If H₂SO₄ had been used in the esterification reaction as the acid catalyst instead of the solid resin, we have to wash the ether layer containing the product with sodium chloride because in order to transfer any trace of water from either layer to aqueous layer OR to force organic solute from aqueous layer to organic layer.
Generally esterification is defined as the process of combining an organic acid (R-COOH) along with an alcohol (R-OH) to give rise an ester (RCOOR) and water as by product; or also it is known as a chemical reaction resulting in the formation of at least one ester product. Basically ester is obtained by an esterification reaction of an alcohol and a carboxylic acid.
When H₂SO₄ is used as the catalyst in the esterification reaction the ether layers in the product should be washed properly because even a small amount water should be removed from all the layers.
Learn more about esterification reaction from the link given below.
https://brainly.com/question/16010744
#SPJ4
If I initially have a gas at a pressure of 10.0 atm, a volume of 54.0 liters, and a temperature of 200. K, and then I raise the pressure to 14.0 atm and increase the temperature to 300. K, what is the new volume of the gas?
Answer:
If I initially have a gas at a pressure of 10.0 atm, a volume of 24.0 liters, and a temperature of 200. K, and then I raise the pressure to 14.0 atm and increase the temperature to 300. K, what is the new volume of the gas?
✓ The two actions work against each other. Explanation: Raising the temperature will increase the volume: $$V_T=(300K)/(200K)xx24.0L=36.0L$$ Increase
Explanation:
please give me brainliest
flvs reaction in our world
Post-Lab Connection Questions
Answer questions in complete sentences and show work.
Summarize the main observations you had during the chemical reaction videos. What clues helped you determine the type of reaction?
Which of the chemical reactions are similar to fusion reactions? Which are similar to fission reactions? Explain your answers.
How are nuclear reactions used differently in the world than chemical reactions?
The use of nuclear and chemical reactions in the world are different.
How are nuclear reactions used differently in the world than chemical reactions?Nuclear reactions can also be used to make nuclear weapons, albeit this use is highly regulated and under the watchful eye of international organizations.
On the other hand, chemical reactions are used in many aspects of daily life, including the production of food, drugs, and consumer products. They are also used in a variety of industrial processes, such as the creation of polymers, fertilizers, and other chemicals.
Learn more about nuclear reactions:https://brainly.com/question/16526663
#SPJ1
What develops positive lift?a.) symmetrical airfoil at a zero AOAb.) NON-rotating cylinder
A symmetrical airfoil at a zero AOA develops positive lift.
A symmetrical airfoil has the same curvature on both its upper and lower surfaces, which means that the air flowing over the top and bottom of the airfoil has equal distances to travel, and therefore, produces no net lift when the angle of attack is zero. However, when the angle of attack is increased, the air flowing over the upper surface has to travel a longer distance than the air flowing over the lower surface, which results in lower pressure and higher velocity over the top of the airfoil, creating positive lift.
A non-rotating cylinder, on the other hand, does not develop positive lift. A cylinder has a circular cross-section, which means that the air flowing over the top and bottom of the cylinder has the same distance to travel and, therefore, produces no net lift even when the cylinder is placed at an angle of attack.
To learn more about surfaces, refer:-
https://brainly.com/question/1569007
#SPJ11
in the following reaction, how many molecules of bh3 are required to react with 6 molecules of 2-methyl-2-butene? ch9 d2 q5.pdf
The number of molecules of BH₃ is 2 to react with 6 molecules of 2-methyl-2-butene.
The smallest recognisable unit into which a pure material may be split while retaining its composition and chemical characteristics is a molecule, which is a collection of two or more atoms.
Until portions consisting of single molecules are reached, the division of a sample of a substance into progressively smaller parts does not result in a change in either its composition or its chemical characteristics. Still smaller parts of the substance are produced by further subdivision, and these parts are always different chemically and typically have different compositions from the original substance. The chemical links that hold the atoms in the molecule together are severed at this final step of fragmentation.
Atoms are made up of a single positively charged nucleus that is surrounded by a cloud of negatively charged electrons. Atoms interact with one another and with their nuclei when they are near to one another. The atoms join together to form molecules if this contact lowers the system's overall energy level.
Learn more about Number of molecules:
https://brainly.com/question/30337264
#SPJ4
Role of each addition of water (2)
When water is added to a substance, its role can vary depending on the context. In general, adding water can help dissolve or dilute a substance, making it easier to work with or consume. In cooking, adding water can help to hydrate ingredients and create a desired texture, such as in the case of dough or batter. It can also be used to create a sauce or broth by combining flavors and creating a liquid base.
When water is added to the body, its role is even more critical. Drinking enough water is essential for hydration and maintaining proper bodily function. It can also help flush toxins from the body and regulate body temperature. Additionally, water plays a role in digestion, as it helps break down food and transport nutrients throughout the body.
However, adding too much water can have negative consequences. Overhydration can lead to water intoxication, which can cause headaches, nausea, and even death. In the case of cooking, adding too much water can result in a bland or diluted taste.
Overall, the role of adding water depends on the situation and purpose, but it can play a crucial role in cooking and maintaining bodily health.
To learn more about, substance
https://brainly.com/question/29108029
#SPJ11
The volume of a gas at 25 C is 3.8 L. What will be the volume of that gas at 57 C if the pressure is held constant?
HOW WOULD YOU SOLVE FOR THIS PLEASE??!!
Pb(NO3)2 (aq) + 2 KBr (aq) --> PbBr2 (s) + 2 KNO3 (aq)
part 1: If this reaction starts with 32.5g lead (II) nitrate and 38.75g potassium bromide, how many grams of the precipitate will be produced? (use the limiting reactant to calculate the amount of precipitate formed)
35.93 grams of PbBr2 will be produced.
we can calculate the number of moles of each reactant:
Moles of Pb(NO3)2 = 32.5 g / 331.21 g/mol = 0.098 mol
Moles of KBr = 38.75 g / 119.01 g/mol = 0.325 mol
To determine the limiting reactant, we need to compare the mole ratios of the reactants in the balanced equation. From the equation, we can see that 1 mole of Pb(NO3)2 reacts with 2 moles of KBr. Therefore, if we have 0.098 moles of Pb(NO3)2, we would need 2 x 0.098 = 0.196 moles of KBr to react completely.
However, we only have 0.325 moles of KBr, which is more than enough to react with all of the Pb(NO3)2. Therefore, KBr is not the limiting reactant; Pb(NO3)2 is the limiting reactant.
Using the mole ratio from the balanced equation, we can find the moles of PbBr2 that will be formed:
Moles of PbBr2 = 0.098 mol Pb(NO3)2 x (1 mol PbBr2 / 1 mol Pb(NO3)2) = 0.098 mol PbBr2
Finally, we can use the molar mass of PbBr2 to find the mass of the product formed:
Mass of PbBr2 = 0.098 mol PbBr2 x 367.01 g/mol = 35.93 g
Therefore, 35.93 grams of PbBr2 will be produced.
learn more about limiting reactant here
https://brainly.com/question/26905271
#SPJ1
pepsin functions in the stomach that has a ph of 2.5; and trypsin functions in the small intestine that has a ph of 6.5. you have an unlabeled vial, and you know it is either trypsin or pepsin, and you determine the reaction rate under different conditions to determine which one it probably is. if the vial contains pepsin, which result below would you expect to find?
The highest reaction rate would be observed at a pH of 2.5 if the vial contains pepsin.
If the vial contains pepsin, you would expect to find the highest reaction rate at a pH of 2.5, since pepsin functions in the stomach which has a pH of 2.5. If the pH is raised to 6.5, which is the pH of the small intestine where trypsin functions, the reaction rate of pepsin would be significantly lower. The highest reaction rate would be observed at a pH of 2.5 if the vial contains pepsin.
Pepsin is the primary digestive enzyme in the stomach and is produced by the gastric gland in the stomach, whereas trypsin is produced by the pancreas and is a component of pancreatic juice. While trypsinogen, an inactive form of the enzyme, is activated by the enzyme enterokinase, pepsinogen, an inactive form of the enzyme, is activated by the HCl in gastric juice. Pepsin is an aspartic protease that uses a catalytic aspartate in its active site, whereas trypsin is a serine protease that uses a serine residue. While pepsin requires a pH of 1.8 for optimal activity (pH 7.5-8), trypsin performs best in an alkaline environment. Trypsin comes in eight different types, but pepsin only contains four: pepsin A, B, C, and D.
Learn more about pepsin here
https://brainly.com/question/29821731
#SPJ11
What type of reaction is the synthesis of benzil from benzoin?
The synthesis of benzil from benzoin is an oxidation reaction. In this reaction, benzoin is oxidized to benzil using an oxidizing agent such as nitric acid or chromic acid.
The process involves the removal of two hydrogen atoms from the benzoin molecule, which results in the formation of a carbonyl group. This reaction is a type of organic synthesis that involves the transformation of one compound (benzoin) into another (benzil) through a chemical reaction.
A chemical process known as a redox or oxidation-reduction reaction occurs when the oxidation number of some of the atoms changes.
The oxidation number of the participating ions changes in a chemical reaction that involves both oxidation and reduction.
As a result, a reaction in which oxidation numbers change is what constitutes an oxidation-reduction reaction.
Learn more about oxidation-reduction reaction here
https://brainly.com/question/28082644
#SPJ11
Potassium hydrogen phthalate, known as KHP (molar mass = 204.22 g/mol), can be obtained in high purity and is used to determine the concentration of solutions of strong bases by the reaction
HP–(aq) + OH–(aq) → H2O(l) + P2–(aq)
If a typical titration experiment begins with approximately 0.5 g KHP and has a final volume of about 100 mL, what is an appropriate indicator to use? The pKa for HP– is 5.51.
An appropriate indicator to use in this titration experiment would be phenolphthalein.
Phenolphthalein has a color change at a pH range of 8.2-10.0, which is well above the pKa of HP– (5.51). Therefore, at the endpoint of the titration, when all the KHP has reacted with the strong base, the solution should have a pH greater than 8.2, and the phenolphthalein will change from colorless to pink.
An appropriate indicator to use in a titration experiment involving potassium hydrogen phthalate (KHP) and a strong base would be phenolphthalein. Phenolphthalein changes color between pH 8.2 and 10, which is suitable for detecting the endpoint of the titration, as the pKa of HP– is 5.51 and the pH at the equivalence point would be slightly above 7 due to the reaction with the strong base.
To learn more about Phenolphthalein click here
brainly.com/question/15211751
#SPJ11
Why do the SDS-coated proteins moved when they are placed in an electric field?
The SDS-coated proteins move when placed in an electric field due to the following reasons SDS Sodium Dodecyl Sulfate is an anionic detergent that binds to proteins, giving them a negative charge. This process disrupts the protein's native structure and linearizes the protein molecules.
The SDS-coated proteins are placed in an electric field, they experience a force due to the interaction between their negative charge and the electric field. This force causes the proteins to move towards the positively charged electrode anode in the electric field. The movement of charged particles in an electric field is called electrophoresis. The rate at which the proteins move depends on their size, with smaller proteins moving faster than larger ones. This property allows for the separation and analysis of proteins based on their molecular weight. In summary, SDS-coated proteins move when placed in an electric field because the negatively charged SDS molecules bound to the proteins cause them to be attracted towards the positively charged electrode, resulting in their migration and separation based on size.
learn more about proteins here
https://brainly.com/question/4117459
#SPJ11
What kind of alkyl halide will definitely undergo an SN1 reaction (if substitution reaction is the only possibility) even in the presence of a good nucleophile? Think about an alkyl halide that will definitely undergo SN1 but not SN2.
An alkyl halide that will definitely undergo an SN1 reaction, even in the presence of a good nucleophile, is a tertiary alkyl halide.
Tertiary alkyl halides have a carbon atom bonded to three other carbon atoms and a halogen atom. In an SN1 reaction, the rate-determining step involves the formation of a carbocation intermediate. Tertiary carbocations are more stable than primary or secondary carbocations due to the inductive effect and hyperconjugation, which distribute the positive charge across multiple carbon atoms. This stability facilitates the SN1 reaction pathway.
In contrast, tertiary alkyl halides are less likely to undergo SN2 reactions because of the steric hindrance around the central carbon atom. Good nucleophiles have difficulty approaching the carbon atom due to the bulky groups surrounding it. Thus, even when a good nucleophile is present, a tertiary alkyl halide will preferentially undergo an SN1 reaction rather than an SN2 reaction. An alkyl halide that will definitely undergo an SN1 reaction, even in the presence of a good nucleophile, is a tertiary alkyl halide.
learn more about an SN1 reaction here:
https://brainly.com/question/31324595?
#SPJ11
Please submit this as soon as possible!
Answer: 10=14 1=t6
Explanation:
Why would it have been suitable to carry out a simple distillation on the esterification rxn mixture after azeotropic distillation to separate the product from the starting materials when the BP dif. Btwn the product and the starting materials was only 9 degrees?
A simple distillation would have been suitable to carry out on the esterification reaction mixture after azeotropic distillation to separate the product from the starting materials because even though the boiling point difference between the product and the starting materials was only 9 degrees, a simple distillation could still effectively separate the two compounds.
In a simple distillation, the mixture is heated and the vapors produced are condensed and collected in a separate container. The temperature at which the compound begins to vaporize is called its boiling point, and the temperature of the vapor is typically slightly lower than the boiling point.
Therefore, if the product and starting materials have a 9-degree difference in boiling points, a simple distillation can be used to collect the product as it vaporizes at a slightly lower temperature than the starting materials.
Additionally, a simple distillation is a relatively quick and easy technique to perform, making it a suitable option for separating compounds with small boiling point differences. It is also a common technique used in laboratory settings and requires minimal equipment, further adding to its convenience. Therefore, in this scenario, a simple distillation could effectively separate the product from the starting materials despite the small difference in boiling points.
For more such questions on simple distillation, click on:
https://brainly.com/question/4917936
#SPJ11
Ca(CO3) + 2HCl --> CaCl2 + H2O + CO2Assume you already found the BCA table for this formula and there should be 4.397g of CO2 at the end.If 1.55g of CO2 were produced, how many moles of Ca(CO3) were consumed?
If 1.55g of [tex]CO_2[/tex] were produced, the number of moles of [tex]Ca(CO_3)[/tex]consumed is 0.03523 mol.
The reaction's balanced chemical equation is:
[tex]Ca(CO_3)[/tex] + 2[tex]HCl[/tex] → [tex]CaCl_2[/tex] +[tex]H_2O[/tex] + [tex]CO_2[/tex]
From the equation, we can see that 1 mole of [tex]Ca(CO_3)[/tex] reacts to produce 1 mole of [tex]CO_2[/tex] . Therefore, the number of moles of [tex]Ca(CO_3)[/tex] consumed is equal to the number of moles of [tex]CO_2[/tex] produced.
The molar mass of [tex]CO_2[/tex] is:
M[tex](CO_2)[/tex] = 12.01 + 2(16.00) = 44.01 g/mol
The mass of [tex]CO_2[/tex] that should be produced according to the balanced equation is:
m[tex](CO_2)[/tex] = 4.397 g
The total number of moles [tex]CO_2[/tex] generated is
n[tex](CO_2)[/tex] = m[tex](CO_2)[/tex] / M[tex](CO_2)[/tex] = 4.397 g / 44.01 g/mol = 0.09995 mol
Since 1 mole of [tex]Ca(CO_3)[/tex] reacts to produce 1 mole of [tex]CO_2[/tex], the number of moles of [tex]Ca(CO_3)[/tex] consumed is also 0.09995 mol.
If only 1.55 g of [tex]CO_2[/tex] was produced, we can find the number of moles of [tex]Ca(CO_3)[/tex] consumed as follows:
m[tex](CO_2)[/tex] = n[tex](CO_2)[/tex] x M[tex](CO_2)[/tex]
n[tex](CO_2)[/tex] = m[tex](CO_2)[/tex]/ M[tex](CO_2)[/tex] = 1.55 g / 44.01 g/mol = 0.03523 mol
Therefore, 0.03523 mol [tex]Ca(CO_3)[/tex] is consumed
For more such questions on moles, click on:
https://brainly.com/question/13314627
#SPJ11
Recrystallization techniques are used to purify meso-hydrobenzoin. What (give specific names) are you separating meso-hydrobenzoin from?
Recrystallization techniques are used to purify meso-hydrobenzoin by separating it from impurities such as unreacted starting materials and side products. In the case of meso-hydrobenzoin, you may be separating it from impurities like benzil and benzoin. The recrystallization process selectively dissolves the desired compound in a suitable solvent, leaving behind impurities. Upon cooling, the pure compound crystallizes, allowing for its separation from the impure mixture.
Recrystallization techniques are used to separate meso-hydrobenzoin from impurities that may be present in the sample, such as other isomers of hydrobenzoin, solvent molecules, or other contaminants.
The process involves dissolving the crude meso-hydrobenzoin in a suitable solvent, and then allowing it to cool slowly so that the crystals of the desired compound can form and separate from the impurities. Some common solvents used in recrystallization of meso-hydrobenzoin include ethanol, methanol, and water.
To know more about Recrystallization click here:
https://brainly.com/question/15703840
#SPJ11
Question 12
The only criteria gas that is colored is:
a. Nitrogen dioxide
b. Carbon monoxide
c. Ozone d. Sulfur dioxide
The only gas among the given options that is colored is nitrogen dioxide. It is a reddish-brown gas that has a pungent odor. Nitrogen dioxide is formed due to the combustion of fossil fuels, and it is a significant air pollutant.
It is harmful to human health as it can cause respiratory problems and aggravate asthma.
The other gases in the options, carbon monoxide, ozone, and sulfur dioxide, are colorless gases.
Criteria, in this context, refers to the specific characteristics that differentiate nitrogen dioxide from the other gases in the options. One such criterion is its characteristic color. It is essential to understand the criteria that differentiate different substances to identify and classify them correctly.
In conclusion, the only gas among the options that is colored is nitrogen dioxide. It is a harmful air pollutant and is formed due to the combustion of fossil fuels. Understanding the criteria that differentiate different substances, such as color, is crucial for correct identification and classification.
learn more about nitrogen dioxide here: brainly.com/question/30459594
#SPJ11
you adjust the ph to 7.0. you then add 0.005 moles of naoh. draw the structure(s) of the ionic species of glycine present in the solution and indicate the proportion of each species. d. what is the approximate ph of the solution in part c? e. would the solution be a good buffer? explain
A good buffer solution can maintain a relatively constant pH when small amounts of acid or base are added. In this case, the solution contains both the zwitterion and its conjugate base, meaning it has some buffering capacity.
It seems you would like to know the ionic species of glycine after adjusting the pH to 7.0 and adding 0.005 moles of NaOH, the approximate pH after this addition, and if the solution would be a good buffer.
d. Glycine is an amino acid with the molecular formula NH₂CH₂COOH. At pH 7.0, glycine predominantly exists as a zwitterion: NH³⁺(CH₂)COO⁻. When you add 0.005 moles of NaOH, it will react with the acidic carboxyl group, converting it into its conjugate base, resulting in the following ionic species: NH₃⁺(CH2)COO⁻ (zwitterion) and NH₂(CH₂)COO⁻(conjugate base).
e. After the addition of NaOH, the pH will increase slightly due to the consumption of protons. The exact pH depends on the initial concentration of glycine and the buffering capacity of the solution.
However, without knowing the exact concentrations and pKa values of the components, it's difficult to determine if the solution would be an ideal buffer.
Learn more about conjugate base here
https://brainly.com/question/28545620
#SPJ11
A 0.4550g solid mixture containing MgSO4 is dissolved in water and treated with an excess of Ba(NO3)2, resulting in the precipitation of 0.6168g of BaSO4.Find the concentration (percent) of MgSO4 in the mixture.How do you start?
a. The mass of Mg in [tex]MgSO_4[/tex] is 0.00053 g.
b. The concentration (percent) of Mg in [tex]MgSO_4[/tex] is 0.167%.
a. To determine the mass of Mg in [tex]MgSO_4[/tex] , we first need to find the number of moles of [tex]BaSO_4[/tex] that precipitated. We can use stoichiometry to relate the amount of [tex]BaSO_4[/tex] formed to the amount of [tex]MgSO_4[/tex] present in the mixture.
[tex]MgSO_4[/tex] [tex]+[/tex] [tex]Ba(NO_3)_2[/tex] → [tex]BaSO_4[/tex] [tex]+[/tex] [tex]Mg(NO_3)_2[/tex]
The balanced equation shows that 1 mole of [tex]MgSO_4[/tex] reacts with 1 mole of [tex]BaSO_4[/tex] . Therefore, the number of moles of [tex]MgSO_4[/tex] in the mixture is equal to the number of moles of [tex]BaSO_4[/tex] formed.
The molar mass of [tex]BaSO_4[/tex] is:
[tex]BaSO_4[/tex] = 137 + 32 + 4(16) = 233 g/mol
The total number of moles of [tex]BaSO_4[/tex] produced is:
n[tex](BaSO_4)[/tex] = m[tex](BaSO_4)[/tex] / M[tex](BaSO_4)[/tex] = 0.6168 g / 233 g/mol = 0.002650 mol
Since 1 mole of [tex]MgSO_4[/tex] reacts with 1 mole of [tex]BaSO_4[/tex] , the number of moles of [tex]MgSO_4[/tex] in the mixture is also 0.002650 mol.
The molar mass of [tex]MgSO_4[/tex] is:
[tex]MgSO_4[/tex] = 24 + 32 + 4(16) = 120 g/mol
The mass of Mg in the mixture is:
m(Mg) = n[tex](MgSO_4)[/tex]x M[tex](MgSO_4)[/tex] x (24 g/mol / 120 g/mol) = 0.002650 mol x 120 g/mol x (24/120) = 0.00053 g
Therefore, 0.00053 g is the mass of Mg in [tex]MgSO_4[/tex]
b. To find the concentration (percent) of Mg in [tex]MgSO_4[/tex] , we can use the formula:
concentration (percent) = (mass of Mg / mass of [tex]MgSO_4[/tex]) x 100%
The mass of Mg in [tex]MgSO_4[/tex] is 0.00053 g, as calculated in part a. The mass of [tex]MgSO_4[/tex] is:
m[tex](MgSO_4)[/tex] = M[tex](MgSO_4)[/tex] x n[tex](MgSO_4)[/tex] = 120 g/mol x 0.002650 mol = 0.318 g
Therefore, the concentration of Mg in [tex]MgSO_4[/tex] is:
concentration (percent) = (0.00053 g / 0.318 g) x 100% = 0.167% (rounded to three significant figures)
Hence, 0.167% is the concentration of Mg in [tex]MgSO_4[/tex]
For more such questions on concentration, click on:
https://brainly.com/question/28564792
#SPJ11
The probable question may be:
A 0.4550-g solid mixture containing MgSO4 and Ba(NO3)2 is dissolved in water and treated with an excess of Ba(NO3)2, resulting in the precipitation of 0.6168 g of BaSO4. a. Calculate the mass of Mg in MgSO4 b. Find out the concentration (percent) of Mg in MgSO4.
MgSO4 + Ba(NO3)2 = BaSO4+ Mg(NO3)2
Atomic masses: C=12, H=1, O=16, Ca=40, S=32, K=39, Mg=24, N=14, Ba=137
[Post lab Q]: How many stereocenters are there in isoborneol? How many are there in camphor?
The number of stereocenters in isoborneol compound and camphor compound are two and three in counts.
Nuclear Magnetic Resonance (NMR) spectroscopy is a widely used technique in analytical chemistry to determine the purity of samples and to predict the structure of organic compounds. The H NMR spectroscopy provides the information about how many types of hydrogen atoms are present in the atom of a molecule. Stereocenters : An atom surrounded by four different groups is known as a chiral center or stereocenter.
Isoborneol is a chemical compound with formula, C₁₀H₁₈O, the number of Stereocenters in this compound are 2 in count. Similarly camphor is a chemical compound with formula, C₁₀H₁₆O, the number of Stereocenters in this compound are 3 in count.
For more information about stereocenters, visit :
https://brainly.com/question/31117175
#SPJ4
What is the change in enthalpy when 9.00 mol of sulfur trioxide decomposes to sulfur dioxide and oxygen gas?2SO2(g) + O2(g) → 2SO3(g); ΔH° = 198 kJ/mol rxna. 891 kJb. -198 kJc. -891 kJd. 198 kJe. 1782 kJ
The given chemical equation shows the decomposition of 9.00 moles of sulfur trioxide to sulfur dioxide and oxygen gas. The enthalpy change for this reaction is given as ΔH° = 198 kJ/mol.
Enthalpy change refers to the amount of heat energy released or absorbed during a chemical reaction. A positive value of ΔH° indicates that the reaction is endothermic, meaning it absorbs heat energy from the surroundings, while a negative value indicates an exothermic reaction, meaning it releases heat energy to the surroundings.
In this case, the given value of ΔH° is positive, indicating that the reaction is endothermic. Therefore, for the given reaction, the change in enthalpy can be calculated as follows:
ΔH = (9.00 mol) x (198 kJ/mol) = 1782 kJ
This means that when 9.00 moles of sulfur trioxide decomposes to sulfur dioxide and oxygen gas, 1782 kJ of heat energy is absorbed from the surroundings. Hence, the correct option is (e) 1782 kJ.
TO KNOW MORE ABOUT chemical equation CLICK THIS LINK -
brainly.com/question/30087623
#SPJ11
If I have 3. 9 L of gas at a pressure of 5. 0 atm and a temperature of 50. 0 °C, what will be the temperature of the gas if I decrease the volume of the gas to 2. 4 L and decrease the pressure to 4. 0 atm?
The temperature of the gas when the volume is decreased to 2.4 L and the pressure is decreased to 4.0 atm is approximately 324.9 K (or 51.75 °C).
To solve this problem, we can use the combined gas law, which relates the pressure, volume, and temperature of a gas:
(P1 × V1) / T1 = (P2 × V2) / T2
where P1, V1, and T1 are the initial pressure, volume, and temperature of the gas, and P2, V2, and T2 are the final pressure, volume, and temperature of the gas.
(5.0 atm × 3.9 L) / (50.0 + 273.15 K) = (4.0 atm × 2.4 L) / T2
Simplifying and solving for T2, we get:
T2 = (4.0 atm × 2.4 L × (50.0 + 273.15 K)) / (5.0 atm × 3.9 L)
T2 ≈ 324.9 K
Therefore, the temperature of the gas when the volume is decreased to 2.4 L and the pressure is decreased to 4.0 atm is approximately 324.9 K (or 51.75 °C).
Learn more about temperature Visit: brainly.com/question/27944554
#SPJ4
hey guys! can any of you smart ppl help me with this? thank you guys :)
Pb(NO3)2 (aq) + 2 KBr (aq) --> PbBr2 (s) + 2 KNO3 (aq)
1. If this reaction starts with 32.5g lead (II) nitrate and 38.75g potassium bromide, how many grams of the precipitate will be produced?
2. How many grams of the excess reactant will remain?
Answer: 15.33 grams of the excess reactant KBr will remain.
Explanation: The molar mass of Pb(NO3)2 is 331.21 g/mol:
32.5 g / 331.21 g/mol = 0.098 mol Pb(NO3)2
The molar mass of KBr is 119.00 g/mol:
38.75 g / 119.00 g/mol = 0.325 mol KBr
Agreeing to the adjusted condition, 1 mole of Pb(NO3)2 responds with 2 moles of KBr to create 1 mole of PbBr2:
1 mol Pb(NO3)2 : 2 mol KBr : 1 mol PbBr2
In this manner, the restricting reactant is Pb(NO3)2, because it will be totally devoured within the response.
The number of moles of PbBr2 delivered can be calculated utilizing the mole proportion from the adjusted condition:
0.098 mol Pb(NO3)2 x (1 mol PbBr2 / 1 mol Pb(NO3)2) = 0.098 mol PbBr2
The mass of PbBr2 delivered can be calculated utilizing its molar mass of 367.01 g/mol:
0.098 mol PbBr2 x 367.01 g/mol = 35.93 g PbBr2
Subsequently, 35.93 grams of the accelerate PbBr2 will be delivered.
To determine the mass of the abundance reactant, we are able utilize the sum of constraining reactant devoured within the response to find the sum of overabundance reactant remaining.
From the calculation above, we know that 0.098 mol of Pb(NO3)2 was expended within the response. Utilizing the mole proportion from the adjusted condition, we are able calculate the number of moles of KBr required to respond with this sum of Pb(NO3)2:
0.098 mol Pb(NO3)2 x (2 mol KBr / 1 mol Pb(NO3)2) = 0.196 mol KBr
Hence, 0.196 moles of KBr were required to respond with the 0.098 moles of Pb(NO3)2, clearing out an overabundance of KBr:
0.325 mol KBr - 0.196 mol KBr = 0.129 mol KBr remaining
The mass of the overabundance KBr can be calculated utilizing its molar mass of 119.00 g/mol:
0.129 mol KBr x 119.00 g/mol = 15.33 g KBr
at the end of a reaction it is important to remove the solvent from a solid product (more than one answer may be correct)
Distillation is a process where the solvent can be removed from a liquid solution.Evaporation is a process where the solvent can be removed by exposing the liquid solution .
What is solution ?A solution is a means of resolving a problem, dispute, or difficult situation. It is a way of coming to an agreement on a particular issue. Solutions can take many forms, including a compromise, mediation, arbitration, or a resolution. Solutions often involve a combination of approaches and involve all interested parties in the process. Solutions can be developed through dialogue, negotiation, and collaboration, as well as through research, analysis, and experimentation. Solutions need to be practical, achievable, and realistic in order to be successful.
Filtration is a process where the solid product can be separated from the liquid solution. Crystallization is a process where the solvent can be removo learn more about moleculesed from the solution.
To learn more about solution
https://brainly.com/question/25326161
#SPJ4
Question 69
If water in a stream is a 20 degrees C and has nine mg/1 oxygen per liter:
a. It would be reasonable to assume the stream was grossly polluted
b. It would probably be comfortable for rainbow trout
c. It would be safe for drinking
d. Has too little oxygen for even catfish to live in
Based on the information provided, if water in a stream is at 20 degrees C and has 9 mg/l oxygen per liter, the most appropriate answer would be: b. It would probably be comfortable for rainbow trout Rainbow trout typically thrive in water temperatures between 10-20 degrees C and require dissolved oxygen levels of 7-10 mg/l. In this scenario, the temperature and oxygen levels are suitable for rainbow trout.
Rainbow trout prefer water temperatures between 10-18 degrees C and require a minimum of 6 mg/L of dissolved oxygen to survive. The stream in question has a temperature within their preferred range and an oxygen concentration well above their minimum requirement. Therefore, it is likely a suitable habitat for rainbow trout. However, this does not necessarily mean the water is safe for human consumption. so, the correct option is B. It would probably be comfortable for rainbow trout.
To know more about water in a stream click here:
https://brainly.com/question/31090160
#SPJ11
______ is a thermodynamic function that describes the number of arrangements (positions and/or energy levels) that are available to a system.
"Entropy" is a thermodynamic function that describes the number of arrangements (positions and/or energy levels) that are available to a system.
Entropy is a measure of the disorder or randomness of a system, and it is related to the number of microstates that are accessible to a system at a given temperature and pressure. The greater the number of microstates, the higher the entropy. In thermodynamics, entropy is a fundamental concept that plays a key role in understanding the behavior of energy and matter in physical and chemical systems. It is important in many areas of science and engineering, including physics, chemistry, biology, and materials science.
Learn more about Entropy here;
https://brainly.com/question/31066828
#SPJ11
Draw a diagram for CuCl2 to show how to make the solution. Information to include…
- Mass solute = 33.6
- Moles of solute = 0.249907
- Molarity = 0.08330233
Make sure to have 3 ACCURATE steps drawn. Your drawing should only be 1 picture but include 3 steps.
3 step diagram for the preparation of 0.08330233 M CuCl₂ solution is attached below.
What is stock solution?A stock solution can best be described as a concentrated solution of known exact concentration that is diluted for future use in the laboratory. You can choose not to prepare a stock solution, but doing so can streamline your operations while saving significant time and resources in the process.
Now, following are the steps for the preparation of CuCl₂ solution:
1. Weigh out 33.6 g of CuCl₂ precisely.
2. Dissolve the weighed out CuCl₂ in some amount of distilled water and transfer it to a volumetric flask.
3. Calculate the volume of solution and add the required amount of water to make up the volume.
Molarity = moles/volume
0.08330233 = 0.249907/Volume
Volume = 0.249907/0.08330233
Volume = 2.99 L
To know more about stock solution, visit:
https://brainly.com/question/29221166
#SPJ1
Question 6
A chemical used to adjust pool alkalinity is:
a. chlorine
b. calcium chloride
c. sodium bicarbonate (soda ash)
d. copper sulfate
A chemical used to adjust pool alkalinity is sodium bicarbonate (soda ash).
Why Alkalinity refers to the ability of the pool water to resist changes?Alkalinity refers to the ability of the pool water to resist changes in pH. If the alkalinity of the pool water is too low, it can lead to rapid fluctuations in pH levels, which can cause skin and eye irritation, corrosion of pool equipment, and reduce the effectiveness of other pool chemicals.
Sodium bicarbonate, also known as baking soda, is a common pool chemical used to increase alkalinity. It is an alkaline substance that raises the pH and helps to stabilize the pool water. Sodium bicarbonate is typically added to the pool water in small amounts, with the exact amount needed depending on the size and volume of the pool.
Other chemicals used in pool maintenance include chlorine, which is used to sanitize the pool water and kill bacteria and algae, calcium chloride, which is used to increase the calcium hardness of the pool water, and copper sulfate, which is used as an algaecide.
A chemical used to adjust pool alkalinity is sodium bicarbonate (soda ash).
Learn more about Alkalinity
brainly.com/question/31463506
#SPJ11
Question 2 Marks: 1 The addition of sodium bicarbonate is usually used toChoose one answer. a. raise the ambient water temperature b. lower the ambient water temperature c. raise the alkalinity d. lower the pH
The addition of sodium bicarbonate is usually used to raise the alkalinity. The correct answer is option c.
Alkalinity refers to the ability of water to neutralize acid, and it is an important parameter to control in various applications, including aquaculture, swimming pools, and industrial processes. Sodium bicarbonate (NaHCO3) is an alkaline compound that can be added to water to increase its alkalinity.
When sodium bicarbonate dissolves in water, it releases bicarbonate ions (HCO3-) and hydrogen ions (H+). The bicarbonate ions react with the hydrogen ions from acids to form carbonic acid (H2CO3), which then dissociates to form bicarbonate and carbonate ions (CO32-). This reaction consumes hydrogen ions, thus increasing the alkalinity of water.
Sodium bicarbonate is commonly used in aquaculture to buffer the water and maintain a stable pH. It can also be used in swimming pools to prevent the pH from dropping too low and causing irritation to swimmers' eyes and skin.
Additionally, sodium bicarbonate is used in various industrial processes to control the acidity of wastewater and to neutralize acidic gases such as sulfur dioxide. Overall, the addition of sodium bicarbonate can be an effective way to raise the alkalinity of water and maintain a stable pH.
Therefore, option c is correct.
For more such questions on sodium bicarbonate, click on:
https://brainly.com/question/20670487
#SPJ11
if we burn 33.5 grams of c4h10 with 83.2 grams of oxygen, what will the amount of heat in joules produced by the reaction? g
If we burn 33.5 grams of c4h10 with 83.2 grams of oxygen, -2,901,700 J will the amount of heat in joules produced by the reaction
To answer this question, we need to first write out the balanced chemical equation for the combustion of C₄H₁₀ with oxygen:
C₄H₁₀ + O₂ ⇒ 4 CO₂ + 5 H₂O
From the equation, we can see that 13/2 moles of oxygen are required to react with 1 mole of C₄H₁₀.
We can use this information to calculate the amount of oxygen required to react with 33.5 grams of C₄H₁₀:
33.5 g C₄H₁₀ × (1 mole C₄H₁₀ / 58.12 g C₄H₁₀) × (13/2 moles O₂ / 1 mole C₄H₁₀) × (32 g O₂ / 1 mole O₂) = 168.3 g O₂
Since we have 83.2 grams of oxygen, we have enough oxygen to completely react with the 33.5 grams of C₄H₁₀.
Now we can use the balanced equation to calculate the amount of heat produced by the reaction:
4 moles CO₂ × (-393.5 kJ/mol) + 5 moles H₂O × (-241.8 kJ/mol) = -2901.7 kJ
Converting to joules:
-2901.7 kJ × 1000 J/kJ = -2,901,700 J
Therefore, the amount of heat produced by the reaction is -2,901,700 J. Note that the negative sign indicates that the reaction is exothermic, meaning that heat is released.
Learn more about Chemical reaction here
https://brainly.com/question/28294176
#SPJ11