formula to find the voltage across the resistor:

V = √(P × R) = √(576 × 1) = 24V

Similarly, given that the power dissipation in a 1 ohm resistor is 1 W when current source is acting alone, we can use the second formula to find the current flowing through the resistor:

I = √(P / R) = √(1 / 1) = 1A

Now, to find the total power dissipation in the 1 ohm resistor when both voltage and current sources are acting together, we need to use the principle of superposition. This principle states that when multiple sources are present in a circuit, we can calculate their individual effects on a particular element (such as a resistor) and then add up those effects to get the total effect.

For each case, we have already calculated the power dissipation in the 1 ohm resistor. Now, we need to add up these powers to get the total power dissipation:

Total power dissipation = Power dissipation due to voltage + Power dissipation due to current

= V² / R + I² × R

= 24² / 1 + 1² × 1

= 576 + 1

= 577 W

Therefore, the total power dissipation in the 1 ohm resistor when both voltage and current sources are acting together is 577 W.

Learn more power dissipation on https://brainly.com/question/15015986

#SPJ1

Where can you locate the DMI information for desktops and workstations? (Select two.) a. Service videos b. Flexbuild label c. Maintenance Service Guide d. Product naming convention e. Service label

Answers

Hi! To locate the DMI information for desktops and workstations, you can find it in two places:

1. Flexbuild label (Option B)
2. Service label (Option E)

These labels typically provide essential information about the system, including the DMI information required for system configuration and maintenance.

Learn more about DMI information: https://brainly.com/question/14688347

#SPJ11

Multiply integers: int prodI(int )
Complete the prodI() method by converting this sumI() method. You will need to return 1 in the stopping condition if-statement to avoid zeroing out the result.
static int sumI(int a) {
// add a+(a-1)+(a-2)+...+0
if (a<=0) return 0;
System.out.println(a+" + sumI("+(a-1)+")");
return a + sumI(a-1); }
static int prodI(int a) { return 1; }
STARTER CODE:
class Main {
static int sumI(int a) {
// add a+(a-1)+(a-2)+...+0
if (a<=0) return 0;
System.out.println(a+" + sumI("+(a-1)+")");
return a + sumI(a-1);
}
// recursively multiply:
// add a*(a-1)*(a-2)*...*1
static int prodI(int a) {
return 1;
}
////////////////////////////////////////////////////////////
// add from this a[i] to the next a[i+1]:
static int addArray(int[] a, int i) {
if(i>=0 && i return a[i] + addArray(a, i+1);
}
else return 0 ;
}
// recursively multiply array:
static long prodArray(int a[], int i) {
return 1;
}
public static void main(String[] args) {
System.out.println(sumI(3));
System.out.println(prodI(5));
int[] ai= {5,8,2,3,4};
System.out.println(addArray(ai,0));
System.out.println(prodArray(ai,0));
}
}

Answers

The result will be 960, which is the product of all elements in the array.

To complete the prodI() method, we need to modify the sumI() method to multiply instead of adding. We can do this by changing the initial value of the result variable to 1 instead of 0, and replacing the addition operator with the multiplication operator in the return statement. Additionally, we need to modify the stopping condition if-statement to return 1 instead of 0 to avoid zeroing out the result. Here is the updated prodI() method:

static int prodI(int a) {
   if (a <= 0) return 1; // return 1 instead of 0
   System.out.println(a + " * prodI(" + (a - 1) + ")");
   return a * prodI(a - 1); // multiply instead of adding, and call prodI() recursively
}

With this updated method, calling prodI(5) will output:

5 * prodI(4)
4 * prodI(3)
3 * prodI(2)
2 * prodI(1)
1 * prodI(0)

And the result will be 120, which is the product of all integers from 1 to 5.

Note that we also need to implement the prodArray() method to recursively multiply all elements in an array. We can use a similar approach as the updated prodI() method, multiplying each element in the array and calling prodArray() recursively on the remaining elements. Here is the implementation:

static long prodArray(int a[], int i) {
   if (i >= a.length) return 1; // return 1 if we have reached the end of the array
   System.out.println(a[i] + " * prodArray(" + Arrays.toString(Arrays.copyOfRange(a, i+1, a.length)) + ")");
   return a[i] * prodArray(a, i + 1); // multiply the current element and call prodArray() recursively on the remaining elements
}

Note that we use Arrays.toString() and Arrays.copyOfRange() to print the remaining elements in the array in the recursive call. With this implementation, calling prodArray(ai, 0) where ai = {5,8,2,3,4} will output:

5 * prodArray([8, 2, 3, 4])
8 * prodArray([2, 3, 4])
2 * prodArray([3, 4])
3 * prodArray([4])
4 * prodArray([])
And the result will be 960, which is the product of all elements in the array.

Learn more about product here:-

https://brainly.com/question/22852400

#SPJ11

Compute the Euler's phi function ϕ(n) for the following values of n:
A) 14
B) 30
C) 17

Answers

The Euler's phi function ϕ(n) for the following values of n is 1

To compute Euler's phi function (ϕ(n)), we need to determine the number of positive integers less than or equal to n that are relatively prime to n. Here are the solutions for each of the given values of n:

A) For n = 14, we first note that 14 can be factored into 2 x 7. Therefore, we have:

ϕ(14) = ϕ(2) x ϕ(7)

Now, ϕ(2) = 1 since 2 is prime and the only positive integer less than or equal to 2 that is relatively prime to 2 is 1. Similarly, ϕ(7) = 6 since 7 is prime and there are 6 positive integers less than or equal to 7 that are relatively prime to 7 (namely, 1, 2, 3, 4, 5, and 6).

Therefore, ϕ(14) = ϕ(2) x ϕ(7) = 1 x 6 = 6.

B) For n = 30, we have:

ϕ(30) = ϕ(2) x ϕ(3) x ϕ(5)

Again, ϕ(2) = 1 and ϕ(3) = 2 since 2 and 3 are prime and the positive integers less than or equal to 2 and 3 that are relatively prime to them are 1 and 2, respectively. For ϕ(5), we note that 5 is prime and therefore, there are 4 positive integers less than or equal to 5 that are relatively prime to 5 (namely, 1, 2, 3, and 4).

Therefore, ϕ(30) = ϕ(2) x ϕ(3) x ϕ(5) = 1 x 2 x 4 = 8.

C) For n = 17, we have:

ϕ(17) = ϕ(p) = p-1

where p is a prime number. Therefore,

ϕ(17) = 17 - 1 = 16.
.

Learn More about Euler's phi here :-

https://brainly.com/question/13798579

#SPJ11

A. MULTIPLE CHOICE Circle the choice that best answers each question. 1. SQL does not include A) A query language B) A schema definition language C) A programming language D) A data manipulation language 6. Result tables from SQL queries A) can have duplicates B) cannot have duplicates C) are always sorted by id D) always have a key 2. SELECT R.a,R.b from R join 5 ng. A foraign key mist edfere o umes that A) c is a filed of R but not of S B) c is a field of R and S C) c is a field of S but not R D) c is not a commond field B) all the primary key fields of another table c) some of the primary key fields of another table D) just one field of another table, even if it is not the complete primary key 3. Which of the following SQL instructions might have duplicates A) UNION B) INTERSECT C) JOIN D) EXCEPT 8. SELECT FROM A,B; computes A) AUB B) A-B 4. Select a,b from R union Select c,d from S produces a table with A) two columns B) three columns 9. Result tables in SQL are A) Sets C) no columns D) four columns B) Relations C) Lists D) Queries 5. A condition on count () can be included in in 10. SQL stands for A) Sequel B) Structured Query Language C) Relational Database System D) Simple Query Logic a SQL query after GROUP BY using A) HAVING B) WHERE C) CASE D) IF

Answers

The correct answers to the questions are:

CBABAACBBB

What is SQL?

SQL includes a query language, a schema definition language, and a data manipulation language but not a programming language.

JOIN with a foreign key assumes that the foreign key is a field in both R and S.

UNION can have duplicates because it combines all the rows from two tables.

SELECT a,b from R UNION SELECT c,d from S produces a table with three columns: a, b, and either c or d.

A condition on count() can be included in a SQL query after GROUP BY using HAVING.

Result tables from SQL queries can have duplicates.

SELECT FROM A,B computes a Cartesian product of tables A and B, which can be thought of as A × B or AUB.

SELECT R.a,R.b from R JOIN S ON R.c=S.c produces a table with two columns: R.a and R.b.

Result tables in SQL are relations, which are equivalent to tables.

SQL stands for Structured Query Language, and a condition on count() can be included in a SQL query after GROUP BY using HAVING.

Read more about SQL here:

https://brainly.com/question/25694408

#SPJ1

(3) a 2000 lb. wheel load is to be supported by aggregate over soil that can with stand a pressure of 1000 lb/sqft. what depth of aggregate is needed if 0 = 40 degrees?

Answers

A depth of 3.28 ft of aggregate is needed to support the 2000 lb. wheel load over the given soil with a pressure capacity of 1000 lb/sqft and an angle of friction of 40 degrees.

To calculate the depth of aggregate needed to support a 2000 lb. wheel load over soil that can withstand a pressure of 1000 lb/sqft and with an angle of friction of 40 degrees, we need to use the formula for bearing capacity:
Q = c x Nc + σ’ x Nq x tan(φ) + 0.5 x σ’ x B x Nγ x tan(φ)
Where:
Q = the bearing capacity (2000 lb in this case)
c = the cohesion of the soil (assumed to be 0 since it's not given)
Nc, Nq, and Nγ = bearing capacity factors (2.6, 1.2, and 0.4 respectively)
σ’ = effective stress at the depth of the aggregate
B = width of the footing (assumed to be 1 ft)
φ = angle of friction (40 degrees)
t = depth of the aggregate (what we're trying to find)
Using the given values and assuming the soil pressure is uniformly distributed, we can rearrange the formula and solve for t:
t = (Q - σ’ x Nq x tan(φ) - 0.5 x σ’ x B x Nγ x tan(φ)) / (1000 x  Nq  x  tan(φ))
Plugging in the values, we get:
t = (2000 - σ’ x 1.2 x tan(40) - 0.5 x σ’ x 1 x 0.4 x tan(40)) / (1000 x 1.2 x  tan(40))
Simplifying:
t = (2000 - 0.743 x σ’) / 430.05
To find σ’, we need to consider the weight of the soil above the depth of the aggregate. Assuming a unit weight of 120 lb/cuft for the soil and an average depth of 6 ft, the effective stress at the depth of the aggregate would be:
σ’ = (120 x 6) / 2 = 360 lb/sqft
Plugging that into the previous equation, we get:
t = (2000 - 0.743 x 360) / 430.05
t = 3.28 ft

Learn more about pressure :

https://brainly.com/question/29341536

#SPJ11

We have a pure ALOHA network with a data rate of 10Mbps. What is the maximum number of 1000 bit frames that can be successfully sent by this network?a. 3680 frames/s b. 1840 frame/s c. 10000 frames/s d. none of the above

Answers

The maximum number of 1000-bit frames that can be successfully sent by this network is 1840 frames/s. So, the correct option is b.

What is the ALOHA max throughput

In a pure ALOHA network, the maximum throughput is achieved when the offered load (the total amount of data to be transmitted) is equal to the capacity of the channel. The capacity of the channel in a pure ALOHA network is given by:

Capacity = S * G * e^(-2G)

where S is the data rate of the channel, G is the average number of transmissions per unit time, and e is the mathematical constant e (approximately equal to 2.71828).

To find the maximum number of 1000-bit frames that can be successfully sent by this network, we need to determine the value of G that maximizes the capacity of the channel. Taking the derivative of the capacity equation with respect to G and setting it equal to zero, we get:

d(Capacity)/dG = S × (1 - 2G) × e^(-2G) = 0

Solving for G, we get:

G = 0.5

Substituting this value of G back into the capacity equation, we get:

Capacity = S × G × e^(-2G) = 1840 frames/s

Therefore, the maximum number of 1000-bit frames that can be successfully sent by this network is 1840 frames/s. So, the correct answer is option b.

Read more about network here:https://brainly.com/question/15371990

#SPJ1

M Use the bertool or any other source to determine by how much higher is the SNR required for a BER=10 ^−5 when comparing the following modulations: BPSK, QPSK, 8PSK, 16QAM, 64QAM.

Answers

To determine the required SNR for a BER of 10^-5, we can use the Bertool or any other source that provides the necessary modulation schemes and their corresponding error rates. The Bertool is a MATLAB-based tool that allows for the analysis of communication systems, including modulation schemes.

According to the Bertool, the required SNR for a BER of 10⁻⁵ is as follows:

- For BPSK modulation, the required SNR is approximately 13 dB.
- For QPSK modulation, the required SNR is approximately 10 dB.
- For 8PSK modulation, the required SNR is approximately 8.5 dB.
- For 16QAM modulation, the required SNR is approximately 11 dB.
- For 64QAM modulation, the required SNR is approximately 14.5 dB.

As we can see, the required SNR increases as the complexity of the modulation scheme increases. Therefore, for higher order modulation schemes like 16QAM and 64QAM, the required SNR is significantly higher than for simpler schemes like BPSK and QPSK. It is important to note that these values are approximate and may vary depending on the specific implementation and environment of the communication system.

To know more about SNR, visit the link below

https://brainly.com/question/31429067

#SPJ11

Write an ARM assembly language macro named "FuncW" which solves the following equation: W = 2X + 5Y - 42 - 78 The macro accepts 4 parameters. The first parameter in the list is varW and represents W, this is the result register. The second to fourth parameters, varx, vary, and varz, represent the inputs X, Y, and Z. The varX, vary, varZ can also can be any registers. The macro label should be "solveW". Write the macro.

Answers

Writing an ARM assembly language macro named "FuncW" to solve the equation W = 2X + 5Y - 42 - 78. Here's the macro with the given requirements:

```
.macro solveW, varW, varX, varY, varZ
   mov varZ, #2          ; Load constant 2 into varZ
   mul varW, varX, varZ  ; Calculate 2X and store the result in varW
   mov varZ, #5          ; Load constant 5 into varZ
   mla varW, varY, varZ, varW  ; Calculate 5Y + 2X and store the result in varW
   sub varW, varW, #42   ; Subtract 42 from the result in varW
   sub varW, varW, #78   ; Subtract 78 from the result in varW
.endm
```

This macro, named "solveW", takes four parameters: varW (result register), varX (input X), varY (input Y), and varZ (temporary register). The macro label is "solveW" as requested. The macro calculates 2X + 5Y - 42 - 78 and stores the result in the varW register.

To learn more about assembly language visit: https://brainly.com/question/30354185

#SPJ11

North Jetty Manufacturing makes windows and doors for local building contractors. Several of North Jetty’s workers have received new PCs in recent weeks, and they need your advice about how to deal with the problems described below:
1. Jose Fonseca, production scheduler—The desk space for Joe’s workstation is very limited.

Answers

To address limited desk space, consider a smaller PC, a monitor stand or mount, optimizing peripheral placement, and utilizing cable management to keep the workstation organized and efficient.

To address the issue faced by Jose Fonseca, who has limited desk space for his workstation, you can consider the following steps
1. Opt for a compact PC: Choose a smaller form-factor PC, such as a mini or micro PC, which takes up less space on the desk without compromising performance.
2. Use a monitor stand or mount: A monitor stand with built-in storage or a wall-mounted monitor can free up valuable desk space for Jose's workstation.
3. Optimize peripheral placement: Arrange the keyboard, mouse, and other peripherals in a way that makes efficient use of the available space, such as placing the keyboard on a slide-out tray.
4. Cable management: Utilize cable organizers to keep cables tidy and out of the way, reducing clutter and freeing up space.
By implementing these steps, Jose Fonseca's workstation can be organized efficiently within the limited desk space available.

Learn more about the solutions for limited desk space: https://brainly.com/question/30438015

#SPJ11

_ clouds are more suitable for organizations that want to offer standard applications over the Web, such as e-mail, with little involvement by IT managers.a. Publicb. Privatec. Communityd. Hybrid

Answers

a. Public clouds are more suitable for organizations that want to offer standard applications over the Web, such as e-mail, with little involvement by IT managers.

Public clouds are more suitable for organizations that want to offer standard applications over the web, such as email, with little involvement by IT managers. Public clouds are hosted and managed by third-party providers, making them ideal for small to medium-sized businesses that don't have the resources to manage their own IT infrastructure. These clouds offer cost-effective and scalable solutions, with the provider responsible for maintaining hardware, software, and security.

Option a is answer.

You can learn more about Public clouds at

https://brainly.com/question/29355238

#SPJ11

a freight train travels at v = 60(1- e -t ) ft>s, where t is the elapsed time in seconds. determine the distance traveled in three seconds, and the acceleration at this time.

Answers

The acceleration of the freight train at three seconds is approximately 0.0018 ft/s^2.

To determine the distance traveled in three seconds, we can integrate the given velocity function from t=0 to t=3:

distance = ∫(0 to 3) 60(1-e^(-t)) dt
distance = [60t + 60e^(-t)] from 0 to 3
distance = [60(3) + 60e^(-3)] - [60(0) + 60e^(-0)]
distance = 180 + 60e^(-3) - 60

Therefore, the distance traveled in three seconds is approximately 120.32 feet.

To find the acceleration at this time, we can take the derivative of the velocity function with respect to time:

acceleration = dv/dt = 60e^(-t)

At t= 3 seconds, the acceleration is:

acceleration = 60e^(-3)
acceleration ≈ 0.0018 ft/s^2

Learn more about acceleration: https://brainly.com/question/14586626

#SPJ11

A motorcyclist is warming up his racing cycle at a racetrack approximately 200 m from a sound level meter. The meter reading is 56 dBA. What meter reading would you expect if 15 of the motorcyclist's friends join him with motorcycles having exactly the same sound emission characteristics

Answers

We would expect the meter reading to be 53.8 dBA when 15 of the motorcyclist's friends join him with motorcycles having exactly the same sound emission characteristics.

1) Assuming that each motorcycle emits the same sound level as the original one, we can use the formula for sound intensity level:

L1 - L2 = 10 log (I2/I1)

Where L1 is the original sound level, L2 is the new sound level, I1 is the original sound intensity, and I2 is the new sound intensity.

2) We know that L1 = 56 dBA and the distance between the motorcyclist and the sound level meter is 200 m. Let's assume that the sound intensity at this distance is I1.

3) Using the inverse square law for sound propagation, we can calculate the sound intensity at the new distance, which is 215 m (200 m + 15 x 1 m):

I2 = I1 (d1/d2)^2

where d1 is the original distance (200 m) and d2 is the new distance (215 m).

I2 = I1 (200/215)^2

I2 = 0.74 I1

4) Now we can plug in the values into the formula:

L1 - L2 = 10 log (I2/I1)

56 - L2 = 10 log (0.74)

L2 = 56 - 2.2

L2 = 53.8 dBA

For such more questions on motorcycles

https://brainly.com/question/23786896

#SPJ11

Is this a v6 or a v8?

Answers

The picture attached appears to be a V8. This is because it has 8 plugs which suggests that it also has 8 cylinders.

What is a v8?

The V8 engine is a formidable internal combustion engine featuring eight cylinders that are shaped like the letter "V". Praised for its veracity, uninterrupted operation, and distinct exhaust sound, this engine finds more conventional usage in vehicles requiring top-notch performance.

Notably, sports cars, muscle cars, and pickup trucks often depend on the V8 design to deliver superior power and torque output.

The engineering of the V8 goes beyond regular engines with fewer cylinders - making it a favorite among advent enthusiasts all over the world. Furthermore, automakers produce various sizes and configurations of V8 engines to fit diverse automobile purposes.

Learn more about V8 at:

https://brainly.com/question/14319669

#SPJ1

a latch is constructed by using multiple flip-flops o true © false

Answers

True, a latch is constructed by using multiple flip-flops. A latch is a sequential logic circuit that is used to store and manipulate digital data. It is constructed by using multiple flip-flops that are connected in a way that allows data to be stored and updated.

The flip-flops act as memory cells and can either be in a set state or a reset state, depending on the input signal. The output of the latch is determined by the state of the flip-flops, and it can be used to control other parts of a digital system. ! The statement "a latch is constructed by using multiple flip-flops" is false. A latch is actually a simpler circuit that can store one bit of information, while flip-flops are more complex and are constructed by using two latches in a particular configuration.A latch is a digital circuit element that can store a single bit of information. Latches are constructed from multiple flip-flops that are connected together in a specific way to achieve the desired functionality. In fact, a latch is a simple form of a flip-flop, and can be constructed using two cross-coupled NOR or NAND gates. The output of a latch depends on the current input and the previous state of the circuit. When the input to the latch changes, the output changes as well, and remains in that state until the input changes again. In contrast, a flip-flop is a clocked circuit element that changes its state only on the edge of the clock pulse, and holds that state until the next clock edge. In summary, a latch is a digital circuit element that is constructed using multiple flip-flops, and is used to store a single bit of information.

To learn more about multiple flip-flops. click on the link below:

brainly.com/question/13982219

#SPJ11

4.8.1 [5] <§4.5> what is the clock cycle time in a pipelined and non-pipelined processor?

Answers


 The clock cycle time in a pipelined and non-pipelined processor refers to the time taken for one complete operation within the processor.

In a pipelined processor, multiple instructions are processed concurrently in different stages, which reduces the clock cycle time compared to a non-pipelined processor where instructions are executed sequentially, leading to longer clock cycle times. The clock cycle time in a pipelined processor is shorter than in a non-pipelined processor because the pipelined processor allows for multiple instructions to be processed simultaneously. However, the clock cycle time in a pipelined processor can vary depending on the depth of the pipeline. In a non-pipelined processor, each instruction must be completed before the next one can begin, so the clock cycle time is longer.

Learn more about processor here-

https://brainly.com/question/28902482

#SPJ11

work practice controls that reduce the likelihood of exposure by altering the manner in which a task is performed. true false

Answers

True. Work practice controls are measures taken to reduce the risk of exposure to hazards in the workplace. These controls may involve altering the way a task is performed to minimize exposure to a hazard.

Work practice controls are administrative controls that involve changing the way a task is performed to reduce the likelihood of exposure to a hazard. These controls focus on changing the behavior of workers and are often used in conjunction with personal protective equipment (PPE) to provide multiple layers of protection. Work practice controls may include changes to work procedures, equipment maintenance, and the use of safer work practices. By altering the manner in which a task is performed, work practice controls can help reduce the risk of exposure to a hazard.

To learn more about controls click on the link below:

brainly.com/question/30602329

#SPJ11

The velocity profile of this fluid can be described by: Eq.1. u(y) = (pg/) [hy - (y^2)/2] sin(e) If the coordinate axis is aligned with the inclined plane, in the equation above: p: fluid density, u: viscosity, g: the acceleration of gravity, h: is the thickness of the fluid film, and%: is the angle of inclination of the plane A. Sketch a diagram of the system (inclined and fluid) and reference coordinates B. Derive an expression for the shear stress (t) inside the fluid, as a function of the coordinate y and the other parameters of the system.

Answers

The expression given below shows that the shear stress is linearly proportional to the distance from the bottom of the fluid film, and is directly proportional to the fluid density and the acceleration of gravity, as well as the angle of inclination of the plane.

A. To sketch the system, imagine a plane inclined at an angle of % with respect to the horizontal, and a layer of fluid covering the plane. The coordinate axis is aligned with the inclined plane, with the y-axis perpendicular to it. The thickness of the fluid film is denoted by h.
B. To derive an expression for the shear stress, we use the formula:
t = -u(dv/dy)
where t is the shear stress, u is the viscosity, and dv/dy is the velocity gradient in the y-direction.
From the given velocity profile equation, we can find the velocity gradient as follows:
dv/dy = (pg/h) [h - y] sin(e)
Substituting the values of p, g, and h, we get:
dv/dy = g sin(e) [1 - (y/h)]
Now we can substitute this velocity gradient into the formula for shear stress:
t = -u(dv/dy) = -u(g sin(e)) [1 - (y/h)]
Substituting the value of u as p x h²/2, we get:
t = -pg h/2 x g sin(e) [1 - (y/h)]
Simplifying, we get:
t = -pg h/2 x g sin(e) + pg y/2 x g sin(e)
Thus, the expression for the shear stress inside the fluid is:
t = pg/2 x g sin(e) (y - h)

To learn more about Fluid Here:

https://brainly.com/question/25262104

#SPJ11

Other Questions
Which of the following gases occupy the smallest volume at STP?a) 1.000 mol carbon dioxideb) 4.032 g H2c) 35.45 g Cl2d) 6.0221023 molecules of O2. Change from rectangular to cylindrical coordinates. (Let r 0 and 0 2.) (a) (9, 9, 9) (b) (8, 8 3 , 5) Calculate and plot the springback (final bend radii) in bending 1 mm thick sheet metal around radii from 0.25 to 250 mm for (a) 303 stainless steel, (b) 1100-O aluminum, and (c) HK31A magnesium, (d) Ti-6Al-4V. Consider the following conditions and their possible effect on the corrosion of iron (rusting).A. presence of NaBrB. presence of acid rainC. coating with ZnWhich will enhance the formation of rust?1.A, B2.B3.A4.A,B,Cthe following conditions and their possible effect on the corrosion of iron (rusting).A. presence of NaBrB. presence of acid rainC. coating with ZnWhich will enhance the formation of rust? For this problem, use equation 4 from 9.1 and Toricelli's Law:y=(y)(y)(y)=2ydydt=Bv(y)A(y)v(y)=2gywhere g is about 9.8 ms29.8 ms2.At =0t=0, a conical tank of height 225 cm225 cm and top radius 75 cm75 cm is filled with water. Water leaks through a hole in the bottom of area 2.2 cm22.2 cm2. Let y()y(t)be the water level at time t.(a.) Show that the tank's cross-sectional area at height yy is (y)=19y2A(y)=19y2. There is no answer to enter into WeBWorK for this part, but you must do this in order to move on.(b.) Find a differential equation for y()y(t) and solve it.y()y(t) =(c.) How long does it take for the tank to empty? You can answer in seconds (s), minutes (min), or hours (hr)t Choose the DNA sequence of the strand that is complementary to 5' GTATCTGCCA 3'. a. 5' GUAUCUGCCA 3'b. 5' ACCGTCTATG 3'c. 5' UGGCAGAUAC 3'd. 5' CATAGACGGT 3'e. 5' TGGCAGATAC 3' E. coli has an arg operon that produces structural genes CBH. These structural genes encode proteins used in arginine biosynthesis. When arginine is absent, transcription of the operon occurs. When arginine is present, arginine binds to a repressor protein. The repressor binds the arg operator and blocks transcription. What type of operon is this?a. Inducible operon b. Repressible operon c. Unregulated operon d. argh, who knows!?! Using what you know about the compressibility of different states of matter explain why a) air is used to inflate tyres b) steel is used to make railway lines Question 12The researchers predicted that they would see evidence of eutrophication in the upper estuary dto its close proximity to urbanization, and that they would not see evidence of eutrophication inlower estuary due to it being further away from urbanization.Use complete sentences to write a conclusion discussing whether the data you calculated andgraphed supported this prediction or not, and why.Edit View Insert Format Tools Table1212pt Paragraph BIUATV Use traces to sketch the surface.5x2 y2 + z2 = 0Identify the surface.o parabolic cylIdentify the surface.parabolic cylinderhyperboloid of one sheethyperboloid of two sheetselliptic paraboloidhyperbolic paraboloidellipsoidelliptic cylinderelliptic cone using the definition of the dual of a problem in standardform, find the dual of the linear programmingproblem maximize z = ctx dtx' subjectto ax bx' < b x > 0, x' unrestricted For each of the following linear operators L on R3, find a matrix ,A such that L(x) = Ax for every x inR3. L((x1, x2, x3)T) = (x1, x1 + x2, x1 + x2 + x3)T) L((x1, x2 + 3x1, 2x1 - x3))T From the list of structures on the right, select the major product formed when the following alkyl bromide:1) is treated with sodium methoxide in DMSO.2) is treated with sodium t-butoxide in DMSO. Under the rule of caveat emptor, the producer of a defective product that caused injury to a consumer was: a. not liable unless there was a contractual relationship between producer and injured party b. liable in tort law to any injured consumer if negligence by the producer could be shown c. liable in tort law to consumers who bought the good under the rule of strict liability d. liable in contract to all consumers who used the product under the rule of res ipsa loquitur e. not liable in tort or in contract law f real gdp grew 10 percent last year and the population grew 4 percent and inflation rate was 3 percent, then nominal gdp per capita grew by ________ percent. the power to veto part of a bill is called the:line item vetopocket vetolinear vetopresidential veto Which one of the following forms a diazonium ion on being treated with NaNO2 in aqueous HCl? a. para-nitrotoluene b. N, N-dimethylaniline c. ethylamined. triethylamine solid aluminum metal reacts with aqueous tin(iv) nitrate to produce solid tin metal and aqueous aluminum nitrate. what is the coefficient on solid aluminum in the balanced chemical reaction? Directions: You are going to write 'nonsense' poems.1. Use the following word 'NONSENSE' for your poem. Then write a phrase for each letter of the word. Your phrases can be serious or silly to complete your poems.NONSENSE2. Now use this phrase (FOOLED YOU) to write another 'nonsense' poem. Your phrases can be serious or silly.FOOLEDYOU3. Choose a favorite phrase of your own and write a nonsense poem using the first letters of each word in the phrase.4. Identify three people that you know well. For each person, think about word or phrases that describe their qualities. Using their names, write a nonsense poem for each of your friends. Your phrases can be serious or silly. according to an article, there were 1,008,329 associate degrees awarded by u.s. community colleges in a certain academic year. a total of 612,034 of these degrees were awarded to women.. (Round your answers to three decimal places.) (a) If a person who received a degree in this year was selected at random, what is the probability that the selected student will be female? (b) What is the probability that the selected student will be male?