how many grams of kno3are required to prepare 250ml of a .700m solution

Answers

Answer 1

To prepare 250 mL of a 0.700 M KNO3 solution, you will need to calculate the grams of KNO3 required. You will need 17.69 grams of KNO3 to prepare 250 mL of a 0.700 M solution.

To prepare a 250ml solution of 0.700m, you will need to use the formula:
molarity = moles of solute / liters of solution
First, let's calculate the number of moles of solute required:
moles of solute = molarity x liters of solution
moles of solute = 0.700m x 0.250L
moles of solute = 0.175 moles
Next, we need to convert moles of solute into grams of KNO3, using its molar mass:
molar mass of KNO3 = 101.1032 g/mol
grams of KNO3 = moles of solute x molar mass
grams of KNO3 = 0.175 moles x 101.1032 g/mol
grams of KNO3 = 17.6736 grams
Therefore, you will need 17.6736 grams of KNO3 to prepare 250ml of a 0.700m solution.

Learn more about solution here:

https://brainly.com/question/6566593

#SPJ11


Related Questions

given that you determined the molarity of potassium hydeogen phthalate in 250.0 ml of the hydrogen phthalate buffer to be 0.0393 m, calculate the pH of the potassium hydrogen phthalate buffer, before the addition of a base or an acid.

Answers

The pH of the potassium hydrogen phthalate buffer before the addition of a base or an acid is equal to its pKa, which is 5.51.

How to calculate the pH of solution?

To calculate the pH of the potassium hydrogen phthalate buffer before the addition of a base or an acid, you'll need to consider the molarity of the buffer solution and the pKa of potassium hydrogen phthalate. The pKa value for potassium hydrogen phthalate is 5.51. We can use the Henderson-Hasselbalch equation to determine the pH of the buffer:

pH = pKa + log ([A-]/[HA])
Given that the buffer is not yet titrated with any acid or base, the ratio of [A-]/[HA] is 1. Therefore, the equation becomes: pH = pKa + log (1)

Since the log (1) is 0, the equation simplifies to:
pH = pKa = 5.51

To know more about Henderson-Hasselbach Equation:

https://brainly.com/question/22278201

#SPJ11

Acetic acid (pka = 4.76) is 4% dissociated in an aqueous solution at 25°C. g) What was the initial concentration (molarity) of acetic acid? h) What is the pH? i) What is the van't Hoff i factor?

Answers

The initial concentration (molarity) of acetic acid is 0.0462 M. The pH of the solution is 1.75,  the van't Hoff i factor for acetic acid is 2,

The dissociation reaction of acetic acid in water is:

CH₃COOH + H₂O ⇌ CH₃COO- + H₃O+

The equilibrium constant expression for this reaction is:

Ka = [CH₃COO⁻][H₃O⁺]/[CH₃COOH]

Given that acetic acid is 4% dissociated in solution, we can assume that the concentration of acetic acid remaining is 96% of the initial concentration, and the concentration of both acetate and hydronium ions formed is 4% of the initial concentration.

g) What was the initial concentration (molarity) of acetic acid?

Let's assume that the initial concentration of acetic acid is x M. Then, the concentration of acetate and hydronium ions formed is 0.04x M. The concentration of acetic acid remaining is (1-0.04)x M = 0.96x M.

Using the equilibrium constant expression, we can write:

Ka = [CH₃COO⁻][H3O⁺]/[CH₃COOH]

Ka = (0.04x)(0.04x)/(0.96x)

Ka = 0.00176

We know that the equilibrium constant expression for a weak acid can be written as Ka = [H3O⁺][A-]/[HA]. In this case, HA represents acetic acid and A- represents acetate ion. Since the concentration of acetate and hydronium ions formed is 0.04x M, and assuming that they are equal due to the 1:1 stoichiometry of the dissociation reaction, we can write:

Ka = [H3O⁺][CH₃COO⁻]/[CH₃COOH]

0.00176 = (0.04x)/(0.96x)

x = 0.0462 M

Therefore, the initial concentration (molarity) of acetic acid is 0.0462 M.

h) What is the pH?

The concentration of hydronium ions formed in the solution can be calculated using the equation:

[H3O⁺] = Ka[CH₃COOH]/[CH₃COO⁻]

[H3O⁺] = (0.00176)(0.0462)/(0.00462)

[H3O⁺] = 0.0177 M

The pH of the solution can be calculated using the equation:

pH = -log[H3O⁺]

pH = -log(0.0177)

pH = 1.75

Therefore, the pH of the solution is 1.75.

i) What is the van't Hoff i factor?

The van't Hoff i factor represents the number of particles that are formed when a solute dissolves in a solvent. In this case, acetic acid is a weak acid, which means that it partially dissociates in water to form acetate and hydronium ions. Therefore, the van't Hoff i factor for acetic acid is 2, since 2 particles are formed when it dissolves in water (one molecule of acetic acid and one hydronium ion).

Know more about molarity here: https://brainly.com/question/2817451

#SPJ4

Sometimes, the best thing to do in the event of a crude oil spill is to do nothing.

Answers

Sometimes, the best thing to do in the event of a crude oil spill is to do nothing, particularly if the spill is in a remote location with limited human or wildlife exposure.

This is because any attempt to clean up the spill could potentially do more harm than good, such as disrupting fragile ecosystems or causing further damage to the environment. In these cases, it is often recommended to simply monitor the spill and let nature take its course in breaking down and absorbing the oil. However, if the spill poses a significant threat to human health or the environment, action must be taken to contain and mitigate the spill.

Find out more about wildlife exposure.

brainly.com/question/30713846

#SPJ11

matter that makes up living and dead organisms in an ecosystem

Answers

Living organisms in an ecosystem are made up of organic matter, which includes cells, proteins, lipids, carbohydrates, and nucleic acids.

What is organic?

Organic refers to products or items that are made from all-natural ingredients that have been grown or harvested without the use of synthetic fertilizers, pesticides, or other artificial substances. Organic products are produced in accordance with certain production standards that promote the conservation of natural resources and biodiversity. Organic farming methods are designed to create a sustainable and healthy environment, as well as provide economic benefits.

These organic molecules are the building blocks of living things and are produced by living organisms.

Dead organisms in an ecosystem are made up of inorganic matter, which includes minerals, rocks, and soil. These inorganic molecules are the remnants of dead organisms and are produced through the breakdown of living things.

To learn more about organic

https://brainly.com/question/26854014

#SPJ1

what could happen if an alkaline developer is used in dye penetrant inspections

Answers

If an alkaline developer is used in dye penetrant inspections, it can cause the dye to wash out, making it difficult or impossible to detect any flaws or defects in the surface being inspected.

The alkaline developer can also react with the dye, altering its chemical properties and making it ineffective for future inspections.

This can lead to inaccurate or incomplete inspections, which can have serious consequences if the surface being inspected is critical for safety or performance.

It is important to always use the correct type of developer for the specific dye penetrant being used to ensure accurate and reliable results.

To know more about dye penetrant, refer here:

https://brainly.com/question/29045069#

#SPJ11

tritium is radioactive and decays by a first order process with a half-life of 12.5 yr. if an experiment starts with 1.00 × 10−6 mol of tritium, how much is left after 4.5 yr.?

Answers

Half-life is the time required for half of the quantity of a substance to undergo a specified reaction, decay, or transformation. After 4.5 years, there will be 7.34 × 10^-7 mol of tritium left.

How do you calculate the mol of tritium left after 4.5 years?

The first-order rate law is given by:

rate = k [T]

where [T] is the concentration of tritium and k is the rate constant. The half-life of tritium is 12.5 years, which means that:

t1/2 = 0.693/k

Solving for k:

k = 0.693/t1/2 = 0.693/12.5 yr = 0.0554 yr⁻¹

Using the first-order integrated rate law:

㏑ ([T]/[T]₀) = -kt

where [T]₀ is the initial concentration of tritium, we can solve for [T]

㏑ ([T]/1.00 × 10⁻⁶mol) = -0.0554 yr⁻¹ x 4.5 yr

[T]/1.00 × 10⁻⁶ mol = e^-0.249 yr⁻¹

[T] = (1.00 × 10⁻⁶  mol) x e^-0.249 yr⁻¹

[T] = 7.34 × 10⁻⁷ mol

Therefore, after 4.5 years, there will be 7.34 × 10⁻⁷ mol of tritium left.

Learn more about radioactive decay here:

https://brainly.com/question/1770619

#SPJ1

What is the solubility (in g/L) of aluminum hydroxide at 25°C? The solubility product constant for aluminum hydroxide is 4.6 x 10^-33 at 25°C. a) 5.3 * 10^-15 g/L b) 8.2 x 10^-10 g/L c) 1.8 x 10^-31 g/L d) 2.8 x 10^-7 g/L e) 3.6 x 10^-31 g/L

Answers

The solubility of aluminum hydroxide at 25°C is approximately 2.8 x 10⁷ g/L (option d).

1: The solubility product constant (Ksp) equation for aluminum hydroxide (Al(OH)₃) is:

Ksp = [Al³⁺][OH⁻]₃

When Al(OH)₃ dissolves, it forms one Al³⁺ ion and three OH⁻ ions. Therefore, [Al³⁺] = s and [OH⁻] = 3s.
Ksp = (s)(3s)³
4.6 x 10⁻³³ = s(27s³)

2: Divide by 27:
s⁴ = (4.6 x 10⁻³³)/27

3: Take the fourth root:
s = (4.6 x 10⁻³³/27)^(1/4)
s = 1.8 x 10⁻⁸ mol/L

4: Now, we need to convert the solubility from mol/L to g/L:
1.8 x 10⁻⁸ mol/L * (26.98 g/mol Al + 3 * 15.999 g/mol O + 3 * 1.007 g/mol H) = 2.8 x 10⁻⁷ g/L


Learn more about solubility here:

https://brainly.com/question/29034578

#SPJ11

a beta particle (a high energy electron, mass = 9.109 x 10-28 g) is emitted from radioactive uranium with an initial velocity of 2.70 x 108 m/s. what is its de broglie wavelength?

Answers

The de Broglie wavelength of the beta particle is approximately  2.69 x 10^-15 m.

To find the de Broglie wavelength of the beta particle, we need to use the formula:

λ = h / p

where λ is the wavelength, h is the Planck's constant (6.626 x 10^-34 J s), and p is the momentum of the particle. We can find the momentum of the beta particle using the formula:

p = m * v

where m is the mass of the particle and v is its velocity. Plugging in the given values, we get:

p = (9.109 x 10^-28 g) * (2.70 x 10^8 m/s)
p = 2.46 x 10^-19 kg m/s

Now we can calculate the wavelength:

λ = (6.626 x 10^-34 J s) / (2.46 x 10^-19 kg m/s)
λ = 2.69 x 10^-15 m

Therefore, the de Broglie wavelength of the beta particle is 2.69 x 10^-15 m.

Learn more about wavelength here:

https://brainly.com/question/13533093

#SPJ11

Given the equilibrium 3 A (g) + B (g) + 2C (g) = D (g) + 2 E (g), which change will shift the equilibrium to the right? - increasing the pressure on the system - increasing the concentration of D - decreasing the concentration of B - decreasing the pressure on the system

Answers

Increasing the pressure on the system will shift the equilibrium to the right, favoring the formation of products D and E.

According to Le Chatelier's principle, an increase in pressure will shift the equilibrium towards the side with fewer moles of gas. Since there are fewer moles of gas on the product side, an increase in pressure will favor the forward reaction, producing more D and E. Conversely, decreasing the pressure will shift the equilibrium towards the side with more moles of gas, favoring the reverse reaction. Increasing the concentration of D will not have an effect on the equilibrium because it is a product, and decreasing the concentration of B will also not have an effect because it is a reactant.

learn more about equilibrium here:

https://brainly.com/question/30807709

#SPJ11

Glyoxal (CHO-CHO) is produced in the atmosphere by oxidation of isoprene. It has been proposed as an important source of organic aerosol. Typically, if one single chemical compound contributes already 5% to the mass of ambient aerosol, it is considered significant. Laboratory isoprene oxidation experiments indicated that 1/6 of the glyoxal formed in the atmosphere yield aerosols. (a).(30 Pts) Isoprene emissions in the U.S. in summer is estimated to be 5x10" molecules cm? s '. The glyoxal molar yield from isoprene oxidation is 10%. Assume a mixing depth of lkm and an aerosol lifetime of 3 days (hint: after 3 days of glyoxal aerosol formation, removal is equal to formation. So, steady state aerosol concentration is equal to 3 days of aerosol formation, when starting from a "clean" atmosphere.) Calculate the resulting mean concentration of organic aerosol (in units of ug carbon m³) from the glyoxal formation pathway. (b) (5 Pts) Compare to typical U.S. observations of 2 ug C m³ for the concentration of organic aerosol (significant or not significant, that is the question).

Answers

(a) The mean concentration of organic aerosol from the glyoxal formation pathway is 0.63 µg C m³.


1. Calculate glyoxal formation rate: (5 x 10¹¹molecules/cm²s) * (10% yield) = 5 x 10¹⁰ molecules/cm²s


2. Convert to molecules/m³s: (5 x 10¹⁰ molecules/cm²s) * (1 m²/10⁴ cm²) = 5 x 10¹⁴ molecules/m³s


3. Calculate aerosol formation rate: (5 x 10¹⁴ molecules/m³s) * (1/6 aerosol yield) = 8.33 x 10¹³ molecules/m³s


4. Convert to mass of aerosol formed in 3 days: (8.33 x 10¹³ molecules/m³s) * (3 days) * (24 hr/day) * (3600 s/hr) * (12 g/mol) * (1 mol/6.022 x 10²³ molecules) = 1.89 µg C m³


5. Divide by mixing depth: (1.89 µg C m³) / (1 km) = 0.63 µg C m³

(b) The glyoxal formation pathway is not significant as its contribution (0.63 µg C m³) is less than the typical U.S. observations of 2 µg C m³ for the concentration of organic aerosol.

To know more about aerosol click on below link:

https://brainly.com/question/29418985#

#SPJ11

Which type of cell is a complete organism that can live on its own

Answers

Single-celled organisms

such as an amoeba are free-floating and independent-living. Their single-celled "bodies" are able to carry out all the processes of life such as metabolism and respiration without help from other cells.

Which citric acid cycle constituent immediately precedes this compound in the citric acid cycle? citrate citryl-CoA fumarate succinate alpha-ketoglutarate malate

Answers

The compound immediately preceding succinate in the citric acid cycle is fumarate.

During the citric acid cycle, also known as the Krebs cycle or TCA cycle, the molecule acetyl-CoA is oxidized to produce energy in the form of ATP, as well as reducing agents such as NADH and FADH2. In the fourth step of the cycle, succinate is produced by the oxidation of succinyl-CoA, which is derived from the previous step where alpha-ketoglutarate is oxidized.

Before succinyl-CoA is formed, however, the molecule fumarate is produced by the oxidation of the previous intermediate, malate. So, the correct order of the citric acid cycle constituents leading up to succinate is malate, fumarate, succinate, and then the cycle continues with the production of oxaloacetate.

Learn more about  citric acid cycle

https://brainly.com/question/29857075

#SPJ4

The compound immediately preceding succinate in the citric acid cycle is fumarate.

During the citric acid cycle, also known as the Krebs cycle or TCA cycle, the molecule acetyl-CoA is oxidized to produce energy in the form of ATP, as well as reducing agents such as NADH and FADH2. In the fourth step of the cycle, succinate is produced by the oxidation of succinyl-CoA, which is derived from the previous step where alpha-ketoglutarate is oxidized.

Before succinyl-CoA is formed, however, the molecule fumarate is produced by the oxidation of the previous intermediate, malate. So, the correct order of the citric acid cycle constituents leading up to succinate is malate, fumarate, succinate, and then the cycle continues with the production of oxaloacetate.

Learn more about  citric acid cycle

https://brainly.com/question/29857075

#SPJ4

The decay of 83^214 Bi to 82^214 Pb occurs through the emission of o an alpha
o a beta o a proton o a positrorn

Answers

The decay of 83^214 Bi to 82^214 Pb occurs through the emission of a beta particle.

The decay of 83^214 Bi (Bismuth-214) to 82^214 Pb (Lead-214) occurs through the emission of a beta particle.

Step-by-step explanation:

1. Identify the initial nuclide: 83^214 Bi (Bismuth-214), where 83 is the atomic number (protons) and 214 is the mass number (protons + neutrons).

2. Identify the final nuclide: 82^214 Pb (Lead-214), where 82 is the atomic number and 214 is the mass number.

3. Observe the change in atomic number: The atomic number decreases by 1 (from 83 to 82), which indicates that a beta particle (electron) is emitted.

4. Confirm that the mass number remains the same (214) as it does not change during beta decay.

To know more about radioactive decay, click below.

https://brainly.com/question/20388835

#SPJ11

How many of the following elements have 2 unpaired electrons in the ground state? A. C B. Te C. Hf D. Si

Answers

all four elements (A, B, C, and D) have 2 unpaired electrons in their ground state

How many  unpaired electorns in the ground state?

To determine how many of the following elements have 2 unpaired electrons in the ground state, let's examine the electron configurations for each element: A. C (Carbon), B. Te (Tellurium), C. Hf (Hafnium), and D. Si (Silicon).

A. Carbon (C) has an electron configuration of 1s² 2s² 2p². In the 2p subshell, there are two unpaired electrons.

B. Tellurium (Te) has an electron configuration of 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁴. In the 5p subshell, there are two unpaired electrons.

C. Hafnium (Hf) has an electron configuration of 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d². In the 5d subshell, there are two unpaired electrons.

D. Silicon (Si) has an electron configuration of 1s² 2s² 2p⁶ 3s² 3p². In the 3p subshell, there are two unpaired electrons.

So, all four elements (A, B, C, and D) have 2 unpaired electrons in their ground state.

Learn more about  unpaired electrons

brainly.com/question/30985234

#SPJ11

what is the specific heat of benzene if 3450 j of heat is added to a 150. g sample of benzene and its temperature increases from 22.5°c to 35.8°c?

Answers

To find the specific heat of benzene, we can use the formula: Q = mcΔT where Q is the heat added (3450 J), m is the mass of the benzene sample (150 g).

c is the specific heat capacity we want to find, and ΔT is the temperature increase (35.8°C - 22.5°C). First, let's calculate ΔT: ΔT = 35.8°C - 22.5°C = 13.3°C Now, we can rearrange the formula to find c: c = Q / (mΔT) c = 3450 J / (150 g × 13.3°C) c ≈ 1.73 J/(g°C)

So, the specific heat capacity of benzene is approximately 1.73 J/(g°C). Plugging in the given values: 3450 J = 150 g * c * (35.8°C - 22.5°C) Solving for c: c = 1.74 J/g°C Therefore, the specific heat of benzene is 1.74 J/g°C if 3450 J of heat is added to a 150 g sample of benzene and its temperature increases from 22.5°C to 35.8°C.

To know more about temperature click here

brainly.com/question/29072206

#SPJ11

What is the standard free energy of formation of 1.00 mol of CuO(s)?

Answers

From the following formula ΔG°f = ΣnΔG°f(products) - ΣmΔG°f(reactants), the standard free energy of formation of 1.00 mol of CuO(s) is -157.3 kJ.

The standard free energy of formation of 1.00 mol of CuO(s) can be calculated using the equation: ΔG°f = ΣnΔG°f(products) - ΣmΔG°f(reactants)
;where ΔG°f is the standard free energy of formation, n and m are the stoichiometric coefficients of the products and reactants respectively.

The standard free energy of formation of CuO(s) is -157.3 kJ/mol. Therefore, the standard free energy of formation of 1.00 mol of CuO(s) can be calculated as:

ΔG°f = (1 mol) (-157.3 kJ/mol) = -157.3 kJ

So, the standard free energy of formation of 1.00 mol of CuO(s) is -157.3 kJ.


The standard free energy of formation (ΔGf°) of a compound is the change in free energy when 1.00 mol of the substance is formed from its constituent elements under standard conditions (1 atm pressure and 298 K temperature). For CuO(s), this refers to the formation of 1.00 mol of solid copper(II) oxide from its elements, copper (Cu) and oxygen (O₂).

To find the ΔGf° value for CuO(s), you can refer to a table of standard free energies of formation. According to such tables, the ΔGf° for CuO(s) is approximately -129.7 kJ/mol. This negative value indicates that the formation of CuO(s) from its elements is a spontaneous process under standard conditions.

Visit here to learn more about  standard free energy  : https://brainly.com/question/6556762
#SPJ11

1. Would you expect the entropy of C2H7OH(l) to be:
Circle one: greater than / less than / equal to the entropy of C2H7OH(g)? Explain your reasoning.
2. Would you expect the entropy of 10.0 M C12H22O11(aq) to be: Circle one: greater than / less than / equal to the entropy of 1.0 M C12H22O11(aq)? Explain your reasoning.

Answers

Entropy of C₂H₇OH(g) is anticipated to be higher than entropy of C₂H₇OH(l).

What connection exists between the quantity of microstates and entropy?

The amount of microstates in a distribution affects how likely it is that a system will exist with all of its constituent parts. The most likely distribution is the one with the highest entropy since entropy rises logarithmically with the number of microstates.

The number of various configurations of molecule location and kinetic energy at a specific thermodynamic state is referred to as microstates. a method that makes more people available

To know more about Entropy visit:-

brainly.com/question/13999732

#SPJ1

hat would happen to the normality if you titrated too much naoh into the flask? explain your reasoning to whether the normality would decrease, increase, or stay the same

Answers

Titrating too much NaOH into the flask would cause the normality of the solution to decrease due to the increase in volume without a corresponding increase in the number of equivalents (moles of OH-) being added.

To explain this reasoning, let's consider the following steps:

1. When titrating NaOH into the flask, you are adding more moles of hydroxide ions (OH-) to the solution.
2. As you add more NaOH, the concentration of the hydroxide ions in the solution will increase.
3. Normality is defined as the number of equivalents of solute per liter of solution (N = equivalents/L).
4. In this case, an "equivalent" refers to the number of moles of hydroxide ions (OH-).
5. As you continue to add NaOH beyond the equivalence point, the volume of the solution in the flask will also increase.
6. Because normality takes both the number of equivalents (moles of OH-) and the volume of the solution into account, increasing the volume without adding more equivalents of the solute will result in a lower normality.

To know more about "Titrating" refer here:

https://brainly.com/question/29358403#

#SPJ11

which positions on the N-phenylacetamide ring could undergo bromination? Select one or more: ortho meta para N-phenylacetamide cannot undergo bromination

Answers

The positions on the N-phenylacetamide ring that could undergo bromination are the ortho, meta, and para positions.

Bromination is an electrophilic aromatic substitution reaction, where a bromine atom is introduced to the aromatic ring. N-phenylacetamide has an amide group attached to the phenyl ring. The amide group is a weakly electron-withdrawing group due to resonance and inductive effects, making it a meta-directing group. However, it is not strong enough to completely prevent bromination at ortho and para positions.

Therefore, N-phenylacetamide can undergo bromination at all three positions, but the meta position is more likely due to the amide group's influence. It is important to note that the presence of a catalyst that can enhance the reactivity of bromine and influence the selectivity of the reaction. The positions on the N-phenylacetamide ring that could undergo bromination are the ortho, meta, and para positions.

Learn more about electrophilic aromatic substitution at:

https://brainly.com/question/30761476

#SPJ11

Volume Measurement A 10-mL graduated cylinder and 50-mL buret have been partially filled with water. Record the position of the meniscus to the correct precision (uncertainty) in each of the two instrument:

Answers

For a 10-ml graduated cylinder, record the measurement to the nearest 0.1 ml while for a 50-ml graduated cylinder, record the volume to the nearest 0.01 ml.

How to record the measurement on a Graduated Cylinder?

To record the position of the meniscus to the correct precision (uncertainty) in each of the two instruments, follow these steps:

In a 10-mL graduated cylinder:
1. Observe the position of the meniscus, which is the curved surface of the water in the cylinder.
2. To determine the correct precision, note the smallest graduation on the cylinder, typically 0.1 mL.
3. Record the volume to one decimal place (0.1 mL) by estimating the position of the meniscus between the graduation marks.

In a 50-mL buret:
1. Observe the position of the meniscus, which is the curved surface of the water in the buret.
2. To determine the correct precision, note the smallest graduation on the buret, typically 0.1 mL.
3. Record the volume to one decimal place (0.1 mL) by estimating the position of the meniscus between the graduation marks.

Remember to always read the meniscus at eye level and record the measurements with the correct precision (uncertainty) as specified by the instrument.

To know more about Graduated Cylinders:

https://brainly.com/question/3222898

#SPJ11

Consider a buffer made by adding 44.9 g of (CH₃)₂NH₂I to 250.0 ml of 1.42 m (CH2)2NH (kb = 5.4 x 10⁻⁴) what is the ph of this buffer?

Answers

Consider a buffer made by adding 44.9 g of (CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]I to 250.0 ml of 1.42 m (CH[tex]_2[/tex])[tex]_2[/tex]NH. 10.29 is the pH of this buffer.

pH is a numerical indicator of how acidic or basic aqueous or other liquid solutions are. The phrase, which is frequently used in chemistry, biology, and agronomy, converts the hydrogen ion concentration, which typically ranges between 1 and 1014 gram-equivalents per litre, into numbers between 0 and 14. The hydrogen ion concentration in pure water, which has a pH of 7, is 107 gram-equivalents per litre, making it neutral (neither acidic nor alkaline). A solution with a pH below 7 is referred to as acidic, and one with a pH over 7 is referred to as basic, or alkaline.

moles of  (CH[tex]_2[/tex])[tex]_2[/tex]NH = 1.42 mol/L x 0.250 L

                                 = 0.355 mol

(CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]I →  (CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]⁺ + I⁻

Kb = [  (CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]⁺ ][OH⁻] / [ (CH[tex]_2[/tex])[tex]_2[/tex]NH  ]

[ (CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]⁺ ] = Kb x [ (CH₂)₂NH ]

                      = (5.4 x 10⁻⁴) x 0.355 mol

                      = 1.92 x 10⁻⁴ M

[  (CH[tex]_2[/tex])[tex]_2[/tex]NH ] =(CH[tex]_2[/tex])[tex]_2[/tex]NH +  (CH[tex]_2[/tex])[tex]_2[/tex]NH[tex]_2[/tex]⁺

                    = 0.355 mol + 1.92 x 10⁻⁴ mol

                    = 0.3552 mol

Kb = Kw / Ka

Ka = Kw / Kb

   = 1.0 x 10⁻¹⁴ / 5.4 x 10⁻⁴

   = 1.85 x 10⁻¹¹

pKa = -log(Ka)

      = -log(1.85 x 10⁻¹¹)

      = 10.73

pH = pKa + log( [ (CH₃)₂NH₂⁺ ] / [ (CH₂)₂NH ] )

pH = 10.73 + log(1.92 x 10⁻⁴ M / 0.3552 M)

    = 10.29

To know more about pH, here:

https://brainly.com/question/2288405

#SPJ12

calculate the mass of solid sodium acetate trihydrate, nac2h3o2·3h2o, required to mix with 50.0 ml of 1.0 m acetic acid to prepare a ph 4 buffer. record the mass in your data table.

Answers

To prepare a buffer of pH 4, we need to use the Henderson-Hasselbalch equation:

pH = pKa + log([A^-]/[HA])

We can assume that acetic acid (HA) will be the major species in solution and the acetate ion (A^-) will be the minor species.

pH = 4

pKa of acetic acid = 4.76

Substituting these values into the Henderson-Hasselbalch equation, we get:

4 = 4.76 + log([A^-]/[HA])

log([A^-]/[HA]) = -0.76

[A^-]/[HA] = 10^(-0.76)

[A^-]/[HA] = 0.184

Since we know the concentration of acetic acid is 1.0 M, we can find the concentration of the acetate ion by multiplying the concentration of acetic acid by the ratio [A^-]/[HA]:

0.184 = [A^-]/1.0

[A^-] = 0.184 M

Now, we can use the equation for the dissociation of sodium acetate:

NaC2H3O2(aq) ↔ Na+(aq) + C2H3O2^-(aq)

The equilibrium constant for this reaction is:

K = [Na+(aq)][C2H3O2^-(aq)]/[NaC2H3O2(aq)]

Since the sodium acetate is a strong electrolyte, it will dissociate completely, so we can assume that the concentration of NaC2H3O2(aq) is equal to the concentration of sodium acetate added. Therefore, we can simplify the equilibrium constant expression to:

K = [Na+][C2H3O2^-]

We can find the concentration of sodium ion by multiplying the concentration of acetate ion by the ratio of sodium ion to acetate ion, which is 1:1 since the compound is NaC2H3O2:

[Na+] = [C2H3O2^-] = 0.184 M

We can look up the value of the equilibrium constant for this reaction (K = 1.8 x 10^-5), so we can solve for the concentration of NaC2H3O2:

1.8 x 10^-5 = (0.184 M)^2/[NaC2H3O2]

[NaC2H3O2] = 0.184^2/1.8 x 10^-5

[NaC2H3O2] = 1.89 M

Now, we can use the formula for calculating the amount (in moles) of a compound needed to make a solution:

moles = concentration x volume (in liters)

We have a volume of 50.0 mL = 0.0500 L and a concentration of 1.89 M, so:

moles of NaC2H3O2 = 1.89 M x 0.0500 L = 0.0945 moles

Finally, we can use the molar mass of NaC2H3O2·3H2O to convert moles to mass:

mass = moles x molar mass

The molar mass of NaC2H3O2·3H2O is:

Na: 1 x 22.99 g/mol = 22.99 g/mol

C: 2 x 12.01 g/mol = 24.02 g/mol

H: 6 x 1.01 g/mol = 6.06 g/mol

O: 7 x 16.00 g

Visit here to learn more about Henderson-Hasselbalch brainly.com/question/13423434

#SPJ11

The heat of fusion ΔHf, of ethanol (CH3CH2OH) is 4.6 kJ/mol. Calculate the change in entropy ΔS when 35. g of ethanol freezes at - 114.3 °C. Be sure your answer contains a unit symbol. Round your answer to 2 significant digits.

Answers

-22.0 J/K is the change in entropy when 35. g of ethanol freezes at -114.3 °C .

The amount of ethanol that freezes can be calculated using its molar mass:

Molar mass of ethanol = 46.07 g/mol

Number of moles of ethanol = mass / molar mass = 35 g / 46.07 g/mol = 0.760 mol

The heat released during the freezing of 0.760 mol of ethanol can be calculated using the heat of fusion:

ΔH = nΔHf = (0.760 mol)(4.6 kJ/mol) = 3.5 kJ

The change in entropy (ΔS) can be calculated using the following equation:

ΔS = -ΔH / T

where ΔH is the heat released during the freezing of ethanol and T is the temperature at which the freezing occurs in Kelvin.

The temperature of the freezing is -114.3 °C = 158.85 K

ΔS = -(3.5 kJ) / (158.85 K) = -22.0 J/K

Therefore, the change in entropy when 35. g of ethanol freezes at -114.3 °C is -22.0 J/K.

To know more about Entropy refer here :

https://brainly.com/question/30402427

#SPJ11

explain why ionic attractions are weaker in media with high dielectric constants, e. g., water and aqueous buffers

Answers

Ionic attractions are weaker in media with high dielectric constants, such as water and aqueous buffers, because the dielectric constant measures a substance's ability to reduce the electrostatic forces between charged particles.

Ionic attractions refer to the electrostatic interactions between ions, which can either attract or repel one another depending on the charges involved. Dielectric constants are a measure of a solvent's ability to reduce the strength of these electrostatic interactions between ions.

In media with high dielectric constants, such as water and aqueous buffers, the solvent molecules have a greater ability to shield the charges of the ions. This means that the electrostatic attractions between ions are weaker, as the ions are less able to interact directly with one another.

This effect can be explained by considering the way in which ions interact with their surroundings. In low dielectric constant solvents, the ions are surrounded by a tightly packed layer of solvent molecules, which effectively shield their charges from other ions. This means that the ions are able to interact more strongly with one another, as there is less interference from the solvent molecules.

In contrast, in high dielectric constant solvents, the solvent molecules are more loosely packed around the ions. This means that there is more space for the solvent molecules to move around, which reduces the strength of the interactions between the ions. The net effect of this is that ionic attractions are weaker in media with high dielectric constants, such as water and aqueous buffers.

To learn more about dielectric constants click here

brainly.com/question/13265076

#SPJ11

what is the coefficient for o2 in the balanced version of the following chemical equation: c2h4 o2→co2 h2o your answer should be a whole number.

Answers

The coefficient for O2 in the balanced equation is 2, which is a whole number as requested in your question.

To balance the chemical equation involving C2H4, O2, CO2, and H2O. Here's a step-by-step explanation:

1. Write the unbalanced chemical equation: C2H4 + O2 → CO2 + H2O

2. Balance the carbon (C) atoms: Since there are two carbon atoms in C2H4, we need two CO2 molecules to balance the carbon atoms.
  C2H4 + O2 → 2CO2 + H2O

3. Balance the hydrogen (H) atoms: There are four hydrogen atoms in C2H4, so we need two H2O molecules to balance the hydrogen atoms.
  C2H4 + O2 → 2CO2 + 2H2O

4. Balance the oxygen (O) atoms: There are now four oxygen atoms on the right side of the equation (two from each CO2 and two from the two H2O molecules). To balance the oxygen atoms, we need two O2 molecules on the left side.
  C2H4 + 2O2 → 2CO2 + 2H2O

The balanced chemical equation is: C2H4 + 2O2 → 2CO2 + 2H2O

To know more about balanced equation refer to

https://brainly.com/question/26694427

#SPJ11

the numbers in the names of the ketones: 2-propanone, 2-butanone, 2-pentanone, 3-pentanone refer to

Answers

The numbers in the names of the ketones, such as 2-propanone, 2-butanone, 2-pentanone, and 3-pentanone, refer to the position of the carbonyl group (C=O) in the carbon chain of the molecule.

Here's a breakdown of each ketone:

1. 2-Propanone: This ketone has three carbon atoms (propane) with the carbonyl group on the second carbon atom. Its structure is CH3-C(=O)-CH3.
2. 2-Butanone: This ketone has four carbon atoms (butane) with the carbonyl group on the second carbon atom. Its structure is CH3-CH2-C(=O)-CH3.
3. 2-Pentanone: This ketone has five carbon atoms (pentane) with the carbonyl group on the second carbon atom. Its structure is CH3-CH2-CH2-C(=O)-CH3.
4. 3-Pentanone: This ketone also has five carbon atoms (pentane), but the carbonyl group is on the third carbon atom. Its structure is CH3-CH2-C(=O)-CH2-CH3.

The numbers in the names of these ketones indicate the position of the carbonyl group within the carbon chain.

To know more about ketone here:

https://brainly.com/question/4439718#

#SPJ11

what is the aka reaction of hcn?hcn? aka reaction: the aka of hcnhcn is 6.2×10−10.6.2×10−10. what is the bkb value for cn−cn− at 25 °c? b=kb=

Answers

The Kb value for CN- at 25°C is approximately 1.61×10^-5.

How to find the base dissociation constant of a reaction?



The BKB (base dissociation constant) of CN- at 25°C can be calculated using the relationship:

Kb = Kw / Ka

where Kw is the ion product constant of water (1x10^-14) and Ka is the acid dissociation constant of HCN (6.2x10^-10).

Plugging in the values, we get:

Kb = (1x10^-14) / (6.2x10^-10)
Kb = 1.61x10^-5

Therefore, the BKB value for CN- at 25°C is 1.61x10^-5.

To know more about Base Dissociation Constant:

https://brainly.com/question/29653757

#SPJ11

what is the ph of a saturated solution of cobalt(ii) hydroxide?the ksp for cobalt(ii) hydroxide is 5.9 x 10−15.

Answers

The solubility product constant (Ksp) expression for cobalt(II) hydroxide (Co(OH)2) is: Ksp = [Co2+][OH-][tex]^2[/tex]

Since cobalt(II) hydroxide is a sparingly soluble compound, we can assume that it dissociates in water to a very small extent, and that the concentration of Co2+ is negligible compared to the initial concentration of OH-. Therefore, we can simplify the expression to:

Ksp ≈ [OH-][tex]^2[/tex]

Taking the square root of both sides of the equation and substituting the value of Ksp gives:

[OH-] = sqrt(Ksp) = sqrt(5.9 x 10^-15) = 7.68 x 10[tex]^-8[/tex] M

The hydroxide ion concentration in a saturated solution of cobalt(II) hydroxide is 7.68 x 10[tex]^-8[/tex] M.

To find the pH, we can use the relation between pH and [OH-]:

pH = -log [OH-] = -log (7.68 x 10[tex]^-8[/tex] = 7.11

Therefore, the pH of a saturated solution of cobalt(II) hydroxide is approximately 7.11.

learn more abouT saturated here:

https://brainly.com/question/388072

#SPJ4

Question 5 1 pts What happens to the solubility of MgCO3 in water if 0.1 M HNO3 is added to the solution at 298 K? (Ksp = 4.0 x 10-5) O The solubility decreases. The solubility increases.The solubility is not affected.

Answers

When 0.1 M HNO3 is added to a solution containing MgCO3 at 298 K with Ksp = 4.0 x 10^-5, the solubility of MgCO3 will increase.

Solubility is the capacity of a substance to dissolve when mixed with a solvent to give rise tot a solution.
HNO3 is a strong acid that will react with the MgCO3 to form soluble products. The reaction is:
MgCO3 (s) + 2HNO3 (aq) → Mg(NO3)2 (aq) + CO2 (g) + H2O (l)

Ksp is the solubility product constant. If there is an increase in solubility, the Ksp value tends to increase as well.
The addition of HNO3 will cause the MgCO3 to dissolve more to maintain the equilibrium, thus increasing its solubility in the solution.

For a further detailed explanation on how the solubility of a solution having MgCO3 changes when HNO3 is added visit: https://brainly.com/question/29352963

#SPJ11

14h (aq) cr2o72-(aq) 3ni(s) --> 2cr3 (aq) 3ni2 (aq) 7h2o(l) in the above reaction, a piece of solid nickel is added to a solution of potassium dichromate. how many moles of electrons are transferred when 1 mole of potassium dichromate is mixed with 3 mol of nickel?

Answers

A total of 18 moles of electrons are transferred when 1 mole of potassium dichromate is mixed with 3 moles of nickel.

The balanced chemical equation for the given reaction is:

14H+ (aq) + Cr2O7 2- (aq) + 3Ni (s) → 2Cr3+ (aq) + 3Ni2+ (aq) + 7H2O (l)

From the equation, we can see that 6 moles of electrons are transferred per mole of Ni (s). Therefore, when 3 moles of nickel react, 18 moles of electrons are transferred.

To determine the number of moles of electrons transferred when 1 mole of potassium dichromate is mixed with 3 moles of nickel, we need to first calculate the limiting reactant. The balanced equation shows that 3 moles of nickel require 1 mole of potassium dichromate to react completely. Therefore, 1 mole of potassium dichromate will react with 3 moles of nickel.

As we know that 18 moles of electrons are transferred when 3 moles of nickel react, we can conclude that 6 moles of electrons are transferred when 1 mole of nickel reacts. Therefore, when 1 mole of potassium dichromate is mixed with 3 moles of nickel, a total of 6 x 3 = 18 moles of electrons are transferred.

In summary, 18 moles of electrons are transferred when 1 mole of potassium dichromate is mixed with 3 moles of nickel.

for more such question on moles

https://brainly.com/question/28037816

#SPJ11

Other Questions
On a scale drawing, the height of a tree is 3 inches. If the scale of the drawing is 1 in:50 ft , how tall is the tree? Solve the following systems of five linear equation both with inverse and left division methods 2.5a-b+3e+1.5d-2e = 57.1 3a+4b-2c+2.5d-e=27.6 -4a+3b+c-6d+2e=-81.2 2a+3b+c-2.5d+4e=-22.2 a+2b+5c-3d+4e=-12.2 what is mid continents product? a. raw aluminum. b. steel. c. nails. d. soybeans. e. cattle. Find the global maximizers and minimizers (if they exist) for the following functions and the constraint sets. Show your working clearly. (i) f(x) = 4x+1/4x, S=[1/5,[infinity]] (2 marks) ii) f(x) = x^5 8x^3, S =[1,2] (2 marks) a) If x^3+y^3xy^2=5 , find dy/dx.b) Find all points on this curve where the tangent line is horizontal and where the tangent line is vertical. what new statements and ideas about art did courbet espouse? in what ways is courbets the artists studio an example of realism, but not really "realistic"? In a paragraph explain one reason why Okonkwo from the book Things Fall Apart is or is not a good person. calculus grades (1.6) the dotplot shows final exam scores for mr. millers 25 calculus students. a. find the median exam score.b. Without doing any calculations, would you estimate that the mean is about the same as the median, higher than the median, or lower than the median? The equation of the line tangent to the differentiable and invertible function f(x) at the point (-1,3) is given by y = 2x + 1. Find the equation of the tangent line to f-1(x) at the point (3, -1). Problem 1: If seawater contains 40g of sodium chloride per 500ml, thenwhat is the molarity of a solution? ABC had the following net income (loss) the first three years of operation: $7,100,($1,600), and $3,600. If the Retained Earnings balance at the end of year three is $1,100, what was the total amount of dividends paid over these three years?A) $8,000. B) $500. C) $0. D) $9,100 what is the purpose of huey p. longs speech A si p -n junction 10-2 cm2 in area has nd = 1015 cm-3 doping on the n side. calculate the junction capacitance with a reverse bias of 10 v. in this lab, you will write a c program to find the position of w words in a n x m crossword puzzle that has been previously solved. the values for w,n,m range from 5 up to 100. Managers can prevent negative consequences of political behavior by: a. creating an atmosphere of open communication within organizations b. maintaining secrecy about decision-making practices. c. minimizing employee interaction within organizations. d. setting clear expectations about performance and rewards. Help me with this question Please Question 6 of 9Jennifer spent $10.25 on supplies to make lemonade. At least how many glasses of lemonade must she sellat $0.45 per glass to make a profit?At most 4.61 glassesAt least 5 glassesAt least 23 glassesO At most 22.78 glasses How many fewer minutes did Lizzie practice on Tuesday than on Monday? a plant disease that damages a plant's pericycle would directly impact the plant's ability to do what? Using your knowledge of the Brnsted-Lowry theory of acids and bases,write equations for the following acid-base reactions and indicate eachconjugate acid-base pair: